CAN总线简介及其特点

合集下载

can总线标准

can总线标准

can总线标准CAN总线标准。

CAN(Controller Area Network)总线是一种串行通信协议,最初由Bosch公司在1986年提出,用于汽车内部的通信。

CAN总线标准已经成为工业控制和汽车领域中最常用的一种通信协议,它具有高可靠性、高抗干扰能力和灵活的拓扑结构等优点,被广泛应用于汽车、工业控制、航空航天等领域。

CAN总线标准的特点:1. 高可靠性,CAN总线采用了差分信号传输技术,能够有效抵抗电磁干扰,保证数据传输的可靠性。

此外,CAN总线还具有冗余性,即使某个节点发生故障,整个系统仍然可以正常工作。

2. 高速传输,CAN总线的通信速率可达到1Mbps,能够满足大部分实时性要求较高的应用场景。

3. 灵活的拓扑结构,CAN总线支持多主机系统,节点之间采用分布式控制,可以实现灵活的拓扑结构,适应不同的应用环境。

4. 标准化协议,CAN总线的通信协议严格标准化,各厂家生产的CAN设备可以相互兼容,便于系统集成和维护。

CAN总线标准的应用领域:1. 汽车电子控制系统,CAN总线最初是为了解决汽车内部各种传感器和执行器之间的通信而设计的,如发动机控制单元、防抱死制动系统、空调控制系统等。

2. 工业控制领域,CAN总线在工业领域的应用也非常广泛,例如工厂自动化生产线、机器人控制系统、智能仓储系统等。

3. 航空航天领域,由于CAN总线具有高可靠性和抗干扰能力,因此在航空航天领域也得到了广泛应用,如飞行控制系统、航空发动机控制系统等。

总的来说,CAN总线标准作为一种成熟的通信协议,已经在各个领域得到了广泛的应用。

随着物联网和智能制造的发展,CAN总线标准将继续发挥重要作用,为各种设备和系统之间的通信提供可靠的解决方案。

CAN总线简介(2024版)

CAN总线简介(2024版)
目前汽车上的网络连接方式主要采用2条CAN, 一条用于驱动系统的高速CAN,速率达到500kb/s; 另一条用于车身系统的低速CAN,速率是100kb/s。
驱动系统的高速CAN
• 驱动系统CAN主要连接对象是发动机控制器 (ECU)、ABS控制器、安全气囊控制器、 组合仪表等等,它们的基本特征相同,都是 控制与汽车行驶直接相关的系统。
倍。这种传统布线方法不能适应汽车的发展。CAN总线可有效减少线束,节省空间。
例如某车门-后视镜、摇窗机、门锁控制等的传统布线需要20-30 根,应用总线 CAN 则
只需要 2 根。(3)关联控制在一定事故下,需要对各ECU进行关联控制,而这是传统
汽车控制方法难以完成的表1 汽车部分电控单元数据发送、接受情况
• (5)直接通信距离最远可达10km(速率5Kbps以下)。
• (6)通信速率最高可达1MB/s(此时距离最长40m)。
• (7)节点数实际可达110个。
• (8)采用短帧结构,每一帧的有效字节数为8个。
• (9)每帧信息都有CRC校验及其他检错措施,数据出错 率极低。
• (10)通信介质可采用双绞线,同轴电缆和光导纤维,一 般采用廉价的双绞线即可,无特殊要求。
可靠性高:传输故障(不论是由内部还是外部引起 的)应能准确识别出来 使用方便:如果某一控制单元出现故障,其余系统 应尽可能保持原有功能,以便进行信息交换 数据密度大:所有控制单元在任一瞬时的信息状态 均相同,这样就使得两控制单元之间不会有数据偏 差。如果系统的某一处有故障,那么总线上所有连 接的元件都会得到通知。 数据传输快:连成网络的各元件之间的数据交换速 率必须很快,这样才能满足实时要求。
• (2)网络上的节点(信息)可分成不同的优先级,可以满 足不同的实时要求。

CAN总线介绍范文

CAN总线介绍范文

CAN总线介绍范文CAN总线,即控制器局域网络(Controller Area Network),是一种广泛应用于车辆、工业自动化和嵌入式领域的通信协议和总线系统。

CAN总线最早由汽车制造商Bosch于1986年开发,旨在解决车辆电子系统中的通信需求。

由于其高可靠性、优异的抗干扰能力和灵活的拓扑结构,CAN总线在汽车技术和工业控制领域得到了广泛的应用。

1.高可靠性:CAN总线采用了差分信号传输、信号线电平反转、CRC校验等技术,可以有效抵御电磁干扰和噪声,提高通信的可靠性和稳定性。

2.抗干扰能力强:CAN总线采用了差分传输方式,信号传输两根线,其中一根是正常逻辑信号,另一根是相反的逻辑信号,利用差分电压来表示信号的高低电平,从而减少了电磁干扰的影响。

3.灵活的拓扑结构:CAN总线可以采用总线拓扑或星形拓扑结构,适应不同的通信需求。

总线拓扑结构可以连接多个节点,而星形拓扑结构可以提供更稳定的通信环境。

4. 高速通信能力:CAN总线支持较高的通信速率,最高可达1Mbps,可以满足实时性要求较高的应用场景。

5.灵活的数据帧格式:CAN总线的数据帧格式包括标准帧和扩展帧,可以适应不同的数据通信需求。

标准帧有11位的标识符,扩展帧有29位的标识符,可以提供更多的地址空间和更灵活的数据传输方式。

6.支持多主机通信:CAN总线支持多主机通信,多个节点可以同时发送数据而不会发生冲突,提高了总线的利用率和通信效率。

CAN总线的应用广泛,特别是在车辆领域。

在汽车中,CAN总线连接了各个电子控制单元,如发动机控制单元、制动系统控制单元、空调控制单元等。

通过CAN总线,这些控制单元可以相互通信,实现车辆的集中控制和数据交换。

另外,为了满足不同的通信需求,CAN总线还衍生出了一些变种,如CAN FD(Flexible Data-Rate),它支持更高的数据传输速率,提高了通信的效率和带宽。

除了车辆领域,CAN总线还在工业自动化领域得到广泛应用。

CAN总线协议原理特点

CAN总线协议原理特点

CAN总线协议原理特点CAN(Controller Area Network)总线协议是一种串传式通信协议,其主要应用于汽车电子系统的通信与数据传输。

相较于其他常见的通信方式,CAN总线的特点在于其高可靠性、高实时性和高带宽。

本文将深入探讨CAN总线协议的原理和特点。

一、CAN总线协议原理CAN总线协议是一种基于串传方式的网络通信协议,旨在提供一种快速、可靠且实时的通信解决方案。

它采用两线制,即CAN_H(CAN High)和CAN_L(CAN Low)线,通过差分信号传输数据。

CAN总线采用先进的调制调制解调技术,将数据转换成差分电压信号进行传输,以提高抗干扰能力。

CAN总线的通信基于主从结构。

每个节点都可以作为主节点或者从节点进行通信。

主节点通常负责控制总线上的数据通信流程,并负责初始化和同步所有从节点。

而从节点将随时准备接收数据并处理。

主节点通过给定的优先级来安排总线上的数据传输,确保高优先级的数据能够及时传输。

CAN总线协议具有以下关键特性:1. 速度灵活:CAN总线协议支持灵活的通信速率,通常可以在1kb/s至1Mb/s的范围内进行调整。

这使得CAN总线适用于不同速率要求的应用,从低速传感器数据采集到高速实时控制。

2. 高实时性:CAN总线协议针对实时应用设计,可以满足对通信延迟非常敏感的应用需求。

其通信机制包括时间触发机制和事件触发机制,在保证数据的及时传输的同时确保了高实时性。

3. 可靠性:CAN总线协议采用了多种错误检测和纠正机制,以保证数据的可靠性。

通过使用循环冗余校验(CRC)对数据进行校验,并通过重传机制来处理丢失或者冲突的数据帧,使得CAN总线在面对噪声和干扰时能够保持良好的信号完整性。

4. 高带宽:CAN总线协议的带宽适中,能够满足大多数应用的需求。

每个CAN总线可以支持多个节点,每个节点可以发送和接收不同类型的数据帧,实现多通道的数据传输。

5. 灵活性:CAN总线协议提供灵活的网络拓扑结构,可以实现星型、环形、总线和混合结构等不同拓扑形式。

CAN总线的特点及发展趋势

CAN总线的特点及发展趋势

CAN总线的特点及发展趋势CAN(Controller Area Network,控制器局域网)总线是一种面向实时应用的多主机串行通信总线,最初被用于汽车电子控制系统,现在已经广泛应用于诸如工业自动化、医疗设备、航空航天等领域。

以下将介绍CAN总线的特点及其发展趋势。

1.高可靠性:CAN总线具有高抗干扰能力和高容错性,能够在恶劣的环境下稳定工作。

它采用差分传输方式,能有效抵抗噪声和干扰,同时具备误码检测和容错纠正机制,能够自动检测和修复传输中的错误。

2. 实时性:CAN总线能够满足实时性要求,传输速率可达到 1 Mbps,并且具有优先级机制,可以根据消息的重要性进行数据传输的调度,保证高优先级的消息先被传输,从而满足实时控制的需求。

3.简洁性:CAN总线采用的通信协议简单,数据帧格式明确,使得系统的设计和实现变得简单。

通过标识符来识别不同的节点和数据类型,实现了灵活的通信方式。

4.扩展性:CAN总线支持多主机通信,每个节点可以接入多个设备。

它可以通过连接器将多个CAN总线组成一个网络,并且可以通过CAN网关将多个CAN网络连接起来,实现更大规模的通信。

5.低成本:CAN总线的成本相对较低,其简单性和通用性使得其应用范围广泛,降低了系统的成本。

1.提高速率:随着实时应用要求的增加,CAN总线的速率也不断提高,并且增加了高速CAN(CANFD)技术。

CANFD可以实现更高的数据传输速率,提高数据带宽,满足更高的实时应用需求。

2.增强安全性:随着汽车电子化水平的提高,对车辆的安全性和数据保护要求也日益增加。

CAN总线的未加密的通信方式容易受到攻击和干扰,因此未来的CAN总线将倾向于增加加密和认证等安全机制,以提高通信的安全性。

3.支持更多协议:CAN总线在汽车领域被广泛应用,但由于不同厂商和不同功能的设备使用的通信协议不同,导致系统的复杂性增加。

为了解决这个问题,未来的CAN总线将支持更多的协议,可以实现不同设备之间的互联互通。

CAN总线通讯特点

CAN总线通讯特点

CAN总线通讯特点CAN(Controller Area Network)总线是一种用于多节点通信的高可靠性串行通信系统,其通信特点有以下几个方面。

1.高可靠性:CAN总线采用的是广播通信方式,所有节点共享同一总线。

每个节点根据标识符识别自己需要接收的数据,其他数据会被忽略。

这种通信方式能够使得系统在一个节点故障的情况下继续工作。

2.实时性:CAN总线采用的是时间触发式通信,具有很高的实时性。

每一个消息都有一个固定的发送时间,这样可以避免消息冲突,提高通信效率。

此外,CAN总线还支持优先级控制,可以根据消息的紧急程度进行优先处理。

3. 高带宽:CAN总线的通信速率可以达到1Mbps,可以满足大部分实时应用的需求。

此外,CAN总线还支持远距离通信,最远可达1km。

4.简单性:CAN总线的通信协议相对简单,易于实现和维护。

CAN总线只需要两根线进行数据传输,分别是CAN-H和CAN-L。

此外,CAN总线还支持自动错误检测和纠正功能,可以在通信过程中自动检测和处理错误。

5.灵活性:CAN总线支持多种拓扑结构,包括总线型、星型和混合型。

同时,CAN总线还支持节点的热插拔和自动识别功能,可以方便地增加或减少节点。

6.低成本:CAN总线的硬件成本相对较低。

CAN总线使用的是低电压差分传输技术,可以减少对线缆和传输距离的要求。

此外,CAN总线还支持多节点共享一个总线,可以减少线缆的使用。

综上所述,CAN总线具有高可靠性、实时性、灵活性和低成本等特点。

这些特点使得CAN总线在工业控制、汽车电子等领域得到广泛应用。

CAN总线介绍

CAN总线介绍

CAN总线介绍CAN总线,即控制器区域网络(Controller Area Network),是一种国际标准的串行通信协议,用于在汽车和工业领域中进行高速数据传输。

CAN总线的设计目标是提供一个可靠、高效、实时的通信方式,以满足复杂系统的需求。

下面将详细介绍CAN总线的特点、结构、工作原理以及应用领域。

一、CAN总线的特点:1.高可靠性:CAN总线采用差分信号传输,具有较强的抗干扰能力,能够在恶劣的工作环境下保持稳定的通信质量。

2.高效性:CAN总线采用了固定格式的数据帧和强大的错误检测与修复机制,使得数据传输更加高效可靠。

3.实时性:CAN总线支持实时性要求较高的应用,可以实现微秒级的数据传输延迟。

4.灵活性:CAN总线可以连接多个节点,节点之间可以通过CAN总线进行双向通信,同时支持错误检测与错误恢复。

5.易于应用:CAN总线采用了开放式的标准协议,有着广泛的支持和应用经验,易于集成和开发。

二、CAN总线的结构:1. 主控器(Master):负责总线管理,包括数据的发送和接收、帧结构的解析、错误处理等。

2. 从控器(Slave):负责接收主控器发送的数据帧,并根据需要进行相应的处理和响应。

3.总线线缆:用于在各个节点之间传输数据和控制信息的物理介质。

4. 高速传输率:CAN总线通常有两种速率可选,分别是高速CAN(1Mbps)和低速CAN(125kbps)。

三、CAN总线的工作原理:1.数据帧格式:CAN总线的数据帧包括了4个主要部分:起始符、控制字段、数据字段和结束符。

其中,控制字段包括了帧类型、帧长度、帧优先级、帧标识符等信息。

2.帧结构与地址:CAN总线通过帧标识符来区分不同的数据帧,并根据优先级进行数据传输,同时可以通过标识符来实现多个不同类型的数据帧。

3.错误检测与修复:CAN总线采用循环冗余校验(CRC)方法进行错误检测和修复,可以检测到传输过程中的位错误、帧错误等,并进行相应的错误恢复措施。

CAN总线的介绍

CAN总线的介绍

CAN总线的介绍CAN总线是指控制器局域网络(Controller Area Network)的缩写,是一种被广泛应用于汽车电子系统的通信总线。

它最初由德国汽车制造商BOSCH于1983年开发,用于解决传统有线电缆在多个控制单元之间进行数据传输过程中所遇到的问题。

CAN总线的设计目标是提供高可靠性的实时通信,优化汽车电子系统的性能,并节省系统成本。

CAN总线的特点之一是在一个相对短的物理线路上能实现高速数据传输。

它的传输速率通常为1 Mbps,且可在特殊情况下扩展至10 Mbps。

CAN总线可以支持多达110个节点连接在同一总线上,并且在同一车辆或系统内部的多个子网之间提供通信。

CAN总线使用了一种全双工的通信方式,即任何节点都可以同时发送和接收数据。

这也意味着不同的节点可以通过总线实时地进行数据沟通。

此外,CAN总线还具备高度容错性和冗余性,即使在总线上存在故障或节点故障的情况下,仍能保持通信稳定和可靠。

CAN总线的传输机制采用了一种基于优先级的非中断方式。

当一个节点想要发送数据时,它会使用一个帧来尝试传输。

如果总线上没有其他节点正在发送数据,则该帧可以立即传输。

如果有多个节点同时发送数据,CAN总线会根据每个节点的优先级来确定哪个节点能够成功发送,从而实现数据的有序传输。

CAN总线还支持多种类型的帧结构,包括数据帧、远程帧和错误帧。

其中,数据帧用于发送实际数据,远程帧用于请求其他节点发送数据,而错误帧则用于报告数据传输过程中的错误情况。

这些帧结构使得CAN总线能够满足不同类型的通信需求。

在汽车电子系统中,CAN总线被广泛应用于各种控制单元之间的通信,例如引擎控制单元、变速器控制单元、车身电子控制单元等。

它能够实现这些控制单元之间的实时数据交换,提高整车系统的性能和安全性。

此外,CAN总线还可以支持诊断和配置功能,让技术人员能够对车辆的电子系统进行故障排查和参数调整。

总之,CAN总线是一种可靠、高效的通信总线,被广泛应用于汽车电子系统。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要:CAN总线的数据通讯具有突出的可靠性、实时性和灵活性,其总线规范已经成为国际标准,被公认为几种最有前途的总线之一。

本文在总结CAN总线特点的基础上,对其通信介质访问方式进行了详细的描述,介绍了它在应用中需要解决的技术问题以及目前应用状况。

关键词:CAN总线;通信介质访问控制;实时;应用技术1CAN总线简介及其特点CAN网络(ControllerAreaNetwork)是现场总线技术的一种,它是一种架构开放、广播式的新一代网络通信协议,称为控制器局域网现场总线。

CAN网络原本是德国Bosch公司为欧洲汽车市场所开发的。

CAN推出之初是用于汽车内部测量和执行部件之间的数据通信。

例如汽车刹车防抱死系统、安全气囊等。

对机动车辆总线和对现场总线的需求有许多相似之处,即能够以较低的成本、较高的实时处理能力在强电磁干扰环境下可靠地工作。

因此CAN总线可广泛应用于离散控制领域中的过程监测和控制,特别是工业自动化的底层监控,以解决控制与测试之间的可靠和实时数据交换。

CAN总线有如下基本特点:* CAN协议最大的特点是废除了传统的站地址编码,代之以对数据通信数据块进行编码,可以多主方式工作;* CAN采用非破坏性仲裁技术,当两个节点同时向网络上传送数据时,优先级低的节点主动停止数据发送,而优先级高的节点可不受影响地继续传输数据,有效避免了总线冲突;* CAN采用短帧结构,每一帧的有效字节数为8个(CAN技术规范2.0A),数据传输时间短,受干扰的概率低,重新发送的时间短;* CAN的每帧数据都有CRC效验及其他检错措施,保证了数据传输的高可靠性,适于在高干扰环境中使用;* CAN节点在错误严重的情况下,具有自动关闭总线的功能,切断它与总线的联系,以使总线上其它操作不受影响;* CAN可以点对点、一点对多点(成组)及全局广播集中方式传送和接受数据;* CAN总线直接通讯距离最远可达10km/5Kbps,通讯速率最高可达1Mbps/40m;* 采用不归零码(NRZ—Non-Return-to-Zero)编码/解码方式,并采用位填充(插入)技术。

详细的CAN协议可参见CAN技术规范2.0a和2.0b以及CAN国际标准ISO11898(参考文献3)。

2CAN总线通信介质访问控制方式CAN采用了的3层模型:物理层、数据链路层和应用层。

CAN支持的拓扑结构为总线型。

传输介质为双绞线、同轴电缆和光纤等。

采用双绞线通信时,速率为1Mbps/40m ,50Kbps/10km,结点数可达110个。

CAN的通信介质访问为带有优先级的CS-MA/CA。

采用多主竞争方式结构:网络上任意节点均可以在任意时刻主动地向网络上其它节点发送信息,而不分主从,即当发现总线空闲时,各个节点都有权使用网络。

在发生冲突时,采用非破坏性总线优先仲裁技术:当几个节点同时向网络发送消息时,运用逐位仲裁原则,借助帧中开始部分的表示符,优先级低的节点主动停止发送数据,而优先级高的节点可不受影响的继续发送信息,从而有效地避免了总线冲突,使信息和时间均无损失。

例如,规定0的优先级高,在节点发送信息时,CAN总线作与运算。

每个节点都是边发送信息边检测网络状态,当某一个节点发送1而检测到0时,此节点知道有更高优先级的信息在发送,它就停止发送信息,直到再一次检测到网络空闲。

CAN的传输信号采用短帧结构(有效数据最多为8个字节),和带优先级的CS-MA/CA通信介质访问控制方式,对高优先级的通信请求来说,在1Mbps通信速率时,最长的等待时间为0.15ms,完全可以满足现场控制的实时性要求。

CAN突出的差错检验机理,如5种错误检测、出错标定和故障界定;CAN传输信号为短帧结构,因而传输时间短,受干扰概率低。

这些保证了出错率极低,剩余错误概率为报文出错率的4。

7×10-11。

另外,CAN节点在严重错误的情况下,具有自动关闭输出的功能,以使总线上其它节点的操作不受其影响。

因此,CAN具有高可靠性。

.CAN的通信协议主要有CAN总线控制器完成。

CAN控制器主要由实现CAN总线协议部分和微控制器接口部分电路组成。

通过简单的连接即可完成CAN协议的物理层和数据链路层的所有功能,应用层功能由微控制器完成。

CAN总线上的节点即可以是基于微控制器的智能节点,也可以是具有CAN接口的I/O器件。

3应用技术1、系统组成CAN总线用户接口简单,编程方便。

CAN总线属于现场总线的范畴,CAN总线系统的一般组成模式如图1所示:网络拓扑结构采用总线式结构。

这种网络结构结构简单、成本低,并且采用无源抽头连接,系统可靠性高。

通过CAN总线连接各个网络节点,形成多主机控制器局域网(CAN)。

信息的传输采用CAN通信协议,通过CAN控制器来完成。

各网络节点一般为带有微控制器的智能节点完成现场的数据采集和基于CAN协议的数据传输,节点可以使用带有在片CAN控制器的微控制器,或选用一般的微控制器加上独立的CAN控制器来完成节点功能。

传输介质可采用双绞线、同轴电缆或光纤。

如果需要进一步提高系统的抗干扰能力,还可以在控制器和传输介质之间加接光电隔离,电源采用DC-DC变换器等措施。

这样可方便构成实时分布式测控系统。

2、CAN总线的物理层设计CAN总线协议对物理层没有严格定义,给使用者较大的灵活性,同时也给设计者带来了困难。

CAN总线物理层的设计原则是:针对CTX0、CTX1的两种输出状态(显性(Daminant)、隐性(Recessive)),总线应具有两种不同电平,接收端呈现(显性、隐性)两种状态,如图2所示。

这样不要求总线必须是数字逻辑电平,只要是能够呈现两种电平(显性和隐性)的模拟量,满足上述设计原则就可以。

总线连接实例(图3):(以Philips的CAN芯片为例)CAN控制器芯片的片内输出驱动器和输入比较器可编程,它可方便地提供多种发送类型,诸如:单线总线、双线总线(差分)和光缆总线。

它可以直接驱动总线,若网络的规模比较大,节点数比较多,需要外加总线驱动元件,以增大输出电流。

如图3采用了CAN收发器作为CAN控制器和物理总线之间的接口,提供向总线的差动发送能力和对CAN控制器的差动接收能力。

一般在驱动芯片和CAN控制器之间加入光电耦合器,增加抗干扰能力。

CAN总线的速度将由光电耦合器的速度决定。

比如:用4N27光耦,因为它的响应速度比较慢,CAN网络的位速度只能达到几十Kbit/s。

如果采用6N137高速光电耦合器,CAN网络速度可以达到和电阻网络驱动时的速度一样。

另外,物理层的设计要注意电缆的终端阻抗匹配,这直接影响了CAN总线能否正常工作和网络性能。

3、应用软件设计CAN控制器其内部硬件实现了CAN总线物理层和数据链路层的所有协议内容,有关CAN总线的通信功能均由CAN控制器自动管理执行。

CAN控制器对于CPU来说,是以确保双方独立工作的存储影像外围设备出现的。

CAN控制器的地址域由控制段和报文缓存器组成,在初始化向下加载期间,控制段可被编程以配置通信参数。

CAN总线上的通信也通过此段由CPU控制,被发送的报文必须写入发送缓存器,成功接收后,CPU可以从接收缓存器读取报文,然后释放它,以备下次使用。

对于在片的CAN控制器,它与CPU之间的接口一般借助于4个特殊寄存器:CAN地址寄存器、数据寄存器、控制寄存器、状态寄存器。

对于单独的CAN控制器,MCU可以通过其地址/数据总线对其寄存器直接寻址,就像MCU对一般外部RAM寻址一样。

通过对这些寄存器编程操作,可很方便控制CAN控制器完成通讯功能。

CAN控制器的收发功能均可借助其中断服务执行。

图4给出一个CAN中断服务程序框图(图4)。

注意在系统软件设计时无论何时CAN总线不应该被永久性的100﹪加载。

4目前应用状况及其前景由于CAN总线为越来越多不同领域采用和推广,导致要求不同应用领域通信报文的标准化。

为此,1991年9月PhilipsSemiconductors制定并发布了CAN技术规范(Version2.0)。

该技术规范包括A和B两部分。

2.0A给出了曾在CAN技术规范版本1.2中定义的CAN报文格式,2.0B给出了标准的和扩展的两种报文格式。

此后,1993年11月ISO正式颁布了道路交通运输工具-数字信息交换-高速通信控制器局部网(CAN)国际标准(ISO11898),为控制器局部网标准化,规范化推广铺平了道路。

CAN总线开发系统廉价,OEM用户容易操作,许多国际上大的半导体厂商也积极开发出支持CAN总线的专用芯片,其中有智能CAN芯片,也有非智能CAN控制器、收发器。

Motorola公司生产了MC68HC05X4是在68HC05微控制器上加入了CAN模块,也称为MCAN。

Philips公司生产了P8XC592微控制器上集成了CAN控制器取代了原来的I2C串行口。

Philips还生产82C200独立CAN控制器、82C150即CAN串行链接I/O(SLIO)器件、82C250CAN收发器、P8XCE598带有集成CAN接口的电磁兼容微控制器。

Intel公司生产了82527独立CAN控制器,它可通过并行总线与各种微控制器连结,也可通过串口(SP1)与无并行总线控制器如M68HC05连接。

由于CAN总线的高速通信速率、高可靠性、连接方便、多主站、通讯协议简单和高性能价格比等突出优点,深得许多工业应用部门的青睐,其应用由最初的汽车工业迅速发展至数控机床、农业机械、铁路运输、粮情检测、过程测控等各个方面。

CAN在国外的发展迅速,奔驰S型轿车采用的就是CAN总线系统;美国商用车辆制造商们也将注意力转向CAN总线;美国一些企业已将CAN作为内部总线应用在生产线和机床上。

由于CAN总线可以提供较高的安全性,因此在医疗领域、纺织机械和电梯控制中也得到了广泛应用。

5结束语总之,基于CAN总线的数据通信具有突出的可靠性、实时性和灵活性。

CAN作为现场设备级的通信总线,和其他总线相比,具有很高的可靠性和性能价格比,其总线规范已经成为国际标准,被公认为几种最有前途的总线之一。

目前,CAN接口芯片的生产厂家众多,协议开放,价格低廉,且使用简单,CAN总线可广泛应用于工业测量和控制领域。

参考文献[1]CAN总线原理和应用系统设计,邬宽明编著,北京航空航天大学出版社,1996[2]微机应用系统可靠性设计理论与实践,马宝甫等,电子工业出版社,1999。

相关文档
最新文档