一元二次方程解法-公式法

合集下载

一元二次方程的解法公式法

一元二次方程的解法公式法

一元二次方程的解法公式法
一元二次方程解法公式法:
(一)定义:
一元二次方程是由一个方程组成的形式,其中包含一个独立的变量以
及平方项和恒等于零的常数。

(二)解法:
1. 首先,我们要用一元二次方程解法公式法来求解一元二次方程问题。

公式为:
$$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$
2. 其次,我们把方程中的变量代入到公式中。

一般来说,方程的形式为:$$ax^2+bx+c=0$$
3. 最后,根据公式,可以得出$$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$
(三)特殊情况:
1. 一元二次方程的实数根有可能为两个相等的数,此时,解的形式会
变成$$x=\frac{-b}{2a}$$
2. 当$b^2-4ac=0$时,表示方程只有一个实数根,这时,解的形式可以
写作$$x=\frac{-b}{2a}$$
(四)应用:
1. 一元二次方程解法公式法可以用来求解各类一元或多元函数的极值。

例如,可以应用这一方法求解二次曲线的极值点、凸函数的极值点等。

2. 同时,一元二次方程解法公式法也可用于求解数学建模问题,包括
求解市场博弈问题、求解应用各类运筹学问题等等。

(五)益处:
1. 一元二次方程解法公式法比较简单明晰,容易理解,易于使用。

2. 可以让人们轻松地解决一元或多元函数求极值问题,以及市场博弈
问题和应用各类运筹学技术来解决复杂的数学问题。

3. 这种方法可以将复杂的数学问题转换为简单的方程,从而节省时间,提高工作效率。

公式法解一元二次方程

公式法解一元二次方程
b
b 4ac 2a
2
即: x
b 2 4ac 2a
一元二次方程
ax2 bx c 0
a 0, b
的求根公式
2
4ac 0
x
b
b 2 4ac 2a
a 0
用这种方法解一元二次方程的 方法叫做公式法.

2

一般的,式子 b 4ac 叫方程ax 2 +bx+c=0(a≠0) 根的判别式.用字母 表示.即 = b 2 4ac
两个相等的实数解。
关于x的一元二次方程 2 ax +bx+c=0 (a≠0)。 当a,b,c 满足什么 条件时,方程的两根 为互为相反数?
解: 一元二次方程
ax bx c 0 a 0 的解为:
2
x1 x2
b b 4ac b b 4ac x1 , x2 2a 2a
49 8c 49,即c 8 b 7 7 x1 x2 2a 22 4
2
例3
解方程:
x 3 2 3x
2
解: 原方程化为:x 2 2 3x 3 0
a 1, b 2 3, c 3
2
2
2 3 0 2 3 x 3 2 1 2
b 4ac 2 3 4 1 3 0
X1=x2=√3
二、公式的推导
ax bx c 0
2
解: a 0
移项得:
配方得:
2
b c x x a a
b b c b x x a a 2a 2a
2 2
b c x x 0 a a

23.2 一元二次方程的解法---公式法

23.2  一元二次方程的解法---公式法

当b 2 4ac 0 b b 2 4ac 2 时,方程有 x . b 4ac 0 . 实数根吗 2a 上面这个式子称为一元二次方程的求根公式. 用求根公式解一元二次方程的方法称为公式法


特别提示:
用公式法解一元二次方程的前提是: 1.必需是一般形式的一元二次方程: ax2+bx+c=0(a≠0). 2.b2-4ac≥0.
1
1
1
解得
即即

x 2 2 0 4 14 x1 4 x17 2 4 17 x1 , x2 2 4 4 此方程无实数根
3、配方法解一元二次方程的基本 步骤: (1)化1:把二次项系数化为1; (2)移项; (3)配方:方程两边都加上一次 项系数的一半的平方; (4)变形:原方程变形为(x+m) 2=n的形式; (5)开方:如果右边是非负数, 就可以直接开平方求出方程的解, 如果右边是负数,则一元二次方 程无解. (6)求解; (7)定根
17 0 -8
+ 0 -
不等 相等 不存在
请观察上表,综合b2-4ac的符号,提出你的猜想。
2014年深圳市中考试题
7.下列方程中没有实数根的是( ) A、x2+4x=10 B、3x2+8x-3=0 C、x2-2x+3=0 D、(x-2)(x-3)=12 分析:容易看出A、B两个一元二次方程中的二次 项系数和常数项异号,则4ac为负的,b2- 4ac>0; D选项的一元二次方程经变形为x2-5x-6=0,同样可 以看出b2- 4ac>0,所以选C.
m2 2
3 6 2 3 2 3 x D. 2
B.x
4.若使方程(m+1)x

公式法解一元二次方程全面版

公式法解一元二次方程全面版

25
x3 25 3 5
22
4
即: x1 2,x2
1 2
2 x 3 2 x 9 6 0
解: 原方 2 x 2 9 程 x 6 x 2 化 6 7 0为
整理 2x2 为 3x2: 10
a 2 ,b 3 ,c 21
公式法解一元二次方程
一、回顾
用配方法解方程:x2bxc0
x 解:移项得: 2bxc
x22b 2xb 22b 22c
则:
xb22
b2 4
c
当b2 c0时,方程有实.数解 4
二、公式的推导
a2x b x c0a0
解: a0x2 bxc0
关于一元二次方程 a2x bxc0a0 ,当
a,b,c满足什么条件时,方程的两根互
为相反数?
解:一元二次方程 a2x b xc0a0的解为:
x 1 b 2 b a 2 4 a,x c 2 b 2 b a 2 4 ac
x1x2
b b24acb b24ac
x__ 5_2 _7 ____
即x1: _1 _x_ 2_ _-6,___
2、用公式法解方程
1 x 2 2 x 5 2 6 t 2 13 t 5 0 3 3 x 2 1 x 1 0
22
4 x 2 2 2 x 3 0
2
3、想一想:
b24ac32 4221
9168
177
x3 177
22
即 :x13417,x7 234177
例3 解方程: x2323x
解: 原方x 程 2 23 x 化 30 为:
a 1 ,b 23 ,c 3

一元二次方程的解法公式法

一元二次方程的解法公式法
2


例1. 解方程:
(1)x +3x+2=0 (2)-7x+2x2=4
2
例2. 解方程:
(1)x 2 2 2x
2
(2)(x -1)(6-x)=6
说一说
利用公式法解一元二次方程 的步骤?
用公式法解一元二次方程的步骤:
(1)把一元二次方程化为一般形式; (2)确定a、b、c的值; 2 (3)求出b -4ac的值; 2 (4)若b -4ac≥0,则把a、b、c及 2 b -4ac代入求根公式,求出x1, 2 x2;若b -4ac<0,则方程无解.
2
b b 4ac x 2a
2
(b -4ac≥0)
2
利用公式法解一元二次方程时需注意:
(1)利用公式法解方程前,应将方程化为
一般形式,以正确确定a、b、c的值.
(2) 当b -4ac≥0时,方程有实数解; 当b -4ac<0时,方程无解.
2 2 2
(3)在b -4ac≥0的前提下,将a、b、c的 值代入求根公式求解.
用配方法解一元二次方程:
(1) -2x2-7x+3=0 (2) (x-1)(x+6)=3
配方法解一元二次方程的步骤:
(1) 把方程化为一般形式; (2) 把方程二次项系数化为1;
(3) 移项:把方程的常数项移到方程的右边;
(4) 配方:方程两边都加上一次项系数一半
的平方. (5) 把方程化成(x+m)2=n(n≥0)的形式,然
随堂练习 1.方程3x2-8=7x化为一般形式
2-7x-8=0ห้องสมุดไป่ตู้3x 是 ,
3 b=_____, -7 c=_____, -8 a=____,

用公式法求解一元二次方程。

用公式法求解一元二次方程。

用公式法求解一元二次方程。

公式法求解一元二次方程是一种常见且有效的方法,可以帮助我们找到方程的解。

在这篇文章中,我将详细介绍公式法的步骤和原理,并通过实例来说明如何使用公式法解决一元二次方程。

一元二次方程的一般形式为:ax^2 + bx + c = 0,其中a、b、c为已知系数,x为未知数。

要使用公式法求解一元二次方程,首先需要了解二次方程的求根公式。

根据求根公式,一元二次方程的解可以通过以下公式求得:x = (-b ± √(b^2 - 4ac)) / (2a)现在,让我们通过一个实例来说明公式法的具体步骤。

假设我们要解决方程2x^2 + 5x - 3 = 0。

第一步,根据方程的系数,我们可以确定a = 2,b = 5,c = -3。

第二步,将这些值代入求根公式中,计算出两个解。

根据求根公式,我们有:x = (-5 ± √(5^2 - 4*2*(-3))) / (2*2)计算得到:x = (-5 ± √(25 + 24)) / 4x = (-5 ± √49) / 4现在,我们需要计算出根号内的数值,然后求解方程。

根号内的数值为49,它的平方根为7。

因此,我们可以得到两个解:x1 = (-5 + 7) / 4 = 2/4 = 0.5x2 = (-5 - 7) / 4 = -12/4 = -3所以,方程2x^2 + 5x - 3 = 0的解为x = 0.5和x = -3。

通过这个实例,我们可以看到公式法的求解步骤相对简单,只需要代入系数并进行简单的计算即可得到方程的解。

而且,公式法适用于所有一元二次方程,无论系数的大小。

需要注意的是,在使用公式法求解一元二次方程时,我们需要注意方程的根号内的数值是否为负数。

如果根号内的数值为负数,则方程无解。

这是因为在实数范围内,负数的平方根是无法求得的。

总结一下,公式法是一种常见且可靠的求解一元二次方程的方法。

通过代入系数并进行计算,我们可以轻松地找到方程的解。

17.2一元二次方程的解法--公式法

17.2一元二次方程的解法--公式法

1.用公式法解下列方程:
(4)4x2-6x=0 解:
(5)6t2 -5 =13t
解 : 6t 2 13t 5 0 a 6, b 13, c 5 b 4ac 169 120 289 0
2
a 4, b 6, c 0 b 4ac 36 0 36 0
2
6 36 6 6 x 2 4 8
3 x1 , x2 0. 2
13 289 13 17 t 2 6 12 5 1 t1 , t2 . 2 3
一、由配方法解一般的一元二次方程 ax2+bx+c=0 (a≠0) 若 b2-4ac≥0 得
求根公式 : X=
(1)公式叫做一元二次方程的求根公式;
(2)利用求根公式解一元二次方程的方 法叫求根公式法;
b b 4ac x 2a
2
(a≠0, b2-4ac≥0)
(3)当 b2-4ac=0 那么方程有两个相等 的实数根,即 x x b
1 2
2a
解 : a 5, b 4, c 12 2 2 b 4ac 4 4 5 (12) 256 0.
2
4 56 4 2 14 x 2 2 4
1 25 1 5 x 23 6
2 14 2 14 x1 , x2 . 2 2
2 x1 1, x2 . 3
随堂 练习 (1)2x2-x-1=0 解:
2.用公式法解下列方程: (2)x2+1.5=-3x
1.必需是一般形式的一元二次方程:
ax2+bx+c=0(a≠0). 2.b2-4ac≥0.
b b 4ac 2 x .b 4ac 0 . 2a

一元二次方程的解法公式法

一元二次方程的解法公式法
2
解:原方程中 a = 1, b = − 1, c = − 3 b − 4 ac = ( − 1) − 4 × 1 × ( − 3) = 13
2 2
− b ± b − 4 ac − 1 ± 13 x= = 2a 2 − 1 + 13 − 1 − 13 ∴ x1 = , x2 = 2 2
2
辨 析
2、解方程:2 x + x − 2 = 0
2
2
当b − 4ac ≥ 0时,它有两个实数根:
+ bx + c = 0(a ≠ 0)
− b + b2 − 4ac − b − b2 − 4ac x1 = , x2 = 2a 2a
这就是一元二次方程 ax +bx+c = 0(a ≠ 0)
2
的求根公式.
在解一元二次方程时,只要把方程化为一般式
ax + bx + c = 0(a ≠ 0)
辨 析
小马虎在学完用公式法解一元二次方程 觉得非常简单,也非常高兴, 后,觉得非常简单,也非常高兴,很快就做好 了作业,可是他马虎的毛病到底改了没有呢? 了作业,可是他马虎的毛病到底改了没有呢? 1、解方程: x − x − 3 = 0
2
解:原方程中 a = 1, b = − 1, c = − 3 b − 4 ac = ( − 1) − 4 × 1 × ( − 3) = 13
2
b − 4ac = (−4) − 4 ×1× 4 = 0
2 2
− b ± b − 4ac 4 ± 0 x= = =2 2a 2 ∴x = 2
2
辨 析
2 4、解方程: x + x + 2 = 0
2
解:原方程中 a = 2, b = 1, c = 2 b − 4 ac = 1 − 4 × 2 × 2 = −15
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第6课时 22.2.3 公式法
教学内容
1.一元二次方程求根公式的推导过程;
2.公式法的概念;
3.利用公式法解一元二次方程.
教学目标
理解一元二次方程求根公式的推导过程,了解公式法的概念,会熟练应用公式法解一元二次方程.
复习具体数字的一元二次方程配方法的解题过程,引入ax2+bx+c=0(a≠0)•的求根公式的推导公式,并应用公式法解一元二次方程.
重难点关键
1.重点:求根公式的推导和公式法的应用.
2.难点与关键:一元二次方程求根公式法的推导.
教学过程
一、复习引入
1.前面我们学习过解一元二次方程的“直接开平方法”,比如,方程
(1)x2=4 (2)(x-2) 2=7
提问1 这种解法的(理论)依据是什么?
提问2 这种解法的局限性是什么?(只对那种“平方式等于非负数”的特殊
二次方程有效,不能实施于一般形式的二次方程。


2.面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式。


(学生活动)用配方法解方程 2x2+3=7x
(老师点评)略
总结用配方法解一元二次方程的步骤(学生总结,老师点评).
(1)现将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;
(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;
(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根.
二、探索新知
用配方法解方程
(1)ax2-7x+3 =0 (2)a x2+bx+3=0
(3)如果这个一元二次方程是一般形式a x2+bx+c=0(a≠0),你能否用上面配方法的
步骤求出它们的两根,请同学独立完成下面这个问题.
问题:已知ax2+bx+c=0(a≠0),试推导它的两个根x1=,x2=
(这个方程一定有解吗?什么情况下有解?) 分析:因为前面具体数字已做得很多,我们现在不妨把a 、b 、c•也当成一个具体数字,根据上面的解题步骤就可以一直推下去.
解:移项,得:a x 2+bx=-c
二次项系数化为1,得x 2+
x=- 配方,得:x 2+x+()2=-+()2 即(x+)2= ∵4a 2>0,4a2>0, 当b 2-4ac ≥0时≥0 ∴(x+)2=()2 直接开平方,得:x+=± 即x= ∴x 1=,x 2= 由上可知,一元二次方程a x 2+bx+c=0(a ≠0)的根由方程的系数a 、b 、c 而定,因此:
(1)解一元二次方程时,可以先将方程化为一般形式ax 2+bx+c=0,当b 2-4ac ≥0时,
•将a 、b 、c 代入式子x=就得到方程的根.(公式所出现的运算,恰好包括了所学过的六中运算,加、减、乘、除、乘方、开方,这体现了公式的统一性与和谐性。

)
(2)这个式子叫做一元二次方程的求根公式.
(3)利用求根公式解一元二次方程的方法叫公式法.
公式的理解
(4)由求根公式可知,一元二次方程最多有两个实数根.
例1.用公式法解下列方程.
(1)2x 2-x-1=0 (2)x 2+1.5=-3x (3) x 2
x+ =0 (4)4x 2-3x+2=0 分析:用公式法解一元二次方程,首先应把它化为一般形式,然后代入公式即可.
补:(5)(x-2)(3x-5)=0
b a
c a
b a 2b a
c a 2b a 2b a
2244b ac a -2244b ac a
-2b a 2b a
2a 2b a -2b a -+2b a
-2b a
-±12
三、巩固练习
教材P 42 练习1.(1)、(3)、(5)或(2) 、(4) 、(6)
四、应用拓展
例2.某数学兴趣小组对关于x 的方程(m+1)+(m-2)x-1=0提出了下列问题.
(1)若使方程为一元二次方程,m 是否存在?若存在,求出m 并解此方程.
(2)若使方程为一元二次方程m 是否存在?若存在,请求出.
你能解决这个问题吗?
分析:能.(1)要使它为一元二次方程,必须满足m 2+1=2,同时还要满足(m+1)≠0.
(2)要使它为一元一次方程,必须满足:
①或②或③
解:(1)存在.根据题意,得:m 2+1=2
m 2=1 m=±1
当m=1时,m+1=1+1=2≠0
当m=-1时,m+1=-1+1=0(不合题意,舍去)
∴当m=1时,方程为2x 2-1-x=0
a=2,b=-1,c=-1
b 2-4ac=(-1)2-4×2×(-1)=1+8=9
x= x 1=,x 2=- 因此,该方程是一元二次方程时,m=1,两根x 1=1,x 2=-
. (2)存在.根据题意,得:①m 2+1=1,m 2=0,m=0
因为当m=0时,(m+1)+(m-2)=2m-1=-1≠0
所以m=0满足题意.
②当m 2+1=0,m 不存在.
③当m+1=0,即m=-1时,m-2=-3≠0
所以m=-1也满足题意.
当m=0时,一元一次方程是x-2x-1=0,
解得:x=-1
当m=-1时,一元一次方程是-3x-1=0
解得x=- 因此,当m=0或-1时,该方程是一元一次方程,并且当m=0时,其根为x=-1;
22m x +211(1)(2)0m m m ⎧+=⎨++-≠⎩21020
m m ⎧+=⎨-≠⎩1020m m +=⎧⎨-≠
⎩134
±=12
1213
当m=-•1时,其一元一次方程的根为x=-. 五、归纳小结
本节课应掌握:
(1)求根公式的概念及其推导过程;
(2)公式法的概念;
(3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a>0.2)找出系数a,b,c,注意各项的系数包括符号。

3)计算b 2-4ac ,若结果为负数,方程无解,4)若结果为非负数,代入求根公式,算出结果。

(4)初步了解一元二次方程根的情况.
六、布置作业
1.教材P 45 复习巩固4.
2.选用作业设计:
教学反思
通过本节课的教学,使我真正认识到了自己课堂教学的成功与失败。

对我今后课堂教学有了一定引领方向有了很大的帮助。

下面我就谈谈自己对这节课的反思。

本节课的重点主要有以下3点:
1. 找出a,b,c 的相应的数值
2. 验判别式是否大于等于0
3. 当判别式的数值符合条件,可以利用公式求根.
在讲解过程中,我没让学生进行(1)(2)步就直接用公式求根,第一次接触求根公式,学生可以说非常陌生,由于过高估计学生的能力,结果出现错误较多.
1. a,b,c 的符号问题出错,在方程中学生往往在找某个项的系数时总是丢掉前面的符号
2. 求根公式本身就很难,形式复杂,代入数值后出错很多.
其实在做题过程中检验一下判别式着一步单独挑出来做并不麻烦,直接用公式求值也要进行,提前做着一步在到求根公式时可以把数值直接代入.在今后的教学中注意详略得当,不该省的地方一定不能省,力求收到更好的教学效果 。

3.板书不太理想。

板书可以说在课堂教学也起关键作用,它可以帮学生温习本课的内容,而我许多本该板书的内容全部反映在大屏幕上,在继续讲一下个内容时,这些内容也就不会再出现,只给学生瞬间的停留,这样做也有欠妥当。

4.本节课没有激情,学习的积极性调动不起来,对学生地鼓励性的语言过于少,可以说几乎没有.
13。

相关文档
最新文档