第三节(脉冲函数)

合集下载

脉冲响应函数

脉冲响应函数
式中,g(t)是脉冲响应函数,上述两式称为卷积。


y(t ) x(t ) * g (t ) g (t ) * x(t ) 表示为:
回忆拉氏变换的卷积定理,有L[y(t)]=L[x(t)*g(t)],所以: Y(s)=X(s)G(s)
Tuesday, November 27, 2018
4
单位阶跃响应函数
27, 2018
1 ( t ) dt 1 ,

1
(t )
0

2
t
脉冲响应函数
以下讨论线性控制系统在单位脉冲 (t ) 作用下的输出响 应g(t),称为脉冲响应函数。
L[ (t )] 1,Y ( s) 1 G(s),
y(t ) L1[Y (s)] L1[G(s)] g (t ) 故:
出现在 t 时刻,积分面积为A的理想脉冲函数定义如下: 0, t (t ) (t ) A ( t ) dt A A (t ) 且 , t 0 实际单位脉冲函数:
0, t 0 和 t (t ) 1 , , 0t (t ) (t ) 当 0时, Tuesday, November
从上式可以看出,g(t)是系统的脉冲响应函数,它等于 系统传递函数的拉氏反变换。g(t)与G(s)有一一对应的关系。 g(t)也是线性控制系统的数学模型。 [例2-16]:设系统的脉冲响应函数是 g (t ) 4e 1 t 4 8 2 [解]: G ( s ) L[ g (t )] L[4e ] 1 2s 1 s 2
G(s) -1 G(s) L[ g (t )dt ] , 即L [ ] g (t )dt s s

1.2_单位冲激函数

1.2_单位冲激函数
则 (t t0 ) lim (t t0 ).
0
方式二 (20 世纪 50 年代,Schwarz) 单位脉冲函数 (t t0 ) 满足 (t t0 ) (t )d t (t0 ),

(t ) C 称为检验函数。 其中,
(返回)
n


T
2
f ( ) cn
n





e
j n0t
e j t d t
2π cn ( n0 ).
n
18
4
§1.2 单位脉冲函数 第 二、单位脉冲函数的概念及性质 一 章 1. 单位脉冲函数的概念 (t t0 ) 并不是经典意义下的函数,而是 注 (1) 单位脉冲函数 傅 里 一个广义函数(或者奇异函数),它不能用通常意义下 叶 “值的对应关系”来理解和使用,而总是通过它的性质 变 换 来使用它。
t
16
§1.2 单位脉冲函数 第 一 章 傅 里 叶 变 换
解 (1) F1 ( )
[ f1 ( t ) ]

e

j 0ቤተ መጻሕፍቲ ባይዱt
e j t d t

j ( 0 ) t e d t 2 π (0 ) 2 π ( 0 ) .
§1.2 单位脉冲函数 第 一 章 傅 里 叶 变 换
§1.2 单位脉冲函数
一、为什么要引入单位脉冲函数 二、单位脉冲函数的概念及性质 三、单位脉冲函数的 Fourier 变换 四、周期函数的 Fourier 变换
1
§1.2 单位脉冲函数 第 一、为什么要引入单位脉冲函数 一 章 理由 (1) 在数学、物理学以及工程技术中,一些常用的重要 函数,如常数函数、线性函数、符号函数以及单位 傅 里 阶跃函数等等,都不能进行 Fourier 变换。 叶 变 (2) 周期函数的 Fourier 级数与非周期函数的 Fourier 变 换 换都是用来对信号进行频谱分析的,它们之间能否

8种常见的拉普拉斯变换,想搞不懂都难!

8种常见的拉普拉斯变换,想搞不懂都难!

8种常见的拉普拉斯变换,想搞不懂都难!拉普拉斯变换(拉⽒变换)是⼀种解线性微分⽅程的简便运算⽅法,是分析研究线性动态系统的有⼒数学⼯具。

简单点说,我们可以使⽤它去解线性微分⽅程,⽽控制⼯程中的⼤多数动态系统可由线性微分⽅程去描述,因此拉⽒变换是控制⼯程领域必不可少的基础。

什么是拉⽒变换呢?⾸先,我们来看⼀下拉⽒变换的定义——设时间函数为f(t),t>0,则f(t)的拉普拉斯变换定义为:其中,f(t)称为原函数,F(s)称为象函数。

⼀个函数可以进⾏拉⽒变换的充要条件为:(1)在t<0时,f(t)=0;(2)在t≥0的任⼀有限区间内,f(t)是分段连续的;(3)当t→﹢∞时,f(t)的增长速度不超过某⼀指数函数,即:接下来为⼤家介绍⼏种常见的时间常数拉⽒变换,⼤家在看下⾯⼏种时间常数拉⽒变换的时候可将⼏个时间常数与这三个条件⼀⼀对应,有助于理解记忆。

1、单位脉冲函数单位脉冲函数数学表达式为:其对应的图像为:我们来看⼀个脉冲信号:从图中可看出,脉冲函数就像脉冲信号⼀样,在时间的⼀个微段dt内,信号强度快速增长,可达到⽆穷⼤,⽽单位脉冲函数指的是其微段dt与增长的⾼度的乘积为1,即h(dt)=1。

其拉⽒变换为:该函数有⼀个重要性质:f(t)为任意连续函数,当f(t)=e^(-st)时,该性质即可看为单位脉冲函数的拉⽒变换。

2、单位阶跃函数单位阶跃函数的数学表达式为:其函数图像为:其拉⽒变换为:3、单位斜坡函数单位斜坡函数的数学表达式为:函数图像为:其拉⽒变换为:其被积函数为幂函数与指数函数乘积,使⽤分部积分法求解(反对幂三指),这只是推到过程,我们使⽤的时候只需记住t的拉⽒变换为1/s^2即可。

4、单位加速度函数单位加速度函数的数学表达式为:其函数图像为:其拉⽒变换为:求解过程与单位斜坡函数的拉⽒变换求解过程相同,这⾥只需记住1/2T^2的拉⽒变换为1/s^3。

5、指数函数指数函数的数学表达式为:其函数图像为:其拉⽒变换为:求解过程为凑微分法。

自动控制原理第三章

自动控制原理第三章
0 l i m c (t ) t
T
(t 0 )
特 征 方 程 Ts 1 0 特 征 根 s 2 . c(t ) 2c(t ) 5 c (t ) r(t ), r(t ) δ (t ) C (s ) 1 R (s ) (s 1 )2 2 2 C (s ) 1
参考答案:0<k<16 参考答案:不稳定。 右2,左2,虚轴2。
s 6 4 s5 4 s4 4 s3 7 s2 8 s 1 0 0
4、已知单位负反馈系统开环传递函数如下所示,判系统的稳定性及根的分布。
G(s ) 46
4 2 s (s 2 s3 2 4 s 4 8 s 2 3 )
定义:给定值变化测量值具有跟踪给定值的能力;干扰 作用破坏系统的平衡,但具有抗拒干扰重新回到平衡状 态的能力。

无条件稳定(大范围稳定) 条件稳定(局部稳定) 线性系统若稳定,则为大范围稳定系统
大范围稳定特征
稳定性与初始条件无关; 与输入信号无关。
F(t) 大范围稳定
局部稳定
系统产生运动的原因:扰动(外力);初始状态(偏离平衡点)
c2 a0
代数稳定判据
稳定的必要条件:特征方程所有项系数同号且不为0。 稳定的充分条件:Routh表中第一列元素均大于零。 S5 S4 S3 a5 a4
a a a5a 2 b1 4 3 a4
b a a 4b 2 c1 1 2 b1 c b c 2b1 d1 1 2 c1
第三章 时域分析法
控制系统的典型输入信号 和系统性能指标
一、系统性能分析的思路
人为破坏系统的平衡状态(施加扰动),考查系统是否具有重新恢 复平衡状态的能力及水平。

7.3单位脉冲函数(广义傅里叶积分)

7.3单位脉冲函数(广义傅里叶积分)

F t I (t -t0 )
eg2: 在t=t 时刻产生一电量为q的脉冲电流可表示为: 0
i t q (t -t0 )
3、-函数的筛选性:



(t ) f (t )d t f (0)
或 (t t0 ) f (t )d t f (t0 ) . (f t 为连续函数)
有了δ-函数, 对于许多集中于一点或一瞬时的量, 例如质点的线密度、瞬时作用力及脉冲技术中的 非常窄的脉冲电流等都可以借助于δ-函数来表示.
eg1: 在坐标x=x 处有一质量为m的质点,则该质点 0 的线密度分布函数为: x m ( x x0 )
eg2: 在t=t0时刻作用一冲量为I的瞬时力可表示为:


5、广义傅氏变换
——利用与-函数相关的广义积分来求傅氏变换 在物理学和工程技术中, 有许多重要函数不满足傅氏
积分定理中的绝对可积条件, 即不满足条件



| f (t ) | d t
例如常数, 单位阶跃函数以及正, 余弦函数等, 然而可利用 与单位脉冲函数相关的广义积分就可以求出它们的傅氏
变换,它们的广义傅氏变换也是存在的. 所谓广义是相对
于古典意义的积分而言的, 在广义意义下, 同样可以说,原 像函数f(t) 和像函数F() 构成一个傅氏变换对.
例1 证明:1和2 ()构成一个傅氏变换对. 证法1:利用广义积分
F 1 1 e
it
dt s t eis ds 2 .


4、-函数的傅氏变换:
于是 (t)与常数1构成了一个傅氏变换对.
1 (t ) F [1] 2
1

《计算机控制系统教学课件》6.脉冲传递函数

《计算机控制系统教学课件》6.脉冲传递函数
G(z)
r(t)
r*(t)
实际采样系统
G(s)
T
y*(t) T
y(t)
等价离散系统
R(z)
Y(z) G(z)
25
3. 脉冲传递函数的代数运算规则
闭环系统的脉冲传递函数
R(s) E(z)
R(z)
T
E*(z) G(z) Y(s)
B(z)
H (z)
Y *(z)
Y (z)
误差为: E(z) R(z) B(z) Y(z) G(z)E(z)
G1
s
1 eTs
G1 s
s
最后得 G z Z 1 eTs G2 s 1 z1 G2 z
29
例:上页结构图中设
解:
G
s
1 eTs s
1
s s 1
G1
s
s
1 s
1,T
1s
,求G(z)。
G2
s
s2
1
s 1
G2
z
Z
s2
1
s
1
Z
1 s2
1 s
1 s 1
z
z
12
z
z 1
z
z e1
G(z)
Y (z) R(z)
输出脉冲序列的 输入脉冲序列的
Z Z
变换 变换
单输入单输出离散系统方框图
r(k)
y(k)
G(z)
R(z)
Y(z)
23
脉冲传递函数与差分方程
是不同的数学描述,虽然形式不同,但本质一样,可互相转换
1. 离散系统的脉冲传递函数:
一个线性离散系统的差分方程通式为:
yk a1 yk1 a2 yk2 ... an ykn b0rk b1rk1 b2rk2 ... bmrkm ( y : 输出,r : 输入)

脉冲响应函数

脉冲响应函数

3-2 脉冲响应函数对于线性定常系统,其传递函数)(s Φ为)()()(s R s C s =Φ式中)(s R 是输入量的拉氏变换式,)(s C 是输出量的拉氏变换式。

系统输出可以写成)(s Φ与)(s R 的乘积,即)()()(s R s s C Φ= (3-1) 下面讨论,当初始条件等于零时,系统对单位脉冲输入量的响应。

因为单位脉冲函数的拉氏变换等于1,所以系统输出量的拉氏变换恰恰是它的传递函数,即)()(s s C Φ= (3-2) 由方程(3-2)可见,输出量的拉氏反变换就是系统的脉冲响应函数,用)(t k 表示,即1()[()]k t s -=Φ脉冲响应函数)(t k ,是在初始条件等于零的情况下,线性系统对单位脉冲输入信号的响应。

可见,线性定常系统的传递函数与脉冲响应函数,就系统动态特性来说,二者所包含的信息是相同的。

所以,如果以脉冲函数作为系统的输入量,并测出系统的响应,就可以获得有关系统动态特性的全部信息。

在具体实践中,与系统的时间常数相比,持续时间短得很多的脉动输入信号就可以看成是脉冲信号。

设脉冲输入信号的幅度为11t ,宽度为1t ,现研究一阶系统对这种脉动信号的响应。

如果输入脉动信号的持续时间t )0(1t t <<,与系统的时间常数T 相比足够小,那么系统的响应将近似于单位脉冲响应。

为了确定1t 是否足够小,可以用幅度为12t ,持续时间(宽度)为21t 的脉动输入信号来进行试验。

如果系统对幅度为11t ,宽度为1t 的脉动输入信号的响应,与系统对幅度为12t ,宽度为21t 的脉动输入信号的响应相比,两者基本上相同,那么1t 就可以认为是足够小了。

图3-3(a)表示一阶系统脉动输入信号的响应曲线;图3-3(c)表示一阶系统对脉冲输入信号的响应曲线。

应当指出,如果脉动输入信号T t 1.01<(图3-3(b)所示),则系统的响应将非常接近于系统对单位脉冲信号的响应。

第三章_计算机控制系统的数学描述2(差分方程_脉冲传递函数)

第三章_计算机控制系统的数学描述2(差分方程_脉冲传递函数)

对第1种情况:
Y1 ( z ) R( z )G1 ( z ) Y ( z ) Y1 ( z )G2 ( z ) Y ( z) R( z)G1 ( z)G2 ( z)
Y1 (s) G1 (s) R( z ) Y (s) Y1 ( z) G2 ( s) Y1* (s) R( z )G1* (s) * * Y (s) Y1 ( z) G2 ( s)
y (k ) ai y (k i ) b j r (k j )
i 1 n j 0 n m
Y ( z ) ai z iY ( z ) b j z j R( z )
i 1 j 0
m
Y ( z) G( z) R( z )

m
1 ai z i
1 eTs G p (s) 1 G ( z ) Z G ( s ) Z G p (s) (1 z ) Z s s
什么是零阶保持环节?即保持一个采样周期的采样信号, 如图3.6所示。
us (t )
T
o
t
o
t
us (t T )
§3.2 差分方程
连续系统的动态过程,用微分方程来描述; 离散系统的动态过程,用差分方程来描述。
1、差分方程的一般形式 系统的输出Z传递函数与系统输入Z传递函数之比,当初 始条件为零时,称为系统的Z传递函数。一般可表示为
Y ( z ) b0 b1 z 1 b1 z 2 bm z m R( z ) 1 a1 z 1 a2 z 2 an z n
y(k ) y(k 1) r (k ) 2r (k 2)
设初始条件 y(0) 2 ,求
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

f (τ )δ (τ − t0 )dτ
f (τ )δ (τ − t0 )dτ
7
第一和三项为零, 第一和三项为零,对中间一项应用中值定理得


即可。 上的某个值, 其中 ξ 为区间 (t0 − ε ,t0 + ε ) 上的某个值,令 ε → 0 即可。 (4) 连续分布的质量、电荷或持续力也可用 连续分布的质量、 划分为许多小区间段,某个 [τ ,τ 划分为许多小区间段,
ρl ( x)dx = ∫
m dx = m l


−∞
4
如果不求积分,而先求极限, 如果不求积分,而先求极限,则有
m x 0 ρ ( x) = lim ρ l ( x) = lim rect ( ) = l →0 l →0 l l ∞
( x ≠ 0) ( x = 0)
对于质点、点电荷、瞬时力这类集中于空间某一点或时间的 对于质点、点电荷、瞬时力这类集中于空间某一点或时间的 质点 某个瞬时时刻的抽象模型, 某个瞬时时刻的抽象模型,物理学中引入 δ 函数描述
3
(一)
δ
函数
质量m均匀分布在长为 的线段 质量 均匀分布在长为l的线段 均匀分布在长为 的线段[-l/2,l/2]上,则线密度 ρ l (x ) 上
0 ρl ( x)= m / l
(|x| > l/ 2) (|x| ≤ l/ 2)
l 2 l − 2
m x ρl ( x) = rect ( ) l l
∫∫∫
1 δ (r − c)e − ik ⋅r dxdydz r
化成球坐标计算,以k的方向作为球坐标系的极轴方向 化成球坐标计算, 的方向作为球坐标系的极轴方向
∞ π 2π 1 1 1 δ (r − c) = δ (r − c)e −ikr cosθ ⋅ r 2 sin θdrdθdϕ 3 ∫r = 0 ∫ = 0 ∫ = 0 r θ ϕ r (2π ) ∞ π 1 = δ (r − c)e −ikr cosθ rd (− cosθ )dr (2π )2 ∫r =0 ∫θ =0 ∞ 1 1 = δ (r − c) (eikr − e −ikr )dr ik (2π )2 ∫r =0 1 1 ikc −ikc = (e − e ) 2 11 (2π ) ik
( x < 0) ( x > 0)
H(x) 阶跃函数 亥维赛单位函数
6
δ 并且有H(x)是δ (x )的原函数, (x )是H(x)的导函数 是 的原函数, 并且有 的导函数
dH ( x) δ ( x) = dx (3) 对于任意定义在( −∞, ∞) 的连续函数 f (τ )

δ
证明: 证明: ∀ε
−∞
f (τ )δ (τ − t0 )dτ = f (ξ ) ∫
t 0 +ε
t 0 −ε
δ (τ − t0 )dτ = f (ξ )
δ
函数表示
持续作用到t= 的作用力 的作用力F(t),把时间区间 ,b] 从t=a持续作用到 =b的作用力 = 持续作用到 ,把时间区间[a,
+ dτ ] 时间段上, 时间段上,
§5.3
δ 函数
在物理和工程技术中, 常常会碰到单位 脉冲函数. 因为有许多物理现象具有脉冲 性质, 如在电学中, 要研究线性电路受具有 脉冲性质的电势作用后产生的电流; 在力学 中, 要研究机械系统受冲击力作用后的运动 情况等. 研究此类问题就会产生我们要介绍 的单位脉冲函数.
1
在原来电流为零的电路中, 某一瞬时(设为t=0)进 入一单位电量的脉冲, 现在要确定电路上的电流 i(t). 以q(t)表示上述电路中的电荷函数, 则
0 δ ( x) = ∞ b 0 ∫a δ ( x)dx = 1
( x ≠ 0) ( x = 0)
(a, b < 0或都 > 0) ( a < 0 < b)
δ ( x − x0 )


x
与常规函数不同,是一种广义函数 与常规函数不同,是一种广义函数
O
x0
δ ( x − x0 ) 示意图如图: 示意图如图: 无限高,无限窄,但面积为1. 无限高,无限窄,但面积为
1 sin ω / 2) 1 ( l = 2 π ωl / 2 2 π
10
例1
1 的三重傅里叶变换, 是球坐标中的极径 计算 δ (r − c) 的三重傅里叶变换,r是球坐标中的极径 r
c为正实数 为正实数 解 1 δ (r − c) 的三重傅里叶变换为 r
1 1 3 r δ (r − c) = ( 2π )
1 sin Kx δ ( x ) = lim K →∞ π x
9
(四) δ 函数的傅里叶变换

δ
函数表示为复数形式的傅里叶积分
δ ( x) = ∫ C (ω )eiωx dω
−∞

其中
1 C (ω ) = 2π


−∞
δ ( x )e
−iωx
1 − iω 0 1 dω = e = 2π 2π
δ
函数的傅里叶积分是
记 则有
(ω = 0) (ω ≠ 0) 0 1 =1 ω ω (ω = 0) (ω ≠ 0)
lim
ω β +ω
2 2
β →0
=
1 i [H ( x)] = δ (ω ) − 2 2π
1
ω
14
(五) 多维的
δ 函数
三维空间坐标原点的质点, 三维空间坐标原点的质点,密度函数可表示为 定义如下: 其中δ (r ) 定义如下:
0 例2 求阶跃函数 H ( x) = 1
( x < 0) ( x > 0)
的傅里叶变换

由于


−∞
H ( x) dx = ∫ dx 发散,故傅里叶变换不存在 发散,
0

把H(x)看成函数列 看成函数列
e − βx H ( x; β ) = 0
( x > 0) ( x < 0)
的极限, 在 β → 0 + 的极限,即
K δ (t − t0 )
函数是偶函数, δ 函数是偶函数,导数是奇函数 δ (− x) = δ ( x) δ ′(− x) = −δ ′( x)
(2) 研究积分 当
H ( x) = ∫ δ (t )dt 当 x < 0 积分值为零
−∞
x
x > 0 积分值为 积分值为1
x
0 H ( x) = ∫ δ (t )dt = −∞ 1
且有 lim 故
−1 ω π π ∫−∞ β 2 + ω 2 dω = lim0 tg β = 2 − (− 2 ) = π β →0 β→ −∞

β

lim
β
β →0
β +ω
2
2
= πδ (ω )
13
0 ω lim 2 = 1 又 β →0 β + ω 2 ω
5
mδ ( x − x0 ), 位于 0电量为 的点电荷的线密度为qδ ( x − x0 ), 位于x 电量为q的点电荷的线密度为
(二) δ 函数的一些性质
(1) 作用于瞬时t 冲量为K的瞬时力为 作用于瞬时 0冲量为 的瞬时力为
有了 函数,位于 0的质量为 的质点的线密度分布为 δ 函数,位于x 的质量为m的质点的线密度分布为
x积分 积分, 将ρ l (x)对x积分,可得质量

若让 l

→ 0, 得到位于原点的质量为 的质点, 线密度函数成为 得到位于原点的质量为m的质点, 质点的线密度函数, 质点的线密度函数,记为 ρ ( x ), 则
lim ∫ ρ l ( x)dx = ∫ ρ ( x)dx = m
l →0 − ∞
−∞
12
1 1 1 1 − ( β + iω ) x ∞ =− e 0 = 2π β + iω 2π β + iω 我们以 [H ( x; β )] 在 β → 0 + 的极限作为 的极限作为H(x)的傅里叶变换 的傅里叶变换
1 1 [H ( x)] = lim β →0 2π β + iω β 1 ω = lim 2 β +ω2 −i β 2 +ω2 →0 2π β →0 (ω ≠ 0) 0 β = 其中, 其中, lim 2 2 β →0 β + ω (ω = 0) ∞
e − βx ( x > 0) H ( x) = lim+ H ( x; β ) = lim+ β →0 β →0 0 ( x < 0) 而对 H ( x; β ) 来说傅里叶变换是存在的
1 [H ( x; β )] = 2π


0
e
− βx −iωx
e
1 dx = 2π


0
e −( β +iω ) x dx
很短,可以看成瞬时力, 力f(t)的冲量为 f (τ ) dτ , 由于 dτ 很短,可以看成瞬时力,记作 的冲量为 瞬时力的总计就是持续力 f (τ )δ (t − τ )dτ , 瞬时力的总计就是持续力F(t)
F (t ) = ∑ f (τ )δ (t − τ )dτ = ∫ f (τ )δ (t − τ )dτ
1 δ ( x) = 2π


−∞
e iωx dω
这里不是通常意义的傅里叶变换,而是一种广义的傅里叶变换 这里不是通常意义的傅里叶变换,而是一种广义的傅里叶变换
x 1 sin ω / 2) ( l 1 l rect( l ) = 2 l π ω /2
相关文档
最新文档