九年级数学课堂周测及答案
人教版数学九年级上册周周测(含解析)第九周

第九周1.如图,一扇形纸扇完全打开后,外侧两竹条AB 、AC 的夹角为120°,AB 长为30cm ,BD 长为20cm ,则贴纸部分的面积为( )A.800π2cmB.500π2cmC.2800πcm 3D.2500πcm 32.如图,蒙古包可近似地看作由圆锥和圆柱组成,若用毛毡搭建一个底面圆面积为25π2m ,圆柱高为3m ,圆锥高为2m 的蒙古包,则需要毛毡的面积是( )A.2(30πm +B.40π2mC.2(30πm +D.55π2m3.如图,若用n 个全等的正五边形按如下方式拼接,可以拼成一个环状,使相邻的两个正五边形有公共顶点,所夹的锐角为24°,图中所示的是前3个正五边形的拼接情况,拼接一圈后,中间会形成一个正多边形,则n 的值为( )A.5B.6C.8D.104.如图,在O 中,2OA =,45C ∠=︒,则图中阴影部分的面积为( )A.π2B.πC.π22-D.π2-5.如图,已知正五边形ABCDE 内接于O ,连接BD ,CE 相交于点F ,则BFC ∠的度数是( )A.60°B.70°C.72°D.90°6.如图,AB 是O 的直径,CD 是弦,点C ,D 在直径AB 的两侧.若2:7:11AOC AOD DOB ∠∠∠=::,4CD =,则CD 的长为( )A.2πB.4πC.27.如图,在圆内接正六边形ABCDEF 中,BF ,BD 分别交AC 于点G ,H .若该圆的半径为15 cm ,则线段GH 的长为( )A.5 cmB.C.D.8.如图,在Rt AOB 中,90AOB ∠=︒,2OA =,1OB =,将Rt AOB 绕点O 顺时针旋转90°后得Rt FOE ,将线段EF 绕点E 逆时针旋转90°后得线段ED ,分别以点O ,E 为圆心,OA ,ED 的长为半径画AF和DF,连接AD,则图中阴影部分的面积是( )A.14π4-B.10π4-C.πD.π5+9.如图,O的半径为2,AB AC=,60C∠=︒,则AC的长为___________.10.如图,从一块半径为1 m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为______________m.11.如图,过正六边形ABCDEF的顶点D作一条直线l AD⊥于点D,分别延长AB,AF交直线l于点M,N,则AMN∠=__________;若正六边形ABCDEF的面积为6,则AMN△的面积为____________.12.如图,AB为O的直径,CD是弦,AB CD⊥于点E,OF AC⊥于点F,BE OF=.(1)求证:AFO CEB ≌.(2)若4BE =,CD =①求O 的半径;②求图中阴影部分的面积.答案以及解析1.答案:C 解析:22120π30120π10800π3603603ABC ADES S S ⨯⨯⨯⨯=-=-=贴纸扇形扇形(2cm ). 2.答案:A解析:设底面圆的半径为R ,则2π25πR =,解得5R =,圆锥的母线长=锥的侧面积12π52=⋅⋅=;圆柱的侧面积2π5330π=⋅⋅=,所以需要毛毡的面积2(30πm =+.故选A.3.答案:B 解析:正五边形的每个内角为(52)1801085-⨯=︒︒,∴组成的正多边形的每个内角为360210824120︒︒︒-⨯-=︒.n 个全等的正五边形拼接可以拼成一个环状,中间会形成一个正多边形,组成的正多边形为正n 边形,则(2)180120n n-⨯=︒︒,解得6n =. 4.答案:D 解析:45C ︒∠=,90AOB ∴∠=︒.2OB OA ==,2 90π2122π23602OABOAB S S S ⨯⨯∴=-=-⨯⨯=-扇阴影形△.故选D. 5.答案:C 解析:五边形ABCDE 为正五边形,BC CD DE ∴==,108BCD CDE ∠=∠=︒,180108362CBD CDB CED DCE ︒-︒∴∠=∠=∠=∠==︒,72BFC BDC DCE ∴∠=∠+∠=︒.6.答案:D解析:2:7:11AOC AOD DOB ∠∠∠=::,180AOD DOB ∠+∠=︒,718070711AOD ∴∠=⨯︒=︒+,110DOB ∠=︒,20COA ∠=︒, 90COD COA AOD ∴∠=∠+∠=︒.在Rt COD 中,OD OC =,4CD =,2222224OC OD CD OD ∴+===,OD ∴=,CD ∴的长是π90π180180n r ⨯==.故选D. 7.答案:B 解析:在圆内接正六边形ABCDEF 中,AB AF BC CD ===,120BAF ABC BCD ∠=∠=∠=︒,30AFB ABF BAC ACB CBD BDC ∴∠=∠=∠=∠=∠=∠=︒,AG BG ∴=,BH CH =.60GBH BGH BHG ∠=∠=∠=︒,AG GH BG BH CH ∴====.连接OA ,OB 交AC 于N ,则OB AC ⊥,60AOB ∠=︒.15cm OA =,cm AN ∴==,2AC AN ∴==,13GH AC ∴==.8.答案:B解析:过点D 作DH AE ⊥于点H . 90AOB ∠=︒,2OA =,1OB =,AB ∴==由旋转的性质得EF AB ==,, 1.90,90OE OB FEO EFO FEO HED ==∠+∠=∠+∠=,EFO HED ∴∠=∠.又90,,DHE FOE DE EF DHE EOF ∠=∠==∴≅, 1DH OE ∴==, ADE EOF AOF DEF S S S S S ∆∆∴=++-=阴影部分扇形扇形21190π25π10π311222360244⨯-⨯⨯+⨯⨯+=-=.故选B. 9.答案:4π3解析:连接OA ,OC .AB AC =,60C ∠=︒,60B ∴∠=︒,120AOC ∴∠=︒,AC ∴的长为120π24π1803⨯=.10.答案:13解析:连接AO ,O 的半径为1 m ,1m OA AB AC ∴===,120π12π1803BC l ⨯∴==.将扇形ABC 围成一个圆锥,则BC 的长就是圆锥的底面圆周长.设圆锥的底面圆的半径为r ,则22ππ3r =,解得13r =. 11.答案:30°;16解析:如图,连接BE ,CF 交于点O .六边形ABCDEF 是正六边形,111206022MAD NAD BAF ∴∠=∠=∠︒=⨯=︒.AD MN ⊥,90ADM ADN ∴∠=∠=︒,30AMN ANM ∴∠=∠=︒.六边形ABCDEF 是正六边形,面积为6,∴点O 在AD 上,OA OD =,AOB △的面积为1,21=,2OA ∴=AD MN ⊥,DM DN ==,211221622ANM S MN AD OA ∴=⋅=⨯⨯⨯==△.12.答案:(1)证明:AB 为O 的直径,AB CD ⊥,BC BD ∴=,A DCB ∴∠=∠.OF AC ⊥,AFO CEB ∴∠=∠.OF BE =,()AAS AFO CEB ∴≌.(2)解:①AB 为O 的直径,AB CD ⊥,12CE CD ∴==. 设OC r =,则4OE r =-,()(2224r r ∴=-+,8r ∴=,即O 的半径是8.②如图,连接OD .142OE OB BE OC =-==, 30OCE ∴∠=︒,60COB ∠=︒, 120COD ∴∠=︒.AFO CEB ≌,AFO BCE S S ∴=,2120π81644π36023OCD OCD S S S ⋅⋅∴=-=-⨯=-阴影扇形。
2020-2021学年九年级上学期数学周测试题及答案(19)

2020-2021学年九年级上学期数学周测试题(19)一、单选题(每题3分,共30分)1.下列图形中,是中心对称图形,但不是轴对称图形的是( )A .B .C .D .2.关于x 的方程210x mx --=根的情况,下列说法正确的是( )A .没有实数根B .有两个相等的实数根C .有两个不相等的实数根D .无法确定 3.已知一个布袋里装有2个红球,3个白球和a 个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为13,则a 等于( ) A .1B .2C .3D .44.若关于x 的一元二次方程2(1)320a x x -+-=有两个不相等的实数根,则a 的取值范围是( ) A .18a >-B .18a ≥-C .18a >-且1a ≠D .18a ≥-且1a ≠5.如图,点B ,C ,D 在⊙O 上,若∠BCD =130°,则∠BOD 的度数是( ) A .50° B .60° C .80° D .100°第5题图 第6题图 第7题图 第9题图 6.如图是二次函数2y=ax +bx+c 的部分图象,由图象可知不等式2ax +bx+c<0的解集是( )A .1<x<5-B .x>5C .x<1-且x>5D .x <-1或x >5 7.如图⊙O 的直径AB 垂直于弦CD ,垂足是E ,22.5A ∠=︒,4OC =,CD 的长为( ) A .B .4C .D .88.如果反比例函数y =2a x-(a 是常数)的图象在第二、四象限,那么a 的取值范围是( ) A .a >2 B .a <2 C .a >0 D .a <09.如图,下列条件不能判定△ADB ∽△ABC 的是( )A .∠ABD=∠ACB B .∠ADB=∠ABC C .AB 2=AD•ACD .AD ABAB BC=10.如图,已知二次函数()2y ax bx c a 0=++≠的图象如图所示,有下列5个结论abc 0>①;b a c ->②;4a 2b c 0++>③;3a c >-④;()a b m am b (m 1+>+≠⑤的实数).其中正确结论的有( )A .①②③B .②③⑤C .②③④D .③④⑤二、填空题(每题4分,共28分)11.若m 是方程x 2+2x -1=0的一个根,则m 2+2m -4=______.12.从5-,0,4,π,3.5这个数中随机抽取一个,则抽到无理数的概率是___________. 13.已知二次函数22y x x m =-++的部分图象如图所示,则关于x 的一元二次方程220x x m -++=的根为________.第13题图 第14题图 第15题图14.如图,已知反比例函数y=(k 为常数,k≠0)的图象经过点A ,过A 点作AB ⊥x 轴,垂足为B ,若△AOB 的面积为1,则k=________________. 15..如图,圆锥侧面展开得到扇形,此扇形半径 CA=6,圆心角∠ACB=120°, 则此圆锥高 OC 的长度是_______.16.如图,△ABC 中,点 D 在边 AB 上,满足∠ACD=∠ABC ,若 AC=2,AD=1,则 DB=________.第16题图 第17题图17.如图,已知正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF=45°,将△DAE 绕点D 逆时针旋转90°,得到△DCM .若AE=1,FM 的长是________.三、解答题(一)(每小题6分,共18分) 18.解下列方程:(1)x 2﹣4x =0; (2)x 2+x =56.19.动画片《小猪佩奇》分靡全球,受到孩子们的喜爱.现有4张《小猪佩奇》角色卡片,分别是A佩奇,B乔治,C佩奇妈妈,D佩奇爸爸(四张卡片除字母和内容外,其余完全相同).姐弟两人做游戏,他们将这四张卡片混在一起,背面朝上放好.(1)姐姐从中随机抽取一张卡片,恰好抽到A 佩奇的概率为;(2)若两人分别随机抽取一张卡片(不放回),请用列表或画树状图的分方法求出恰好姐姐抽到A佩奇弟弟抽到B乔治的概率.20.如图,AD是⊙O的弦,AB经过圆心O交⊙O于点C,∠A=∠B=30°,连接BD.求证:BD是⊙O的切线.四、解答题(二)(每小题8分,共24分)21.2018年,某市某楼准备以每平方米5000元的均价对外销售,因为楼盘滞销,房地产开发商为了加快资金的周转,决定进行降价促销,经过连续两年的下调后,2020年的均价为每平方米4050元.(1)求平均每年下调的百分率;(2)假设2021年的均价仍然下调相同的百分率,则购买一套100平方米的房子需要多少万元?22.已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=mx图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△AOB的面积;(3)观察图象,直接写出不等式kx+b﹣mx>0的解集.23.如图,在平行四边形ABCD中,过点A作AE⊥BC ,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B,(1)求证:△ADF∽△DEC(2)若AB=4,AD=33,AE=3,求AF的长.五、解答题(三)(每小题10分,共20分)24.如图,⊙O是△ABC的外接圆,点O在BC边上,∠BAC的平分线交⊙O于点D,连接BD、CD,过点D作BC的平行线与AC的延长线相交于点P.(1)求证:PD是⊙O的切线;(2)求证:△ABD∽△DCP;(3)当AB=5cm,AC=12cm时,求线段PC的长.25.已知二次函数y=ax2+bx﹣3a经过点A(﹣1,0)、C(0,3),与x轴交于另一点B,抛物线的顶点为D,(1)求此二次函数解析式;(2)连接DC、BC、DB,求证:△BCD是直角三角形;(3)在对称轴右侧的抛物线上是否存在点P,使得△PDC为等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.2020-2021学年九年级上学期数学周测试题(19)参考答案一、选择题1-5. C C A C D 6-10. D C B D B二、填空题11.-312.2 513.1-或3 14.-215.16.DB=317.5 2三、解答题一18.(1)x1=0,x2=4;(2)x1=﹣8,x2=719.(1)14;(2)方法1:根据题意可画树状图如下:方法2:根据题意可列表格如下:由列表(树状图)可知,总共有12种结果,每种结果出现的可能性相同,其中姐姐抽到A 佩奇,弟弟抽到B乔治的结果有1种:(A,B).∴P(姐姐抽到A佩奇,弟弟抽到B乔治)1 12 =20.如图,连接OD,∵OD=OA,∴∠ODA=∠DAB=30°,∴∠DOB=∠ODA+∠DAB=60°,∴∠ODB=180°﹣∠DOB﹣∠B=180°﹣60°﹣30°=90°,即OD⊥BD,∴直线BD与⊙O相切.四、解答题二21.(1)设平均每年下调的百分率为x,根据题意得:5000(1﹣x)2=4050,解得:x1=10%,x2=190%(舍去).答:平均每年下调的百分率为10%.(2)如果下调的百分率相同,2021年的房价每平方米为:4050×(1﹣10%)=3645(元),买100平方米的住房需3645×100=364500(元)=36.45(万元),答:购买一套100平方米的房子需要36.45万元.22.(1)反比例函数解析式为y=﹣8x,一次函数的解析式为y=﹣x﹣2;(2)6;(3)x<﹣4或0<x<2.(1)把A(﹣4,2)代入,得m=2×(﹣4)=﹣8,所以反比例函数解析式为,把B(n,﹣4)代入,得﹣4n=﹣8,解得n=2,把A(﹣4,2)和B(2,﹣4)代入y=kx+b,得:,解得:,所以一次函数的解析式为y=﹣x﹣2;(2)y=﹣x﹣2中,令y=0,则x=﹣2,即直线y=﹣x﹣2与x轴交于点C(﹣2,0),∴S△AOB=S△AOC+S△BOC=×2×2+×2×4=6;(3)由图可得,不等式的解集为:x<﹣4或0<x<2.23.(1)见解析(2)3【详解】(1)证明:∵四边形ABCD是平行四边形∴AD∥BC AB∥CD∴∠ADF=∠CED ∠B+∠C=180°∵∠AFE+∠AFD=180︒,∠AFE=∠B∴∠AFD=∠C∴△ADF∽△DEC(2)解:∵四边形ABCD是平行四边形∴AD∥BC CD=AB=4又∵AE⊥BC ∴ AE⊥AD在Rt△ADE中,2222(33)36AD AE+=+=∵△ADF∽△DEC∴AD AFDE CD=334AF=∴AF=23五、解答题三24.(1)如图,连接OD,∵BC是⊙O的直径,∴∠BAC=90°,∵AD 平分∠BAC , ∴∠BAC=2∠BAD , ∵∠BOD=2∠BAD , ∴∠BOD=∠BAC=90°, ∵DP ∥BC ,∴∠ODP=∠BOD=90°, ∴PD ⊥OD , ∵OD 是⊙O 半径, ∴PD 是⊙O 的切线;(2)∵PD ∥BC , ∴∠ACB=∠P , ∵∠ACB=∠ADB , ∴∠ADB=∠P ,∵∠ABD+∠ACD=180°,∠ACD+∠DCP=180°, ∴∠DCP=∠ABD , ∴△ABD ∽△DCP ;(3)∵BC 是⊙O 的直径, ∴∠BDC=∠BAC=90°,在Rt △ABC 中,,∵AD 平分∠BAC , ∴∠BAD=∠CAD , ∴∠BOD=∠COD , ∴BD=CD ,在Rt △BCD 中,BD 2+CD 2=BC 2,∴BD=CD=2BC=2,∵△ABD ∽△DCP ,∴AB BDCD CP=, ∴132521322CP =, ∴CP=16.9cm .25.(1)抛物线的解析式为y=﹣x 2+2x+3.(2)证明见解析;(3)点P 坐标为(352+,552-2,3). (1)∵二次函数y=ax 2+bx ﹣3a 经过点A (﹣1,0)、C (0,3),∴将A (﹣1,0)、C (0,3),代入,得30{33a b a a --=-=,解得12a b =-=⎧⎨⎩,∴抛物线的解析式为y=﹣x 2+2x+3;(2)如图,连接DC 、BC 、DB ,由y=﹣x 2+2x+3=﹣(x ﹣1)2+4得,D 点坐标为(1,4),∴22(10)(43)-+-22233+2,22(31)(40)-+-5∵CD 2+BC 2=2)2+(2)2=20,BD 2=(52=20,∴CD 2+BC 2=BD 2,∴△BCD 是直角三角形;(3)y=﹣x 2+2x+3对称轴为直线x=1.假设存在这样的点P,①以CD 为底边,则P 1D=P 1C ,设P 1点坐标为(x ,y ),根据勾股定理可得P 1C 2=x 2+(3﹣y )2,P 1D 2=(x ﹣1)2+(4﹣y )2,因此x 2+(3﹣y )2=(x ﹣1)2+(4﹣y )2,即y=4﹣x .又P 1点(x ,y )在抛物线上,∴4﹣x=﹣x 2+2x+3,即x 2﹣3x+1=0,解得x 1=352+,x 2=352-<1,(不满足在对称轴右侧应舍去),∴x=352+,∴y=4﹣x=552-,即点P1坐标为(352+,552-).②以CD为一腰,∵点P2在对称轴右侧的抛物线上,由抛物线对称性知,点P2与点C关于直线x=1对称,此时点P2坐标为(2,3).∴符合条件的点P坐标为(352+,552-)或(2,3).考点:1.二次函数图象性质;2.等腰三角形性质;3.直角三角形的判定.。
2023年北师大版九年级上册数学周测试卷及答案 (3)

周测3(3.1~3.2)(时间:40分钟 满分:100分)一、选择题(每小题6分,共36分)1.将分别标有“大”“美”“安”“徽”汉字的四个小球装在一个不透明的口袋中,这些小球除汉字外无其他差别.若每次摸球前先搅拌均匀随机摸出一球,不放回,再随机摸出一球,则两次摸出的球上的汉字能组成“徽美”的概率是 (C ) A.12 B.14 C.16 D.182.小明语数英的科目成绩的排序为:语文>数学>英语,到家后,小明妈妈从小明书包依次抽2张试卷,若第二次抽到的试卷比第一次抽到的试卷成绩高的话,则小明可以获得奖励.请问小明获得奖励的概率为 (B ) A.13 B.12 C.23 D.163.某数学兴趣小组准备了4张印有安全图标的卡片,正面图案如图所示,它们除此之外完全相同.把这4张卡片背面朝上洗匀,从中随机抽取两张,则这两张卡片的正面图案中有一张是轴对称图形的概率是 (A )A.12 B.13 C.14 D.164.如图1所示,平整的地面上有一个不规则图案(图中阴影部分),为了了解该图案的占地面积,我们采取了以下办法:将不规则图案围在一个长为a 、宽为b 的长方形中,然后随机地朝长方形区域扔小球,并记录小球落在不规则图案内的次数(球落在界线上或长方形区域外不计入实验结果),现将若干次有效试验的结果绘制成了如图2所示的折线统计图,由此估计不规则图案的面积大约是 (B )图1 图2A.310a 2B.720abC.25b 2D.1340ab5.在一个不透明的袋子里,装有6枚白色棋子和若干枚黑色棋子,这些棋子除颜色外都相同.将袋子里的棋子摇匀,随机摸出一枚棋子,记下它的颜色后再放回袋子里.不断重复这一过程,统计发现,摸到白色棋子的频率稳定在0.1,由此估计袋子里黑色棋子的个数为 (C ) A.60 B.56 C.54 D.526.如图所示的电路图,同时闭合两个开关能形成闭合电路的概率是 (D )A.13 B.16 C.12 D.23二、填空题(每小题6分,共24分)7.有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁,现在任意取出一把钥匙去开任意一把锁,一次就能打开锁的概率是 14 .8.综合实践小组的同学们在相同条件下做了测定某种黄豆种子发芽率的试验,结果如表所示(单0.95 .9.在创建“文明校园”的活动中,班级决定从四名同学(两名男生,两名女生)中随机抽取两名同学担任宣传员,那么抽取的两名同学恰好是一名男生和一名女生的概率是 23 .10.如图,小颖在围棋盘上两个格子的格点上任意摆放黑、白两个棋子,且两个棋子不在同一条网格线上,其中恰好摆放成如图所示位置的概率是112.三、解答题(共40分)11.(16分)4件同型号的产品中,有1件不合格品和3件合格品.(1)从这4件产品中随机抽取2件进行检测,请用列表法或画树状图法求两件抽到的都是合格品的概率.(解答时可用A 表示1件不合格品,用B ,C ,D 分别表示3件合格品)(2)在这4件产品中加入x 件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95左右,则可以推算出x 的值大约是多少? 解:(1)画树状图如下:由图知共有12种等可能的情况,其中两件抽到的都是合格品的情况有6种,∴P (两件抽到的都是合格品)=612=12.(2)∵大量重复试验后发现,抽到合格品的频率稳定在0.95左右, ∴抽到合格品的概率约为0.95, ∴x+3x+4=0.95,解得x =16,经检验,x =16是分式方程的解,且符合题意, ∴x 的值为16.12.(24分)小美周末来到公园,发现在公园一角有一种“守株待兔”游戏.游戏设计者提供了一只兔子和一个有A ,B ,C ,D ,E 五个出入口的兔笼,而且笼内的兔子从每个出入口走出兔笼的机会是均等的.规定:①玩家只能将小兔从A ,B 两个出入口放入;②如果小兔进入笼子后选择从开始进入的出入口离开,则可获得一只价值4元的小兔玩具,否则应付费3元. (1)请用画树状图的方法,列举出该游戏的所有可能情况. (2)小美得到小兔玩具的机会有多大?(3)假设有125人玩此游戏,估计游戏设计者可赚多少元. 解:(1)根据题意,画树状图如下:(2)由(1)中的树状图知,共有10种等可能的结果,其中从开始进入的出入口离开的结果有2种. 所以小美能得到小兔玩具的概率为210=15.(3)由(1)中的树状图,可知玩此游戏者获得一只价值4元的小兔玩具的概率为15,此游戏设计者能得到3元的概率为45. 125×45×3-125×15×4=200(元),所以估计游戏设计者可赚200元.。
初三数学周测试题及答案

初三数学周测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的一般形式?A. y = ax^2 + bx + cB. y = ax + bx + cC. y = ax^2 + bxD. y = ax + c答案:A2. 已知一个直角三角形的两条直角边长分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A3. 一个圆的半径是5厘米,那么它的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π答案:B4. 一个等腰三角形的底边长为6厘米,腰长为8厘米,那么它的周长是多少?A. 22厘米B. 24厘米C. 26厘米D. 28厘米答案:B5. 一个数的平方根是它本身的数有几个?A. 0个B. 1个C. 2个D. 3个答案:C6. 一个数的立方根是它本身的数有几个?A. 0个B. 1个C. 2个D. 3个答案:D7. 一个数的倒数是它本身的数有几个?A. 0个B. 1个C. 2个D. 3个答案:C8. 一个数的相反数是它本身的数有几个?A. 0个B. 1个C. 2个D. 3个答案:B9. 一个数的绝对值是它本身的数是什么类型的数?A. 正数B. 负数C. 非负数D. 非正数答案:C10. 一个数的绝对值是它相反数的数是什么类型的数?A. 正数B. 负数C. 非负数D. 非正数答案:B二、填空题(每题3分,共30分)11. 一个数的平方是9,那么这个数是______。
答案:±3答案:-213. 一个数的倒数是1/3,那么这个数是______。
答案:314. 一个数的相反数是-5,那么这个数是______。
答案:515. 一个数的绝对值是4,那么这个数可以是______或______。
答案:4或-416. 一个数的绝对值是0,那么这个数是______。
答案:017. 一个数的平方根是2,那么这个数是______。
答案:4答案:2719. 一个数的平方根和立方根相等,那么这个数是______。
人教版数学九年级上册周周测(含解析)第二周

第二周1.距期末考试还有20天的时候,为鼓舞干劲,班主任老师要求班上每一位同学要给同组的其他同学写一份拼搏进取的留言,小明所在的“战无不胜”学习小组共写了30份留言,请问该学习小组共有学生( ) A.4人B.5人C.6人D.7人2.方程(5)(6)5x x x --=-的解是( ) A.5x =B.5x =或6x =C.7x =D.5x =或7x =3.若12,x x 是方程2230x x --=的两根,则1212x x x x ++的值是( ) A.1B.-1C.5D.-54.方程()3x x x +=的解是( ) A.123x x ==-B.121,3x x ==C.120,3x x ==-D.120,2x x ==-5.现要在一个长为40 m,宽为26 m 的矩形花园中修建等宽的小道,剩余的地方种植花草如图所示,要使种植花草的面积为2864m ,那么小道的宽度应是( )A.1 mB.2 mC.2.5 mD.3 m6.若1x ,2x 是方程2230x x --=的两个实数根,则212x x ⋅的值为( )A.3或-9B.-3或9C.3或-6D.-3或67.已知实数x 满足()()2224120x x x x ----=,则代数式21x x -+的值是( ) A.7B.1-C.7或1-D.5-或38.宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.若该宾馆客房部每天的利润达到15210元,则每个房间的定价应为每天( ) A.100元B.210元C.410元D.600元9.某市为了增强学生体质,开展了乒乓球比赛活动.赛制为双循环形式(即每两个选手之间都赛两场),首轮比赛共进行了12场,则共有________人参加比赛.10.李伟同学在解关于x 的一元二次方程230x x m -+=时,误将3x -看作3x +,结果解得121,4x x ==-,则原方程的解为_________.11.若,m n 是一元二次方程2310x x +-=的两个实数根,则3231m m n m +-的值为_________.12.对于三个实数,,a b c ,用{},,M a b c 表示这三个数的平均数,用{}min ,,a b c 表示这三个数中最小的数.例如:{}1291,2,94,min{1,2,3}3,min{3,1,1}13M ++==-=-=. 请结合上述材料,解决下列问题: (1){}2223,(3),3M --=____________.(2)若min{21,43,7}21x x x +-=+,则整数x 的值是_______. (3)若{}{}225,,3min ,3M x x x -=-,求x 的值.答案以及解析1.答案:C解析:设该学习小组共有学生x 人,则每人需写(1)x -份拼搏进取的留言,依题意得()130x x -=,整理得2300x x --=,解得126,5x x ==-(不合题意,舍去).故选C. 2.答案:D解析:移项,得(5)(6)(5)0x x x ----=,分解因式,得(5)(7)0x x --=,解得5x =或7x =.故选D. 3.答案:B 解析:12,x x 是方程2230x x --=的两根,12122,3x x x x ∴+==-,1212231x x x x ∴++=-=-.故选B.4.答案:D解析:移项,得()30x x x +-=,分解因式得()310x x +-=,整理得()20x x +=,可得0x =或20x +=,解得120,2x x ==-.故选D. 5.答案:B解析:设小道的宽度应为m x ,则剩余部分可合成长为()402m x -,宽为()26m x -的矩形.依题意得()()40226864x x --=,整理,得246880x x -+=.解得,122,44x x ==.4440>,不合题意,2x ∴=.故小道的宽度应为2 m.故选B. 6.答案:A解析:解:2230x x --=,12331x x -∴==-⋅,(1)(3)0x x +-=,则两根为:3或-1,当23x =时,212122239x x x x x x ⋅=⋅⋅=-=-,当21x =-时,212122233x x x x x x ⋅=⋅⋅=-=.故选:A. 7.答案:A解析:222()4()120x x x x ----=,22(2)(6)0x x x x ∴-+--=,220x x ∴-+=或260x x --=.当220x x -+=时,2(1)41270∆=--⨯⨯=-<∴此方程无实数解.当260x x --=,即26x x -=时,217x x -+=.故选A. 8.答案:C解析:设每个房间每天的定价增加x 元,则每天入住的房间数为6010x ⎛⎫- ⎪⎝⎭间.根据题意,得(20020)601521010x x ⎛⎫+-⋅-= ⎪⎝⎭.化简,得21424410010x x -+-=.解得12210x x ==.所以200410x +=.所以若该宾馆客房部每天的利润达到15210元,则每个房间的定价应为每天410元.故应选C. 9.答案:4解析:设共有人参加比赛.(1)12x x ∴-=,解得124,3x x ==-(舍去).故答案为4. 10.答案:124,1x x ==-解析:由题意得230x x m +=+的解为121,4x x ==-,可得124m x x ⋅==-,所以原方程为2340x x --=,分解因式得(4)(1)0x x -+=,解得124,1x x ==-.故答案为124,1x x ==-.11.答案:3 解析:,m n 是一元二次方程2310x x +-=的两个实数根,22310,31m m m m ∴+-=∴-=-.2Δ341(1)130=-⨯⨯-=>,3m n ∴+=-,32222()333131m m n m m n m m m m ++-∴===---,故答案为3.12.答案:(1)3 (2)2或3(3)122,3x x =-=- 解析:(1)22239,(3)9,39=-=-=-,{}2229993,(3),333M +-∴--==.故答案为3. (2)min{21,43,7}21x x x +-=+,2143,217,x x x +-⎧∴⎨+≤≤⎩解得23x ≤≤,∴整数x 的值为2或3.故答案为2或3. (3){}{}225,,3min ,3M x x x -=-,且22533,33x x x +->-∴=-,整理,得2560x x ++=,解得122,3x x =-=-.。
第3周——2023学年人教版数学九年级下册周周测(含答案)

第三周——2022-2023学年人教版数学九年级下册周周测1.如图,在中,.将沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )A. B.C. D.2.如图,下列条件不能判定的是( )A. B. C. D.3.如图所示,在中,是上一点, 于点E,若,则的长为( )A.3B.4C.5D.64.如图,在平行四边形中,的平分线交于点E,交于点F,交的延长线于点G.若,则的值为( )A. B. C. D.5.若的每条边长增加各自的10%得,则的度数与其对应角的度数相比( )A.增加了10%B.减少了10%C.增加了(1+10%)D.没有改变6.如图,已知都与垂直,垂足分别是,且,那么的长是( )A. B. C. D.7.如图,正方形中,分别在边上,相交于点G,若,则的值是( )A. B. C. D.8.如图,在四边形中,是上一点,且.若,则与的数量关系正确的是( )A. B. C. D.9.如图,已知,要使,还需要添加一个条件,你添加的条件是___________.(只需写一个条件,不添加辅助线和字母)10.如图,中,,将绕点B顺时针旋转得到,点D的对应点落在边上.已知,,则的长为__________.11.如图,在中,,,,点P为BC边上任意一点,连接PA,以PA,PC为邻边作平行四边形PAQC,连接PQ,则PQ长度的最小值为_________.12.一块材料的形状是锐角三角形,边,高,把它加工成正方形零件如图1,使正方形的一边在上,其余两个顶点分别在上.(1)求证:;(2)求这个正方形零件的边长;(3)如果把它加工成矩形零件如图2,问这个矩形零件的最大面积是多少?答案以及解析1.答案:C解析:A.阴影部分的三角形与原三角形有两个角相等,故两三角形相似;B.阴影部分的三角形与原三角形有两个角相等,故两三角形相似; C.两三角形的对应边不成比例,故两三角形不相似;D.两三角形的对应边成比例且夹角相等,故两三角形相似,故选C. 2.答案:D解析:A中,,,故此选项不合题意;B中,,,故此选项不合题意;C中,,,故此选项不合题意;D中,不能判定.故选D.3.答案:C解析:.又,.∵在中,,,.4.答案:C解析:设,则四边形是平行四边形,是的平分线,,,.5.答案:D解析:若的每条边长增加各自的10%得,则与各边对应成比例,故与相似,所以,故选D.6.答案:C解析:都与垂直,,,.同理,,,故选C.7.答案:C解析:设正方形的边长为,因为,所以.如图,延长交于点M,因为,所以,所以,所以.同理可得,所以.8.答案:B解析:如图,过点D作.,,...,,..设,则,即,解得,,.9.答案:(答案不唯一)解析:当时,.10.答案:解析:①由可得,即;②由题意可得.设,由①②可列方程,解得舍去),故的长为.11.答案:解析:,,,,四边形APCQ是平行四边形,,,PQ最短也就是PO最短,过O作BC的垂线,,,,,,,则PQ的最小值为,故答案为:.12.答案:(1)见解析(2)48 mm(3)解析:(1)证明:∵四边形是正方形,.(2)设正方形零件的边长为.在正方形中,,,.即,解得,即正方形零件的边长为48 mm.(3)设的长为的长为,由(1)知,解得,故,配方得.当,即时,这个矩形零件的面积最大,最大面积是.。
九年级数学人教版(上册)周测(22.1.1~22.1.3)

A.有最大值 4
B.有最小值 4
C.有最大值 6
D.有最小值 6
3.对于二次函数 y=-(x-1)2+4 的图象,下列说法正确的是( D ) A.开口向上 B.顶点坐标是(-1,4) C.图象与 y 轴交点的坐标是(0,4) D.图象在 x 轴上截得的线段长度是 4
4.抛物线 y=-3(x+1)2+1 是由抛物线 y=-3x2-1 怎样平移 得到的(B )
第二十二章 二次函数
周测(22.1.1~22.1.3)
一、选择题(每小题 5 分,共 25 分)
1.下列函数:①y=2x-1;②y=2x2-1;③y=2x2;④y=2x3
+x2;⑤y=x2-x-1,其中二次函数有(C )
A.1 个
B.2 个
C.3 个
D.4 个
2.关于二次函数 y=2(x-4)2+6 的最值,下列说法正确的是( D )
12.若二次函数 y=(x-m)2+n 的图象如图所示,则一次函数 y =mx+n 的图象不经过第二象限.
13.如图,在平面直角坐标系中,点 A 的坐标为(0,2),点 B
的坐标为(4,2).若抛物线 y=-32(x-h)2+k(h,k 为常数)与线段 AB
交于
C,D
两点,且
CD=12AB,则
k
16.(14 分)如图,抛物线 y=-x2+4 交 x 轴于 A,B 两点,顶 点是 C.
(1)求△ABC 的面积. 解:∵A(-2,0),B(2,0),C(0,4), ∴S△ABC=12×4×4=8.
(2)若点 P 在抛物线上,且 S△PAB=4,求点 P 的坐标. 解:设点 P 的纵坐标为 t,则 S△PAB=12×4×|t|=4, ∴t=±2. 当 t=2 时,由 2=-x2+4,得 x=± 2; 当 t=-2 时,由-2=-x2+4,得 x=± 6. ∴点 P 的坐标为( 2,2)或(- 2,2)或( 6,-2)或(- 6,-2).
初三数学周测试题及答案

初三数学周测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 3.14B. √2C. 0.1010010001…(每两个1之间0的个数逐次增加)D. -52. 一次函数y=2x+1的图象不经过第几象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 一个正数的倒数是1/2,那么这个数是:A. 1/2B. 2C. 1/3D. 34. 一个三角形的两边长分别是3和4,第三边长x满足的不等式是:A. 1 < x < 7B. 4 < x < 7C. 1 < x < 5D. 0 < x < 75. 计算(-2)^3的结果是:B. 8C. -2D. 26. 一个数的平方是25,那么这个数是:A. 5B. -5C. 5或-5D. 以上都不对7. 一个圆的直径是10cm,那么这个圆的周长是:A. 31.4cmB. 15.7cmC. 10cmD. 5cm8. 一个等腰三角形的顶角是90度,那么它的底角是:A. 45度B. 60度C. 30度D. 90度9. 一个数的绝对值是5,那么这个数是:A. 5B. -5C. 5或-5D. 以上都不对10. 计算(-3)^2的结果是:A. -9C. -3D. 3二、填空题(每题3分,共30分)1. 一个数的绝对值是它本身,这个数是_________。
2. 一个数的相反数是-2,那么这个数是_________。
3. 一个数的平方是36,那么这个数是_________。
4. 一个三角形的两边长分别是5和12,第三边长x满足的不等式是_________。
5. 一个圆的半径是7cm,那么这个圆的面积是_________。
6. 一个等腰三角形的顶角是30度,那么它的底角是_________。
7. 一个数的立方是-27,那么这个数是_________。
8. 一个数的绝对值是它相反数的2倍,那么这个数是_________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
周测(21.1~21.2)(时间:40分钟 满分:100分)一、选择题(每小题4分,共32分)1.下列关于x 的方程:①ax 2+bx +c =0;②x 2+4x-3=0;③x 2-4+x 5=0;④3x =x 2,其中是一元二次方程的有( )A .1个B .2个C .3个D .4个 2.方程x 2-x =0的解为( )A .x =0B .x =1C .x 1=0,x 2=1D .x 1=0,x 2=-1 3.一元二次方程3x 2-4x +1=0的根的情况为( )A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根 4.若1-3是方程x 2-2x +c =0的一个根,则c 的值为( )A .-2B .43-2C .3- 3D .1+ 3 5.一元二次方程x 2-6x -6=0配方后可化为( )A .(x -3)2=15 B .(x -3)2=3 C .(x +3)2=15 D .(x +3)2=36.如果关于x 的一元二次方程kx 2-2k +1x +1=0有两个不相等的实数根,那么k 的取值范围是( )A .k <12B .k <12且k ≠0C .-12≤k <12D .-12≤k <12且k ≠07.如果关于x 的一元二次方程x 2+3x -7=0的两根分别为α,β,那么α2+4α+β=( )A .4B .10C .-4D .-108.解方程(x -1)2-5(x -1)+4=0时,我们可以将(x -1)看成一个整体,设x -1=y ,则原方程可化为y 2-5y +4=0,解得y 1=1,y 2=4.当y =1时,即x -1=1,解得x =2;当y =4时,即x -1=4,解得x =5,所以原方程的解为x 1=2,x 2=5.利用这种方法求得方程(2x +5)2-4(2x +5)+3=0的解为( )A .x 1=1,x 2=3B .x 1=-2,x 2=3C .x 1=-3,x 2=-1D .x 1=-1,x 2=-2二、填空题(每小题4分,共24分)9.若关于x 的方程(m +2)x |m|+2x -1=0是一元二次方程,则m = . 10.用适当的数填空:x 2-3x + =(x - )2;x 2+27x + =(x + )2.11.若关于x 的一元二次方程(p -1)x 2-x +p 2-1=0的一个根为0,则实数p 的值是 .12.关于x 的一元二次方程x 2+bx +2=0有两个不相等的实数根,写出一个满足条件的实数b 的值: . 13.已知关于x 的方程ax 2+bx +1=0的两根为x 1=1,x 2=2,则方程a(x +1)2+b(x +1)+1=0的两根之和为 . 14.对于两个不相等的实数a ,b ,我们规定max{a ,b}表示a ,b 中较大的数,如max{1,2}=2.那么方程max{2x ,x -2}=x 2-4的解为 . 三、解答题(共44分)15.(8分)写出下列方程的一般形式、二次项系数、一次项系数以及常数项.16.(15(1)4x2-3x+1=0; (2)3(x-3)2-25=0; (3)3x2+1=23x.17.(10分)阅读例题:解方程:x2-|x|-2=0.解:当x≥0时,得x2-x-2=0,解得x1=2,x2=-1<0(舍去);当x<0时,得x2+x-2=0,解得x1=1>0(舍去),x2=-2.故原方程的根为x1=2,x2=-2.请参照例题的方法解方程:x2-|x+1|-1=0.18.(11分)已知关于x的一元二次方程x2+(2m+1)x+m2=0.(1)若方程有两个实数根,求m的最小整数值;(2)若方程的两个实数根为x1,x2,且(x1-x2)2+m2=21,求m的值.单元测试(一) 一元二次方程(时间:40分钟 满分:100分)一、选择题(每小题4分,共32分)1.下列方程是关于x 的一元二次方程的是( )A .ax 2+bx +c =0 B.1x 2+1x =2 C .x 2+2x =y 2-1 D .3(x +1)2=2(x +1)2.方程x 2-3=0的根是( )A. 3 B .- 3 C .± 3 D .3 3.一元二次方程2x 2+x +1=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .只有一个实数根D .没有实数根 4.用配方法解方程x 2+10x +9=0,配方后可得( )A .(x +5)2=16 B .(x +5)2=1 C .(x +10)2=91 D .(x +10)2=109 5.若x =-1是关于x 的一元二次方程x 2-2kx +k 2=0的一个根,则k 的值为( )A .-1B .0C .1D .26.在解方程(x +2)(x -2)=5时,甲同学说:由于5=1×5,可令x +2=1,x -2=5,得方程的根x 1=-1,x 2=7;乙同学说:应把方程右边化为0,得x 2-9=0,再分解因式,即(x +3)(x -3)=0,得方程的根为x 1=-3,x 2=3.对于甲、乙两名同学的说法,下列判断正确的是( )A .甲错误,乙正确 B .甲正确,乙错误 C .甲、乙都正确 D .甲、乙都错误7.如图,某小区计划在一个长40米,宽30米的矩形场地ABCD 上修建三条同样宽的道路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草.若使每块草坪面积都为168平方米,设道路的宽度为x 米,则可列方程为( )A .(40-2x)(30-x)=168×6B .30×40-2×30x -40x =168×6C .(30-2x)(40-x)=168D .(40-2x)(30-x)=1688.已知α,β是关于x 的一元二次方程x 2+(2m +3)x +m 2=0的两个不相等的实数根,且满足1α+1β=-1,则m的值是( ) A .3或-1 B .3 C .1 D .-3或1 二、填空题(每小题4分,共24分)9.一元二次方程(x -2)(x +3)=2x +1化为一般形式是 . 10.若一元二次方程(m +2)x 2+2x +m 2-4=0的常数项为0,则m = . 11.已知实数a ,b 是方程x 2-x -1=0的两根,则b a +a b的值为 .12.六一儿童节当天,某班同学每人向本班其他每名同学送一份小礼品,全班共互送306份小礼品,则该班有 名同学.13.某服装店原计划按每套200元的价格销售一批保暖内衣,但上市后销售不佳,为减少库存积压,连续两次降价打折处理,最后价格调整为每套128元.若两次降价折扣率相同,则每次降价率为 .14.阅读材料:如果a ,b 分别是一元二次方程x 2+x -1=0的两个实数根,则有a 2+a -1=0,b 2+b -1=0;创新应用:如果m ,n 是两个不相等的实数,且满足m 2-m =3,n 2-n =3,那么代数式2n 2-mn +2m +2 009= . 三、解答题(共44分)15.(12分)我们已经学习了一元二次方程的四种解法:因式分解法、直接开平方法、配方法和公式法.请选择合适的方法解下列方程.(1)x2-3x+1=0; (2)(x-1)2=3; (3)x2-3x=0; (4)x2-2x=4.16.(10分)定义新运算:对于任意实数m,n都有m☆n=m2n+n,等式右边是常用的加法、乘法及乘方运算.例如:-3☆2=(-3)2×2+2=20.根据以上知识解决问题:若2☆a的值小于0,请判断方程2x2-bx+a=0的根的情况.17.(10分)某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为29米的篱笆围成,已知墙长为18米,为方便进入,在墙的对面留出1米宽的门(如图所示).设这个苗圃园垂直于墙的一边长为x米,苗圃园的面积为100平方米,求x的值.18.(12分)某地大力发展经济作物,其中果树种植已初具规模,今年受气候、雨水等因素的影响,樱桃较去年有小幅度的减产,而枇杷有所增产.(1)该地某果农今年收获樱桃和枇杷共400千克,其中枇杷的产量不超过樱桃产量的7倍,求该果农今年收获樱桃至少多少千克?(2)该果农把今年收获的樱桃、枇杷两种水果的一部分运往市场销售,该果农去年樱桃的市场销售量为100千克,销售均价为30元/千克,今年樱桃的市场销售量比去年减少了m%,销售均价与去年相同;该果农去年枇杷的市场销售量为200千克,销售均价为20元/千克,今年枇杷的市场销售量比去年增加了2m%,但销售均价比去年减少了m%.该果农今年运往市场销售的这部分樱桃和枇杷的销售总金额与他去年樱桃和枇杷的市场销售总金额相同,求m的值.周测(22.1.1~22.1.3)(时间:40分钟 满分:100分)一、选择题(每小题4分,共28分)1.已知函数:①y =2x -1;②y =2x 2-1;③y =2x 2;④y =2x 3+x 2;⑤y =x 2-x -1,其中二次函数的个数为( )A .1B .2C .3D .42.二次函数y =a(x -1)2+b(a ≠0)的图象经过点(0,2),则a +b 的值是( )A .-3B .-1C .2D .33.对于抛物线y =12x 2,y =x 2和y =-x 2的共同性质有以下说法:①都是开口向上;②都以点(0,0)为顶点;③都以y 轴为对称轴;④都关于x 轴对称.其中正确的个数是( )A .1B .2C .3D .44.如图,平面直角坐标系中的二次函数图象所对应的函数解析式可能为( )A .y =-12x 2B .y =-12(x +1)2C .y =-12(x -1)2-1D .y =-12(x +1)2-15.已知二次函数y =2(x -3)2-2,下列说法:①其图象开口向上;②顶点坐标为(3,-2);③其图象与y 轴的交点坐标为(0,-2);④当x ≤3时,y 随x 的增大而减小,其中正确的有( )A .1个B .2个C .3个D .4个6.若正比例函数y =mx(m ≠0),y 随x 的增大而减小,则它和二次函数y =mx 2+m 的图象大致是( )7.如图是有相同对称轴的两条抛物线,下列关系不正确的是( )A .h =mB .k =nC .k >nD .h >0,k >0 二、填空题(每小题5分,共25分)8.函数y =-12(x +3)2中,当x 时,y 随x 的增大而增大;当x 时,y 随x 的增大而减小.9.将二次函数 y =x 2-1 的图象向上平移 3 个单位长度,得到的图象所对应的函数解析式是 . 10.若二次函数y =a(x -1)2+b 有最大值2,则a b(填“>”“=”或“<”).11.若点A(0,y 1),B(-3,y 2),C(1,y 3)为二次函数y =(x +2)2-9的图象上的三点,则y 1,y 2,y 3的大小关系是12.如图,在平面直角坐标系中,抛物线y =ax 2+3与y 轴交于点A ,过点A 且与x 轴平行的直线交抛物线y =13x 2于点B ,C ,则BC 的长为 .三、解答题(共47分)13.(10分)已知二次函数y =12(x +1)2+4.(1)写出抛物线的开口方向、顶点坐标和对称轴;(2)画出此函数的图象,并说出由此函数图象经过怎样平移可得到函数y =12x 2的图象.14.(10分)函数y =(m -3)xm2-3m -2是关于x 的二次函数.(1)若函数的图象开口向上,求函数的解析式,并说明在函数图象上y 随x 怎样变化?(2)在(1)中的图象上是否存在一点P ,使其到两坐标轴的距离相等?若存在,求出点P 的坐标;若不存在,请说明理由.15.(12分)如图,已知二次函数y =(x -1)2图象的顶点为C ,图象与直线y =x +m 交于A ,B 两点,其中点A 的坐标为(3,4),点B 在y 轴上.(1)求m 的值;(2)P 为线段AB 上的一个动点(点P 与点A ,B 不重合),过点P 作x 轴的垂线与这个二次函数的图象交于点E ,设线段PE 的长为h ,点P 的横坐标为x ,求h 与x 之间的函数解析式,并写出自变量x 的取值范围.16.(15分)如图,抛物线y =-14x 2+x 的顶点为A ,它与x 轴交于点O 和点B.(1)求点A 和点B 的坐标; (2)求△AOB 的面积;(3)若点P(m ,-m)(m ≠0)为抛物线上一点,求与点P 关于抛物线对称轴对称的点Q 的坐标.周测(22.1.4~22.3)(时间:40分钟 满分:100分)一、选择题(每小题4分,共28分)1.已知二次函数y =ax 2+bx +1,若当x =1时,y =0;当x =-1时,y =4,则a ,b 的值分别为( )A .a =1,b =2B .a =1,b =-2C .a =-1,b =2D .a =-1,b =-22.如图,抛物线与x 轴的两个交点为A(-3,0),B(1,0),则由图象可知y <0时,x 的取值范围是( )A .-3<x <1B .x >1C .x <-3D .0<x <1 3.对于二次函数y =-14x 2+x -4,下列说法正确的是( )A .当x>0,y 随x 的增大而增大B .当x =2时,y 有最大值-3C .图象的顶点坐标为(-2,-7)D .图象与x 轴有两个交点4.二次函数y =2x 2-4x +3的图象先向左平移4个单位长度,再向下平移2个单位长度后的抛物线解析式为( )A .y =2(x -4)2-4x +1 B .y =2(x +4)2+1 C .y =2x 2+12x +17 D .y =2x 2-10x -175.在同一平面直角坐标系中,若抛物线y =x 2+(2m -1)x +2m -4与y =x 2-(3m +n)x +n 关于y 轴对称,则符合条件的m ,n 的值为( )A .m =57,n =-187B .m =5,n =-6C .m =-1,n =6D .m =1,n =-26.某大学生利用课余时间在网上销售一种成本为50元/件的商品,每月的销售量y(件)与销售单价x(元/件)之间的函数关系式为y =-4x +440,要获得最大利润,该商品的售价应定为( )A .60元B .70元C .80元D .90元7.如图是二次函数y =ax 2+bx +c(a ,b ,c 是常数,a ≠0)图象的一部分,与x 轴的交点A 在(2,0)和(3,0)之间,对称轴是直线x =1.对于下列说法:①ab<0;②2a +b =0;③3a +c>0;④a +b ≥m(am +b) (m 为实数);⑤当-1<x<3时,y>0.其中正确的是( )A .①②④B .①②⑤C .②③④D .③④⑤ 二、填空题(每小题5分,共25分)8.当x =1时,二次函数y =x 2-2x +6有最小值 .9.如图,抛物线y =ax 2与直线y =bx +c 的两个交点坐标分别为A(-2,4),B(1,1),则方程ax 2=bx +c 的解是10.如图的一座拱桥,当水面宽AB 为12 m 时,桥洞顶部离水面4 m .已知桥洞的拱形是抛物线,以水平方向为x 轴,建立平面直角坐标系.若选取点A 为坐标原点时的抛物线解析式是y =-19(x -6)2+4,则选取点B 为坐标原点时的抛物线的解析式是 .11.飞机着陆后滑行的距离y(单位:m)关于滑行时间t(单位:s)的函数解析式是y =60t -32t 2.在飞机着陆滑行中,最后4 s 滑行的距离是12.如图,在等腰Rt △ABC 中,∠C =90°,AB =10,点F 是AB 的中点,点D ,E 分别在AC ,BC 边上运动,且始终保持DF ⊥EF ,则△CDE 面积的最大值为 . 三、解答题(共47分)13.(8分)已知二次函数y=x2+4x+k-1.(1)若抛物线与x轴有两个不同的交点,求k的取值范围;(2)若抛物线的顶点在x轴上,求k的值.14.(12分)抛物线y=-x2+(m-1)x+m与y轴交于点(0,3).(1)求出m的值,并画出这条抛物线;(2)求抛物线与x轴的交点和顶点坐标;(3)当x取什么值时,抛物线在x轴上方?(4)当x取什么值时,y的值随x的增大而减小.15.(12分)用一段长32 m的篱笆和长8 m的墙,围成一个矩形的菜园.(1)如图1,如果矩形菜园的一边靠墙AB,另三边由篱笆CDEF围成.①设DE=x m,直接写出菜园面积y与x之间的函数关系式,并写出自变量的取值范围;②菜园的面积能不能等于110 m2?若能,求出此时x的值;若不能,请说明理由;(2)如图2,如果矩形菜园的一边由墙AB和一节篱笆BF构成,另三边由篱笆ADEF围成,求菜园面积的最大值.16.(15分)已知二次函数y=-x2+bx+c的图象过点A(3,0),C(-1,0).(1)求二次函数的解析式;(2)如图,点P是二次函数图象的对称轴上的一个动点,二次函数的图象与y轴交于点B,当PB+PC最小时,求点P的坐标;(3)在第一象限内的抛物线上有一点Q,当△QAB的面积最大时,求点Q的坐标.单元测试(二) 二次函数(A卷)(时间:40分钟满分:100分)一、选择题(每小题4分,共32分)1.下列各式中,y是x的二次函数的是( )A.xy+x2=1 B.x2-y+2=0 C.y=1x2D.y2-4x=32.将二次函数y=x2-2x+3化为y=(x-h)2+k的形式,结果为( )A.y=(x+1)2+4 B.y=(x+1)2+2 C.y=(x-1)2+4 D.y=(x-1)2+23.将抛物线y=2(x-4)2-1先向左平移4个单位长度,再向上平移2个单位长度,平移后所得抛物线的解析式为(A)A.y=2x2+1 B.y=2x2-3 C.y=2(x-8)2+1 D.y=2(x-8)2-34.二次函数图象上部分点的坐标对应值列表如下:x …-3 -2 -1 0 1 …y …-3 -2 -3 -6 -11 …A.直线x=-3 B.直线x=-2 C.直线x=-1 D.直线x=05.若抛物线y=x2-x-1与x轴的一个交点的坐标为(m,0),则代数式m2-m+2 019的值为( ) A.2 019 B.2 017 C.2 018 D.2 0206.已知抛物线y=a(x-2)2+k(a>0,a,k为常数),A(-3,y1),B(3,y2),C(4,y3)是抛物线上三点,则y1,y2,y3由小到大依次排列为( )A.y1<y2<y3 B.y2<y1<y3 C.y2<y3<y1 D.y3<y2<y17.在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,则下列结论正确的是( )A.a<0,b<0,c>0 B.-b2a=1 C.a+b+c<0 D.关于x的方程ax2+bx+c=-1有两个不相等的实数根8.如图,△ABC是直角三角形,∠A=90°,AB=8 cm,AC=6 cm,点P从点A出发,沿AB方向以2 cm/s的速度向点B运动;同时点Q从点A出发,沿AC方向以1 cm/s的速度向点C运动,其中一个动点到达终点,则另一个动点也停止运动,则△APQ的最大面积是( )A.8 cm2 B.16 cm2 C.24 cm2 D.32 cm2二、填空题(每小题5分,共20分)9.若点A(3,n)在二次函数y=x2+2x-3的图象上,则n的值为.10.请写出一个开口向上,并且与y轴交于点(0,1)的抛物线的函数解析式:.11.二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+c的图象不经过第象限.12.已知抛物线y=x2+2x-3与x轴交于A,B两点(点A在点B的左侧),将这条抛物线向右平移m(m>0)个单位长度,平移后的抛物线与x轴交于C,D两点(点C在点D的左侧).若B,C是线段AD的三等分点,则m的值为.三、解答题(共48分)13.(12分)二次函数y =ax 2+bx +c(a ≠0)的图象如图所示,根据图象解答下列问题:(1)方程ax 2+bx +c =0的两个根为 ; (2)不等式ax 2+bx +c>0的解集为 ;(3)y 随x 的增大而减小的自变量x 的取值范围为 ;(4)若方程ax 2+bx +c =k 有两个不相等的实数根,则k 的取值范围为 . 14.(10分)如图,一次函数y 1=kx +b 与二次函数y 2=ax 2的图象交于A ,B 两点.(1)利用图中条件,求两个函数的解析式; (2)根据图象写出使y 1>y 2的x 的取值范围.15.(12分)九(1)班数学兴趣小组经过市场调查,整理出某种商品在第x(1≤x ≤90)天的售价与销量的相关信息如下表:已知该商品的进价为每件30元,设销售该商品每天的利润为y 元.(1)求出y 与x 的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?16.(14分)如图,在平面直角坐标系中,二次函数y =x 2-2x -3的部分图象与x 轴交于点A ,B(A 在B 的左边),与y 轴交于点C ,D 为顶点,连接BC.(1)求∠OBC 的度数;(2)在x 轴下方的抛物线上是否存在一点Q ,使△ABQ 的面积等于5?如存在,求Q 点的坐标;若不存在,说明理由;(3)点P 是第四象限的抛物线上的一个动点(不与点D 重合),过点P 作PF ⊥x 轴交BC 于点F ,求线段PF 长度的最大值.时间x(天) 1≤x <50 50≤x ≤90售价(元/件) x +40 90 每天销量(件)200-2x单元测试(二) 二次函数(B卷)(时间:40分钟满分:100分)一、选择题(每小题4分,共32分)1.抛物线y=-2(x-3)2+1的顶点坐标是( )A.(-3,1) B.(-3,-1) C.(3,1) D.(3,-1)2.下表给出了二次函数y=x2+2x-10中x,y的一些对应值,则可以估计一元二次方程x2+2x-10=0的一个近似解为( )x … 2.1 2.2 2.3 2.4 2.5 …y …-1.39 -0.76 -0.11 0.56 1.25 …A.2.2 B.2.3 C3.已知二次函数y=-x2+2x+1,若y随x的增大而增大,则x的取值范围是( )A.x<1 B.x>1 C.x<-1 D.x>-14.如图是二次函数y=-x2+2x+4的图象,使y≤1成立的x的取值范围是( )A.-1≤x≤3 B.x≤-1 C.x≥1 D.x≤-1或x≥35.为搞好环保,某公司准备修建一个长方体污水处理池,池底矩形的周长为100 m,则池底的最大面积是( ) A.600 m2 B.625 m2 C.650 m2 D.675 m26.对于二次函数y=x2-2mx-3,下列结论不一定成立的是( )A.它的图象与x轴有两个交点 B.方程x2-2mx=3的两根之积为-3C.它的图象的对称轴在y轴的右侧 D.当x<m时,y随x的增大而减小7.将二次函数y=x2的图象先向下平移1个单位长度,再向右平移3个单位长度,得到的图象与一次函数y=2x+b的图象有公共点,则实数b的取值范围是( )A.b>8 B.b>-8 C.b≥8 D.b≥-88.二次函数y=ax2+bx+c(a≠0)的大致图象如图所示,顶点坐标为(-2,-9a),下列结论:①4a+2b+c>0;②5a-b+c=0;③若方程a(x+5)(x-1)=-1有两个根x1和x2,且x1<x2,则-5<x1<x2<1;④若方程|ax2+bx+c|=1有四个根,则这四个根的和为-4.其中正确的结论有( ) A.1个 B.2个 C.3个 D.4个二、填空题(每小题5分,共20分)9.当a=时,函数y=(a-1)xa2+1+x-3是二次函数.10.如果点A(-2,y1)和点B(2,y2)是抛物线y=(x+3)2上的两点,那么y1 y2.(填“>”“=”或“<”) 11.二次函数y=x2-4x+3,当0≤x≤5时,y的取值范围为.12.科幻小说《实验室的故事》中,有这样一个情节,科学家把一种珍奇的植物分别放在不同温度(其他条件均相同)的环境中,经过一天后,测试出这种植物高度的增长情况如下表:温度x/℃…-4 -2 0 2 4 4.5 …植物每天高度增长量y/mm …41 49 49 41 2519.75…①该植物在0 ℃时,每天高度增长量最大;②该植物在-6 ℃时,每天高度增长量仍能保持在20 mm以上;③该植物与大多数植物不同,6 ℃以上的环境下高度几乎不增长.其中正确的是.(填序号)三、解答题(共48分)13.(10分)如图,二次函数y=(x+2)2+m的图象与y轴交于点C,点B在抛物线上,且与点C关于抛物线的对称轴对称,已知一次函数y=kx+b的图象经过该二次函数图象上的点A(-1,0)及点B.(1)求二次函数与一次函数的解析式;(2)根据图象,写出满足(x+2)2+m≥kx+b的x的取值范围.14.(10分)已知二次函数y=2(x-1)(x-m-3)(m为常数).(1)求证:不论m为何值,该函数的图象与x轴总有公共点;(2)当m取什么值时,该函数的图象与y轴的交点在x轴的上方?15.(14分)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚,到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种的蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4 800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.16.(14分)如图,已知二次函数y=ax2+bx+3的图象交x轴于点A(1,0),B(3,0),交y轴于点C.(1)求这个二次函数的解析式;(2)点P是直线BC下方抛物线上的一个动点,求△BCP面积的最大值;(3)直线x=m分别交直线BC和抛物线于点M,N,当△BMN是等腰三角形时,直接写出m的值.单元测试(三) 旋转(时间:40分钟 满分:100分)一、选择题(每小题4分,共32分) 1.下列运动属于旋转的是( )A .足球在草地上滚动B .一个图形沿某直线对折的过程C .气球升空的运动D .钟表钟摆的摆动2.下面四个手机应用图标中,属于中心对称图形的是( )3.如图,在Rt △ABC 中,∠BAC =90°.将Rt △ABC 绕点C 按逆时针方向旋转48°得到Rt △A ′B ′C ,点A 在边B ′C 上,则∠B ′的度数为( )A .42°B .48°C .52°D .58°4.如图,经过矩形对称中心的任意一条直线把矩形分成面积分别为S 1和S 2的两部分,则S 1与S 2的大小关系是( )A .S 1<S 2B .S 1>S 2C .S 1=S 2D .S 1与S 2的关系由直线的位置而定 5.点P(ac 2,b a)在第二象限,则点Q(a ,b)关于原点对称的点在( )A .第一象限B .第二象限C .第三象限D .第四象限6.如图,将等边△ABC 绕点C 顺时针旋转120°得到△EDC ,连接AD ,BD.则下列结论:①AC =AD ;②BD ⊥AC ;③四边形ACED 是菱形.其中正确的个数是( )A .0B .1C .2D .37.如图,在△ABO 中,AB ⊥OB ,OB =3,∠AOB =30°,把△ABO 绕点O 旋转150°后得到△A 1B 1O ,则点A 1的坐标为( )A .(-1,-3)B .(-1,-3)或(-2,0)C .(-3,-1)或(0,-2)D .(-3,-1)8.如图,将△ABC 沿BC 翻折得到△DBC ,再将△DBC 绕点C 逆时针旋转60°得到△FEC ,延长BD 交EF于点H.已知∠ABC=30°,∠BAC=90°,AC=1,则四边形CDHF的面积为( )A.312B.36C.33D.32二、填空题(每小题5分,共20分)9.王明、杨磊两家所在位置关于学校成中心对称.如果王明家距离学校500米,那么他们两家相距米.10.在方格纸上建立如图所示的平面直角坐标系,将△ABO绕点O按顺时针方向旋转90°,得△A′B′O,则点A的对应点A′的坐标为.11.如图1,教室里有一只倒地的装垃圾的灰斗,BC与地面的夹角为50°,∠C=25°,小贤同学将它扶起平放在地上(如图2),则灰斗柄AB绕点C转动的角度为.12.如图,在正方形ABCD内作∠EAF=45°,AE交BC于点E,AF交CD于点F,连接EF,过点A作AH⊥EF,垂足为H,将△ADF绕点A顺时针旋转90°得到△ABG.若BE=2,DF=3,则AH的长为.三、解答题(共48分)13.(10分)如图,正方形网格中,△ABC的顶点及点O都在格点上.(1)画出△ABC关于点O中心对称的图形△A′B′C′;(2)画出△ABC绕点O顺时针旋转90°的图形△A″B″C″.14.(12分)下列3×3网格图都是由9个相同的小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形;(2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形.(请将两个小题依次作答在图1、图2中,均只需画出符合条件的一种情形)15.(12分)如图,△BAD是由△BEC在平面内绕点B逆时针旋转60°而得,且AB⊥BC,BE=CE,连接DE.(1)求证:△BDE≌△BCE;(2)判断四边形ABED的形状,并说明理由.16.(14分)在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图1,直接写出∠ABD的大小(用含α的式子表示);(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状,并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.图1图2期中测试(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1.下列图形中,属于中心对称图形的是( )A. B.C.D.2.将一元二次方程x 2-2x -2=0配方后所得的方程是( )A .(x -2)2=2 B .(x -1)2=2 C .(x -1)2=3 D .(x -2)2=33.将抛物线y =x 2向右平移2个单位长度,再向上平移1个单位长度,所得抛物线的函数解析式是 ( )A .y =(x +2)2+1 B .y =(x -2)2+1 C .y =(x +2)2-1 D .y =(x -2)2-14.在平面直角坐标系中,将点(-2,3)关于原点对称的点向左平移2个单位长度得到的点的坐标是( )A .(4,-3)B .(-4,3)C .(0,-3)D .(0,3) 5.用公式法解方程4y 2=12y +3,解为( )A .y =-3±62B .y =3±62C .y =3±232D .y =-3±2326.已知抛物线y =x 2-8x +c 的顶点在x 轴上,则c 的值是( )A .16B .-4C .4D .87.已知关于x 的一元二次方程(k -1)x 2-2x +2=0有两个不相等的实数根,则k 的取值范围值是( )A .k<32B .k ≤32C .k <32且k ≠1D .k ≤32且k ≠18.在同一平面直角坐标系中,函数y =mx +m 和函数y =-mx 2+2x +2(m 是常数,且m ≠0)的图象可能是( )9.如图,在Rt △ABC 中,∠ACB =90°,∠ABC =30°,AC =2,△ABC 绕点C 顺时针旋转得△A 1B 1C ,当A 1落在AB 边上时,连接B 1B ,取BB 1的中点D ,连接A 1D ,则A 1D 的长度是( )A.7 B .2 2 C .3 D .2 310.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc>0;②2a+b=0;③m为任意实数,则a+b>am2+bm;④a-b+c>0;⑤若ax21+bx1=ax22+bx2,且x1≠x2,则x1+x2=2.其中正确的是( ) A.①②③ B.②④ C.②⑤ D.②③⑤二、填空题(每小题3分,共24分)11.方程x2=x的根是.12.如图所示,在下列四组图形中,右边图形与左边图形成中心对称的有.①②③④13.已知方程3x2-4x-2=0的两个根是x1,x2,则1x1+1x2=.14.某楼盘2018年房价为每平方米8 100元,经过两年连续降价后,2020年房价为每平方米7 600元.设该楼盘这两年房价平均降低率为x,根据题意可列方程为.15.已知点P在抛物线y=(x-2)2上,设点P的坐标为(x,y),当0≤x≤3时,y的取值范围是.16.如图,若将图中的抛物线y=x2-2x+c向上平移,使它经过点(2,0),则此时抛物线位于x轴下方的图象对应的x的取值范围是.17.如图,在边长为1的正方形网格中,A(1,7),B(5,5),C(7,5),D(5,1).若线段AB与线段CD存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,则这个旋转中心的坐标为.18.运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线,不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:t 0 1 2 3 4 5 6 7 …h 0 8 14 18 20 20 18 14 …下列结论:①足球距离地面的最大高度为20 m;②足球飞行路线的对称轴是直线t=;③足球被踢出9.5 s2时落地;④足球被踢出7.5 s时,距离地面的高度是11.25 m,其中不正确的结论是.三、解答题(共66分)19.(8分)解方程:(1)2x2+3=7x; (2)(2x+1)2+4(2x+1)+3=0.20.(8分)如图,在平面直角坐标系中,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(-1,3),B(-4,0),C(0,0).(1)画出将△ABC向上平移1个单位长度,再向右平移5个单位长度后得到的△A1B1C1;(2)画出将△ABC绕原点O顺时针方向旋转90°得到的△A2B2O.21.(9分)如图,将矩形ABCD绕点A顺时针旋转得到矩形AEFG,点E在BD上.(1)求证:FD=AB;(2)连接AF,求证:∠DAF=∠EFA.22.(9分)已知关于x的一元二次方程x2-2x+m-1=0有两个实数根x1,x2.(1)求m的取值范围;(2)当x21+x22=6x1x2时,求m的值.23.(10分)某农场要建一个长方形的养鸡场,养鸡场的一边靠墙(墙长25 m),另外三边用木栏围成,木栏长40 m.(1)若养鸡场的面积为200 m2,求养鸡场平行于墙的一边长;(2)养鸡场的面积能达到250 m2吗?如果能,请给出设计方案;如果不能,请说明理由.24.(10分)服装厂批发某种服装,每件成本为65元,规定不低于10件可以批发,其批发价y(元/件)与批发数量x(件)(x为正整数)之间所满足的函数关系如图所示.(1)求y 与x 之间所满足的函数关系式,并写出x 的取值范围;(2)设服装厂所获利润为w(元),若10≤x ≤50(x 为正整数),求批发该种服装多少件时,服装厂获得利润最大?最大利润是多少元?25.(12分)如图,二次函数y =12x 2+bx +c 的图象交x 轴于A ,D 两点并经过点B ,已知点A 的坐标是(2,0),点B的坐标是(8,6).(1)求二次函数的解析式;(2)若抛物线的对称轴上是否存在一个动点P ,使点P 到点B ,点D 的距离之和最短,若存在,求出点P 的坐标;若不存在,请说明理由;(3)该二次函数的对称轴交x 轴于点C ,连接BC ,并延长BC 交抛物线于点E ,连接BD ,DE ,求△BDE 的面积.周测(21.1~21.2)(时间:40分钟 满分:100分)一、选择题(每小题4分,共32分)1.下列关于x 的方程:①ax 2+bx +c =0;②x 2+4x-3=0;③x 2-4+x 5=0;④3x =x 2,其中是一元二次方程的有(A)A .1个B .2个C .3个D .4个 2.方程x 2-x =0的解为(C)A .x =0B .x =1C .x 1=0,x 2=1D .x 1=0,x 2=-1 3.一元二次方程3x 2-4x +1=0的根的情况为(D)A .没有实数根B .只有一个实数根C .有两个相等的实数根D .有两个不相等的实数根4.若1-3是方程x 2-2x +c =0的一个根,则c 的值为(A)A .-2B .43-2C .3- 3D .1+ 35.一元二次方程x 2-6x -6=0配方后可化为(A)A .(x -3)2=15 B .(x -3)2=3 C .(x +3)2=15 D .(x +3)2=36.如果关于x 的一元二次方程kx 2-2k +1x +1=0有两个不相等的实数根,那么k 的取值范围是(D)A .k <12B .k <12且k ≠0C .-12≤k <12D .-12≤k <12且k ≠07.如果关于x 的一元二次方程x 2+3x -7=0的两根分别为α,β,那么α2+4α+β=(A)A .4B .10C .-4D .-108.解方程(x -1)2-5(x -1)+4=0时,我们可以将(x -1)看成一个整体,设x -1=y ,则原方程可化为y 2-5y +4=0,解得y 1=1,y 2=4.当y =1时,即x -1=1,解得x =2;当y =4时,即x -1=4,解得x =5,所以原方程的解为x 1=2,x 2=5.利用这种方法求得方程(2x +5)2-4(2x +5)+3=0的解为(D)A .x 1=1,x 2=3B .x 1=-2,x 2=3C .x 1=-3,x 2=-1D .x 1=-1,x 2=-2 二、填空题(每小题4分,共24分)9.若关于x 的方程(m +2)x |m|+2x -1=0是一元二次方程,则m =2.10.用适当的数填空:x 2-3x +94=(x -32)2;x 2+27x +7=(x 2.11.若关于x 的一元二次方程(p -1)x 2-x +p 2-1=0的一个根为0,则实数p 的值是-1.12.关于x 的一元二次方程x 2+bx +2=0有两个不相等的实数根,写出一个满足条件的实数b 的值:3(答案不唯一,满足b 2>8即可).。