第一章 一元二次方程【真题训练】(解析版)
(常考题)人教版初中数学九年级数学上册第一单元《一元二次方程》测试题(答案解析)

一、选择题1.用配方法转化方程2210xx +-=时,结果正确的是( ) A .2(1)2x += B .2(1)2x -= C .2(2)3x += D .2(1)3x +=2.已知一元二次方程2210x x --=的两个根分别是1x ,2x ,则2112x x x -+的值为( ).A .-1B .0C .2D .3 3.关于x 的一元二次方程()25410a x x ---=有实数根,则a 满足( ). A .5a ≠ B .1a ≥且5a ≠C .1a ≥D .1a <且5a ≠ 4.一元二次方程2610x x +-=配方后可变形为( ) A .()2310x += B .()238x += C .()2310x -=D .()238x -= 5.关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则k 的取值范围是( )A .1k >-B .1k ≥-C .0k ≠D .1k >-且0k ≠ 6.方程()55x x x +=+的根为( )A .15=x ,25x =-B .11x =,25x =-C .0x =D .125x x ==-7.下列一元二次方程中,有两个不相等实数根的是( )A .2104x x -+=B .2390x x ++=C .2250x x -+=D .25130x x -= 8.某商品经过连续两次降价,售价由原来的每件100元降到每件64元,则平均每次降价的百分率为( )A .15%B .40%C .25%D .20%9.为促进消费,重庆市政府开展发放政府补贴消费的“消费券活动”,某超市的月销售额逐步增加;据统计4月份的销售额为200万元,接下来5月,6月的月增长率相同,6月份的销售额为500万元,若设5月、6月每月的增长率为x ,则可列方程为( ) A .()2001500x +=B .()2002001500x ++=C .()22001500+=xD .()20012500+=x10.一元二次方程20x x -=的根是( )A .10x =,21x =B .11x =,21x =-C .10x =,21x =-D .121x x == 11.若关于x 的一元二次方程2(1)210m x x +--=有实数根,则m 的取值范围是( ) A .2m >- B .2m ≥- C .2m >-且1m ≠- D .2m ≥-且1m ≠-12.已知关于x 的一元二次方程()22210x m x m -+=-有实数根,则m 的取值范围是( )A .0m ≠B .14mC .14m <D .14m > 二、填空题13.一元二次方程(x +2)(x ﹣3)=0的解是:_____.14.写出有一个根为1的一元二次方程是______.15.一元二次方程x 2-10x+25=2(x ﹣5)的解为____________.16.一元二次方程()10x x -=的根是________________________.17.“新冠肺炎”防治取得战略性成果.若有一个人患了“新冠肺炎”,经过两轮传染后共有16个人患了“新冠肺炎”,则每轮传染中平均一个人传染了______人.18.若a 是方程210x x ++=的根,则代数式22020a a --的值是________. 19.已知2x =是关于x 的方程220x x m ++=的一个根,则m =_________.20.已知a 、b 是方程2320190x x +-=的两根,则24a a b ++的值为________.三、解答题21.已知关于x 的方程()220x mx m -+=-. (1)求证:不论m 为何值,该方程总有两个不相等的实数根;(2)若方程有一个根是2,求m 的值以及方程的另一个根.22.如图,ABC 中,∠C =90°,AC =6cm ,BC =8cm ,点P 从A 沿AC 边向C 点以1cm/s 的速度移动,在C 点停止,点Q 从C 点开始沿CB 边向点B 以2cm/s 的速度移动,在B 点停止.(1)如果点P ,Q 分别从A 、C 同时出发,经过几秒钟,使28QPC S cm =?(2)如果点P 从点A 先出发2s ,点Q 再从点C 出发,经过几秒钟后24QPC Scm =?(3)如果点P 、Q 分别从A 、C 同时出发,经过几秒钟后PQ =BQ ?23.(1)x 2﹣8x+1=0;(2)2(x ﹣2)2=x 2﹣4.24.在国家的调控下.某市商品房成交价由今年8月份的50000元2/m 下降到10月份的40500元2/m .(1)同8~9两月平均每月降价的百分率是多少?(2)如果房价继续回落,按此降价的百分率,你预测到12月份该市的商品房成交均价是否会跌破30000元/2m ?请说明理由.25.按要求的方法解方程,否则不得分.(1)2450x x -=+(配方法)(2)22730x x -+=(公式法)(3)(1)(2)24x x x ++=+(因式分解法)26.解方程(1)2420x x -+=(2)()255210x x ++= (3)2560x x -+=(4)()3133x x x +=+【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】方程两边都加上一次项系数的一半,利用完全平方公式进行转化,即可得到答案.【详解】解:2210x x +-=2212x x ++=∴2(1)2x +=,故选:A .【点睛】此题考查一元二次方程的配方法,掌握配方法是计算方法是解题的关键.2.D解析:D【分析】分别根据一元二次方程的根的意义和一元二次方程根与系数的关系分别得到21112210,2x x x x --=+=,变形代入求值即可得到答案.【详解】解:由题意得21112210,2x x x x --=+=,即21121x x -=, ∴原式211122123x x x x =-++=+=.故选:D .【点睛】此题主要考查了一元二次方程的解的根与系数的关系,灵活运用根与系数的关系是解答此题的关键.3.B解析:B【分析】由方程有实数根可知根的判别式b 2-4ac≥0,结合二次项的系数非零,可得出关于a 一元一次不等式组,解不等式组即可得出结论.【详解】解:由已知得:()()()25044510a a -≠⎧⎪⎨--⨯-⨯-≥⎪⎩, 解得:a≥1且a≠5.故选:B .【点睛】本题考查了根的判别式,解题的关键是得出关于a 的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,由根的判别式结合二次项系数非零得出不等式组是关键.4.A解析:A【分析】方程常数项移到右边,两边加上一次项系数一半的平方即可得到结果.【详解】解:∵x 2+6x-1=0,∴x 2+6x=1,∴x 2+6x+9=10,∴(x+3)²=10,故选:A .【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.5.D解析:D【分析】根据一元二次方程根的判别式得到关于k 的不等式,然后求解不等式即可.【详解】是一元二次方程,0k ∴≠.有两个不相等的实数根,则Δ0>,2Δ24(1)0k =-⨯-⨯>,解得1k >-.1k ∴>-且0k ≠.【点睛】本题考查一元二次方程ax 2+bx +c =0(a ≠0)根的判别式:(1)当△=b 2﹣4ac >0时,方程有两个不相等的实数根;(2)当△=b 2﹣4ac =0时,方程有有两个相等的实数根;(3)当△=b 2﹣4ac <0时,方程没有实数根.6.B解析:B【分析】根据因式分解法解方程即可;【详解】()55x x x +=+,()()550+-+=x x x ,()()510x x +-=,11x =,25x =-;故答案选B .【点睛】本题主要考查了因式分解法解一元二次方程,准确计算是解题的关键.7.D解析:D【分析】先把各方程化为一般式,再分别计算方程根的判别式,然后根据判别式的意义对各选项进行判断.【详解】A 、()221414104b ac =-=--⨯⨯=,方程有两个相等的两个实数根; B 、2243419270b ac =-=-⨯⨯=-<,方程没有实数根;C 、()2242415160b ac =-=--⨯⨯=-<,方程没有实数根;D 、()224134501690b ac =-=--⨯⨯=>,方程有两个不相等的两个实数根; 故选:D .【点睛】本题考查了根的判别式:一元二次方程20ax bx c ++=(0a ≠)的根与24b ac =-有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根. 8.D解析:D设平均每次降价的百分率为x ,根据该商品的原价及经过两次降价后的价格,即可得出关于x 的一元二次方程,解之即可得出结论.【详解】解:设平均每次降价的百分率为x ,依题意,得:100(1-x )2=64,解得:x 1=0.2=20%,x 2=1.8(不合题意,舍去).故选:D .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 9.C解析:C【分析】根据“4月份的销售额为200万元,接下来5月,6月的月增长率相同,6月份的销售额为500万元”,可以列出相应的一元二次方程,本题得以解决.【详解】解:由题意可得,200(1+x )2=500,故选:C .【点睛】本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的方程,这是一道典型的增长率问题,是中考常考题.10.A解析:A【分析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【详解】解:∵x 2-x=0,∴x (x-1)=0,则x=0或x-1=0,解得:x 1=0,x 2=1,故选:A .【点睛】此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键. 11.D解析:D【分析】根据一元二次方程的定义和判别式的意义得到10m +≠且240b ac =-≥,然后求写出两不等式的公共部分即可.【详解】根据题意得10m +≠且()()224(2)4110b ac m =-=--+⨯-≥, 解得1m ≠-且2m ≥-.故选:D .【点睛】本题考查了根的判别式:一元二次方程20ax bx c ++=(0a ≠)的根与24b ac =-有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.12.B解析:B【分析】由方程有实数根即△=b 2﹣4ac ≥0,从而得出关于m 的不等式,解之可得.【详解】解:根据题意得,△=b 2﹣4ac =[﹣(2m ﹣1)]2﹣4m 2=﹣4m +1≥0, 解得:14m, 故选:B .【点睛】本题主要考查根的判别式,熟练掌握一元二次方程的根与判别式间的关系是解题的关键. 二、填空题13.x1=﹣2x2=3【分析】利用因式分解法把原方程化为x+2=0或x ﹣3=0然后解两个一次方程即可【详解】(x+2)(x ﹣3)=0x+2=0或x ﹣3=0所以x1=﹣2x2=3故答案为x1=﹣2x2=3解析:x 1=﹣2,x 2=3【分析】利用因式分解法把原方程化为x+2=0或x ﹣3=0,然后解两个一次方程即可.【详解】(x +2)(x ﹣3)=0,x +2=0或x ﹣3=0,所以x 1=﹣2,x 2=3.故答案为x 1=﹣2,x 2=3.【点睛】本题考查了解一元二次方程−因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).14.(答案不唯一)【分析】有一个根是1的一元二次方程有无数个只要含有因式x1的一元二次方程都有一个根是1【详解】可以用因式分解法写出原始方程然后化为一般形式即可如化为一般形式为:故答案为:【点睛】本题考 解析:20x x -=(答案不唯一)【分析】有一个根是1的一元二次方程有无数个,只要含有因式x -1的一元二次方程都有一个根是1.【详解】可以用因式分解法写出原始方程,然后化为一般形式即可,如()10x x -=,化为一般形式为:20x x -=故答案为:20x x -=.【点睛】本题考查的是一元二次方程的根,有一个根是1的一元二次方程有无数个,写出一个方程就行.15.x1=5x2=7【分析】移项后分解因式即可得出两个一元一次方程求出方程的解即可;【详解】解:∵(x ﹣5)2﹣2(x ﹣5)=0∴(x ﹣5)(x ﹣7)=0则x ﹣5=0或x ﹣7=0解得x1=5x2=7故答解析:x 1=5,x 2=7【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可;【详解】解:∵(x ﹣5)2﹣2(x ﹣5)=0,∴(x ﹣5)(x ﹣7)=0,则x ﹣5=0或x ﹣7=0,解得x 1=5,x 2=7,故答案为:x 1=5,x 2=7.【点睛】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键. 16.【分析】利用因式分解法把原方程转化为x=0或x-1=0然后解两个一次方程即可;【详解】∵∴x=0或x-1=0解得故答案为:【点睛】本题考查了一元二次方程的解法先把方程的右边化为0再把左边通过因式分解解析:120,1x x ==【分析】利用因式分解法把原方程转化为x=0或x-1=0,然后解两个一次方程即可;【详解】∵()10x x -= ,∴ x=0或x-1=0,解得1x =0,21x = ,故答案为:1x =0,21x =【点睛】本题考查了一元二次方程的解法,先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,求解即可;17.3【分析】设每轮传染中平均一个人传染了人则第一轮共有人患病第二轮后患病人数有人从而列方程再解方程可得答案【详解】解:设每轮传染中平均一个人传染了人则:或或经检验:不符合题意舍去取答:每轮传染中平均一 解析:3【分析】设每轮传染中平均一个人传染了x 人,则第一轮共有()1x +人患病,第二轮后患病人数有()21x +人,从而列方程,再解方程可得答案.【详解】解:设每轮传染中平均一个人传染了x 人,则:()1+116,x x x ++=()2116,x ∴+=14x ∴+=或14,x +=- 3x ∴=或5,x =-经检验:5x =-不符合题意,舍去,取 3.x =答:每轮传染中平均一个人传染了3人.故答案为:3.【点睛】本题考查的是一元二次方程的应用,掌握一元二次方程的应用中的传播问题是解题的关键.18.2021【分析】把x=a 代入已知方程并求得a2+a=-1然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a 代入x2+x+1=0得a2+a+1=0解得a2+a=-1所以2020-a2-a=2解析:2021【分析】把x=a 代入已知方程,并求得a 2+a=-1,然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a 代入x 2+x+1=0,得a 2+a+1=0,解得a 2+a=-1,所以2020-a 2-a=2020+1=2021.故答案是:2021.【点睛】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.19.-8【分析】利用方程的根的性质把x=2代入方程得到关于m 的方程解这个方程即可【详解】已知是关于x 的方程的一个根故答案为:-8【点睛】本题考查一元二次方程的根问题掌握方程的根的性质会用方程的解代入构造 解析:-8【分析】利用方程的根的性质把x=2代入方程得到关于m 的方程,解这个方程即可【详解】已知2x =是关于x 的方程220x x m ++=的一个根,22220m +⨯+=8m =-故答案为:-8【点睛】本题考查一元二次方程的根问题,掌握方程的根的性质,会用方程的解代入构造参数方程是解题关键20.2016【分析】将x=a 代入可得然后由根与系数之间的关系得到整理即可得到答案【详解】解:由题意可知【点睛】本题考查了一元二次方程的解以及根与系数之间的关系熟练掌握基础知识是解题的关键解析:2016【分析】将x=a 代入2320190x x +-=,可得2320190a a +-=,然后由根与系数之间的关系得到3a b +=-,整理即可得到答案.【详解】解:由题意可知,2320190a a +-=,3a b +=-,232019a a ∴+=,24a a b ∴++23()a a a b =+++20193=-2016=.【点睛】本题考查了一元二次方程的解以及根与系数之间的关系,熟练掌握基础知识是解题的关键.三、解答题21.(1)见解析;(2)m 的值为2,另一个根为0【分析】(1)先计算判别式的值得到△=(m-2)2+4,然后根据判别式的意义得到结论;(2)设方程的另一个为t ,利用根与系数的关系得到2+t=m ,2t=m-2,然后解方程组即可.【详解】(1)证明:∵1a =,b m =-,2c m =-∴()()()222244124824-=--⨯⨯-=-+=-+b ac m m m m m ∵()220m -≥,∴()2240m -+>. ∴无论m 为何值,该方程总有两个不相等的实数根.(2)根据题意:()22220-+-=m m ,∴2m = 则220x x -=,∴10x =,22x =. ∴m 的值为2,另一个根为0.【点睛】 本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=-b a ,x 1x 2=c a,也考查了判别式的意义.22.(1)2或4;(2)2;(3)10-+【分析】本题可设P 出发x 秒后,QPC S 符合已知条件:在(1)中,=AP xcm ,()=6PC x cm -,2QC xcm =,根据题意列方程求解即可; 在(2)中,=AP xcm ,()=6PC x cm -,()22QC x cm =-,进而可列出方程,求出答案;在(3)中,()=6PC x cm -,2QC xcm =,()=82BQ x cm -,利用勾股定理和PQ BQ =列出方程,即可求出答案.【详解】(1)P 、Q 同时出发,经过x 秒钟,28QPC Scm =, 由题意得:()16282x x -⋅= ∴2680x x -+=,解得:12x =,24x =.经2秒点P 到离A 点1×2=2cm 处,点Q 离C 点2×2=4cm 处,经4秒点P 到离A 点1×4=4cm 处,点Q 到离C 点2×4=8cm 处,经验证,它们都符合要求.答:P 、Q 同时出发,经过2秒或4秒,28QPC Scm =. (2)设P 出发t 秒时24QPC S cm =,则Q 运动的时间为()2t -秒,由题意得:()()162242t t -⋅-=, ∴28160t t -+=,解得:124t t ==.因此经4秒点P 离A 点1×4=4cm ,点Q 离C 点2×(4﹣2)=4cm ,符合题意. 答:P 先出发2秒,Q 再从C 出发,经过2秒后24QPC S cm =.(3)设经过x 秒钟后PQ =BQ ,则()=6PC x cm -,2QC xcm =,()=82BQ x cm -, ()()()2226282x x x -+=-,解得:110x =-+210x =--答:经过10-+PQ =BQ .【点睛】此题考查了一元二次方程的实际运用,解题的关键是弄清图形与实际问题的关系,另外,还要注意解的合理性,从而确定取舍.23.(1)x 1=x 2=42)x 1=2,x 2=6.【分析】(1)先配方、然后运用直接开平方求解即可;(2)先将等式右边因式分解,然后移项,最后用因式分解法求解即可.【详解】解:(1)x 2﹣8x+1=0,x 2﹣8x =﹣1,x 2﹣8x+16=﹣1+16,(x ﹣4)2=15,∴x ﹣4=∴x1=x 2=4(2)∵2(x ﹣2)2=x 2﹣4,∴2(x ﹣2)2﹣(x+2)(x ﹣2)=0,则(x ﹣2)(x ﹣6)=0,∴x ﹣2=0或x ﹣6=0.解得x 1=2,x 2=6.【点睛】本题主要考查了一元二次方程的解法,掌握配方法、直接开平方法和因式分解法是解答本题的关键.24.(1)8、9两月平均每月降价的百分率是10%;(2)12月份该市的商品房成交均价不会跌破30000元2/m ,见解析【分析】(1)设8、9两月平均每月降价的百分率是x ,那么9月份的房价为50000(1-x ),10月份的房价为50000(1-x )2,然后根据10月份的40500元/m 2即可列出方程解决问题; (2)根据(1)的结果可以计算出今年12月份商品房成交均价,然后和30000元/m 2进行比较即可作出判断.【详解】解:(1)设这两月平均每月降价的百分率是x ,根据题意得:()250000140500x -=解得:1210% 1.9x x ==,(不合题意,舍去)答:8、9两月平均每月降价的百分率是10%(2)不会跌破30000元2/m . ()22405001405000.93280530000x -=⨯=>∴12月份该市的商品房成交均价不会跌破30000元2/m【点睛】此题考查了一元二次方程的应用,和实际生活结合比较紧密,正确理解题意,找到关键的数量关系,然后列出方程是解题的关键.25.(1)1215x x ==-,;(2)12132x x ==,;(3)1221x x ,=-=. 【分析】(1)利用配方法解方程即可;(2)利用公式法解方程即可;(3)方程整理后利用因式分解法解方程即可.【详解】(1)2450x x -=+,移项得:245x x +=,配方得:24454x x ++=+,即()229x +=,直接开平方得:23x +=±,∴1215x x ==-,;(2)22730x x -+=,∵2a =,7b =-,3c =, ()2247423250b ac =-=--⨯⨯=>,∴754x ±==, ∴12132x x ==,; (3)(1)(2)24x x x ++=+, 整理得:23224x x x ++=+,即220x x +-=,因式分解得:()()210x x +-=,∴20x +=或10x -=,∴1221x x ,=-=.【点睛】本题考查了解一元二次方程,解题的关键是会用配方法、公式法、因式分解法解方程.26.(1)1222x x ==2)121x x ==-;(3)1232x x ==,;(4)1211x x =-=,【分析】(1)直接利用配方法解方程得出答案即可;(2)方程整理后,利用利用配方法解方程得出答案即可;(3)利用分解因式法解方程即可;(4)方程整理后,利用提取公因式法分解因式进而解方程即可.【详解】(1)2420x x -+=,移项得:242x x -=-,配方得:24424x x -+=-+,即2(2)2x -=,开方得:2x -=,解得:1222x x ==(2)()255210x x ++=, 整理得:2210x x ++=,即2(1)0x +=,∴121x x ==-;(3)2560x x -+=,因式分解得:()()320x x --=,∴30x -=,20x -=,∴1232x x ==,;(4)()3133x x x +=+,整理得:()()110x x x +-+=,因式分解得:()()110x x +-=,∴10x +=,10x -=, ∴1211x x =-=,. 【点睛】本题主要考查了解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.。
人教版初中数学九年级数学上册第一单元《一元二次方程》测试题(含答案解析)(1)

一、选择题1.方程()224(2)0m x x m y -+--=是关于x ,y 的二元一次方程,则m 的值为( ) A .2± B .2-C .2D .4 2.用配方法转化方程2210xx +-=时,结果正确的是( ) A .2(1)2x += B .2(1)2x -= C .2(2)3x += D .2(1)3x += 3.方程2240x x --=经过配方后,其结果正确的是( )A .()215x -=B .()217x -=C .()214x -=D .()215x += 4.一个大正方形内放入两个同样大小的小正方形纸片,按如图1放置,两个小正方形纸片的重叠部分面积为4;按如图2放置(其中一小张正方形居大正方形的正中),大正方形中没有被小正方形覆盖的部分(阴影部分)的面积为44,则把两张小正方形按如图3放置时,两个小正方形重叠部分的面积为( )A .10B .12C .14D .165.若x=0是关于x 的一元二次方程(a+2)x 2a-2x+a 2+a-6=0的一个根,则a 的值是( )A .a ≠2B .a=2C .a=-3D .a=-3或a=2 6.下列一元二次方程中,没有实数根的是( ) A .(2)(2)0x x -+= B .220x -=C .2(1)0x -=D .2(1)20x ++= 7.设m 、n 是一元二次方程2430x x -+=的两个根,则23m m n -+=( ) A .1- B .1 C .17- D .178.为促进消费,重庆市政府开展发放政府补贴消费的“消费券活动”,某超市的月销售额逐步增加;据统计4月份的销售额为200万元,接下来5月,6月的月增长率相同,6月份的销售额为500万元,若设5月、6月每月的增长率为x ,则可列方程为( ) A .()2001500x +=B .()2002001500x ++=C .()22001500+=xD .()20012500+=x9.关于x 的方程2mx 0x +=的一个根是1-,则m 的值为( )A .1B .0C .1-D .1或010.已知关于x 的一元二次方程()22210x m x m -+=-有实数根,则m 的取值范围是( )A .0m ≠B .14mC .14m <D .14m >11.已知m 是方程2210x x --=的一个根,则代数式2242020m m -+的值为( ) A .2022 B .2021 C .2020 D .201912.实数,m n 分别满足方程2199910m m ++=和219990n n ++=,且1mn ≠,求代数式41mn m n++的值( ) A .5- B .5 C .10319- D .10319二、填空题13.设a ,b 是方程220190x x +-=的两个实数根,则11a b+=_____. 14.已知a 为方程210x x -+=的一个根,则代数式2233a a -+的值为_____15.已知函数2y mx m m =++为正比例函数,则常数m 的值为______.16.参加足球联赛的每两队之间都进行两场比赛,共要比赛90场,共有________个队参加比赛.17.已知x 1和x 2是方程2x 2-5x+1=0的两个根,则1212x x x x +的值为_____. 18.已知a 、b 、c 满足227a b +=,221b c -=-,2617c a -=-,则a b c ++=_______.19.已知关于x 的方程28m 0x x ++=有一根为2-,则方程的另一根为______ 20.已知关于x 的方程x 2﹣px +q =0的两根为﹣3和﹣1,则p =_____,q =_____.三、解答题21.已知关于x 的方程()2222x kx x k +=--,当k 取何值时,此方程(1)有两个不相等的实数根;(2)没有实数根.22.按要求的方法解方程,否则不得分.(1)2450x x -=+(配方法)(2)22730x x -+=(公式法)(3)(1)(2)24x x x ++=+(因式分解法)23.阿里巴巴电商扶贫对某贫困地区一种特色农产品进行网上销售,按原价每件200元出售,一个月可卖出100件,通过市场调查发现,售价每件每降低1元,月销售件数就增加2件.(1)已知该农产品的成本是每件100元,在保持月利润不变的情况下,尽快销售完毕,则售价应定为多少元;(2)小红发现在附近线下超市也有该农产品销售,并且标价为每件200元,买五送一,在(1)的条件下,小红想要用最优惠的价格购买38件该农产品,应选择在线上购买还是线下超市购买?24.某地区2018年投入教育经费2000万元,2020年投入教育经费2420万元(1)求2018年至2020年该地区投入教育经费的年平均增长率;(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的增长情况,该地区到2022年需投入教育经费2900万元,如果按(1)中教育经费投入的增长率,到2022年该地区投入的教育经费是否能达到2900万元?请说明理由.25.解方程:(2)4x x x +=-26.把一个足球垂直水平地面向上踢,时间为t (秒)时该足球距离地面的高度h (米)适用公式2205h t t =-.(1)经过多少秒后足球回到地面,(2)经过多少秒时足球距离地面的高度为10米?(3)小明同学说:“足球高度不可能达到21米!”你认为他说得对吗?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】含有两个未知数,并且含有未知数的项的次数都是1的整式方程是二元一次方程,根据定义解答.【详解】∵()224(2)0m x x m y -+--=是关于x ,y 的二元一次方程,∴240,20m m -=-≠,∴m=-2,故选:B .【点睛】此题考查二元一次方程的定义,熟记定义是解题的关键. 2.A解析:A【分析】方程两边都加上一次项系数的一半,利用完全平方公式进行转化,即可得到答案.【详解】解:2210x x +-=2212x x ++=∴2(1)2x +=,故选:A .【点睛】此题考查一元二次方程的配方法,掌握配方法是计算方法是解题的关键.3.A解析:A【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【详解】解:∵x 2﹣2x ﹣4=0,∴x 2﹣2x =4,∴x 2﹣2x +1=4+1,∴(x ﹣1)2=5.故选:A .【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数. 4.B解析:B【分析】设大正方形的边长为 a ,小正方形的边长为 b ,利用图1得到一个 a 与 b 关系式,再利用图2得到一个 a 与 b 关系式,即可求出 a 和 b ,然后再求图3阴影面积即可.【详解】图1中重叠部分的为正方形且其面积为4,∴重叠部分的边长为2,设大正方形边长为a ,小正方形的边长为b ,∴a -b +2=b ,如图2,阴影部分面积=a 2-2b 2+(b -2a b -)2=44,解得:b =6,∴a =10, 如图3,两个小正方形重叠部分的面积=()2b b a ⨯-=12.故答案为:B .【点睛】此题考查的是代数式的运算,正方形的性质,解一元二次方程,找到每个图中的等量关系式是解决此题的关键.5.B解析:B【分析】将x=0代入方程中,可得关于a 的一元二次方程方程,然后解方程即可,注意a≥2这一隐含条件.【详解】解:将x=0代入(a+2)x 2- 2+a-6=0中,得: a 2+a-6=0,解得:a 1=﹣3,a 2=2,∵a+2≠0且a ﹣2≥0,即a≥2,∴a=2,故选:B .【点睛】本题考查一元二次方程方程的解、解一元二次方程、二次根式有意义的条件,理解方程的解的意义,熟练掌握一元二次方程的解法是解答的关键,注意隐含条件a≥0.6.D解析:D【分析】分别利用因式分解法和直接开平方法解一元二次方程、一元二次方程的根的判别式即可得.【详解】A 、由因式分解法得:122,2x x ==-,此项不符题意;B 、由直接开平方法得:120x x ==,此项不符题意;C 、由直接开平方法得:121x x ==,此项不符题意;D 、方程2(1)20x ++=可变形为2230x x ++=,此方程的根的判别式2241380∆=-⨯⨯=-<,则此方程没有实数根,此项符合题意; 故选:D .【点睛】本题考查了解一元二次方程,熟练掌握各解法是解题关键.7.B解析:B【分析】根据一元二次方程的根的定义、根与系数的关系即可得.【详解】由一元二次方程的根的定义得:2430m m -+=,即243m m -=-, 由一元二次方程的根与系数的关系得:441m n -+=-=, 则2234m m n m m m n -+=-++, ()()24m m m n =-++,34=-+,1=,故选:B .【点睛】本题考查了一元二次方程的根的定义、根与系数的关系,熟练掌握一元二次方程的根与系数的关系是解题关键.8.C解析:C【分析】根据“4月份的销售额为200万元,接下来5月,6月的月增长率相同,6月份的销售额为500万元”,可以列出相应的一元二次方程,本题得以解决.【详解】解:由题意可得,200(1+x)2=500,故选:C.【点睛】本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的方程,这是一道典型的增长率问题,是中考常考题.9.A解析:A【分析】由关于x的方程x2+mx=0的一个根为-1,得出将x=-1,代入方程x2+mx=0求出m即可.【详解】解:∵-1是方程x2+mx=0的根,∴1-m=0,∴m=1,故答案为:A.【点睛】此题主要考查了一元二次方程的解,由方程的根为-1,代入方程是解决问题的关键.10.B解析:B【分析】由方程有实数根即△=b2﹣4ac≥0,从而得出关于m的不等式,解之可得.【详解】解:根据题意得,△=b2﹣4ac=[﹣(2m﹣1)]2﹣4m2=﹣4m+1≥0,解得:14 m,故选:B.【点睛】本题主要考查根的判别式,熟练掌握一元二次方程的根与判别式间的关系是解题的关键.11.A解析:A【分析】把x m =代入方程2210x x --=求出221m m -=,把2242020m m -+化成()2222020m m -+,再整体代入求出即可.【详解】∵把x m =代入方程2210x x --=得:2210m m --=,∴221m m -=,∴()222420202220202120202022m m m m -+=-+=⨯+=,故选:A .【点睛】本题考查了一元二次方程的解,采用了整体代入的方法.注意:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解. 12.A解析:A【分析】由219990n n ++=可得211199910n n⋅+⋅+=,进而可得1,m n 是方程2199910x x ++=的两个根,然后根据一元二次方程的根与系数的关系可求解.【详解】 解:由219990n n ++=可得211199910n n ⋅+⋅+=, ∴1,m n是方程2199910x x ++=的两个根, ∴19911,1919m m n n +=-⋅=, ∴4119914451919mn m m m n n n ++=+⋅+=-+⨯=-; 故选A .【点睛】本题主要考查一元二次方程根与系数的关系,熟练掌握一元二次方程根与系数的关系是解题的关键.二、填空题13.【分析】根据根与系数关系即可得出a+b 和ab 的值再对代数式变形整体代入即可【详解】解:∵ab 是方程的两个实数根∴∴故答案为:【点睛】本题考查根与系数关系熟记根与系数关系的公式是解题关键 解析:22019【分析】根据根与系数关系即可得出a+b 和ab 的值,再对代数式11a b+变形整体代入即可. 【详解】解:∵a ,b 是方程2220190+-=x x 的两个实数根,∴2a b +=-,2019ab =-, ∴112220192019a b a b ab +-+===-. 故答案为:22019. 【点睛】 本题考查根与系数关系.熟记根与系数关系的公式是解题关键.14.【分析】把代入已知方程求得然后将其整体代入所求的代数式求值【详解】由题意得:则所以故答案为:【点睛】本题考查了一元二次方程的解的定义解题时注意整体代入数学思想的应用解析:5【分析】把x a =代入已知方程,求得21a a =-,然后将其整体代入所求的代数式求值.【详解】由题意,得:210a a -+=,则21a a =-,所以,()2233231323335a a a a a a -+=--+=-++=. 故答案为:5.【点睛】本题考查了一元二次方程的解的定义.解题时,注意“整体代入”数学思想的应用. 15.-1【分析】根据正比例函数的概念可直接进行列式求解【详解】解:∵函数为正比例函数∴且解得:;故答案为-1【点睛】本题主要考查正比例函数的概念及一元二次方程的解法熟练掌握正比例函数的概念及一元二次方程 解析:-1【分析】根据正比例函数的概念可直接进行列式求解.【详解】解:∵函数2y mx m m =++为正比例函数,∴20m m +=,且0m ≠,解得:1m =-;故答案为-1.【点睛】本题主要考查正比例函数的概念及一元二次方程的解法,熟练掌握正比例函数的概念及一元二次方程的解法是解题的关键.16.10【分析】设共有x 个队参加比赛根据每两队之间都进行两场比赛结合共比了90场即可得出关于x 的一元二次方程解之即可得出结论【详解】解:设共有x 个队参加比赛根据题意得:2×x (x-1)=90整理得:x2解析:10.【分析】设共有x 个队参加比赛,根据每两队之间都进行两场比赛结合共比了90场即可得出关于x 的一元二次方程,解之即可得出结论.【详解】解:设共有x 个队参加比赛,根据题意得:2×12x (x-1)=90, 整理得:x 2-x-90=0,解得:x=10或x=-9(舍去).故答案为:10.【点睛】本题考查了一元二次方程的应用,根据每两队之间都进行两场比赛结合共比了90场列出关于x 的一元二次方程是解题的关键.17.5【分析】直接根据根与系数的关系求出再代入求值即可【详解】解:∵x1x2是方程2x2-5x+1=0的两个根∴x1+x2=-∴故答案为:5【点睛】本题考查了根与系数的关系:若x1x2是一元二次方程ax解析:5【分析】直接根据根与系数的关系,求出12x x +,12x x 再代入求值即可.【详解】解:∵x 1,x 2是方程2x 2-5x+1=0的两个根,∴x 1+x 2=--55-=22,121=2x x . ∴121252==512x x x x + 故答案为:5.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=b a -,x 1x 2=c a. 18.3【分析】题中三个等式左右两边分别相加后再移项可以通过配方法得到三个平方数的和为0然后根据非负数的性质可以得到abc 的值从而求得a+b+c 的值【详解】解:题中三个等式左右两边分别相加可得:即∴∴a=解析:3【分析】题中三个等式左右两边分别相加后再移项,可以通过配方法得到三个平方数的和为0.然后根据非负数的性质可以得到a 、b 、c 的值,从而求得a+b+c 的值.【详解】解:题中三个等式左右两边分别相加可得:2222267117a b b c c a ++-+-=--,即222226110a b b c c a ++-+-+=,∴()()()2223110a b c -+++-=, ∴a=3,b=-1,c=1,∴a+b+c=3-1+1=3,故答案为3.【点睛】本题考查配方法的应用,熟练掌握配方法的方法和步骤并灵活运用是解题关键. 19.【分析】根据一元二次方程根与系数的关系直接求解即可【详解】因为已知关于的方程有一个根是-2由二次方程根与系数的关系可知:即有:解得:故答案为:【点睛】本题主要考查一元二次方程根与系数的关系如果方程的 解析:6-【分析】根据一元二次方程根与系数的关系直接求解即可.【详解】因为已知关于x 的方程 280x x m ++=有一个根是-2,由二次方程根与系数的关系可知:128x x +=-,即有:228x -+=-解得:26x =-.故答案为:6-.【点睛】本题主要考查一元二次方程根与系数的关系,如果方程20x px q ++=的两个根是 1x ,2x ,那么12x x p +=-, 12·x x q =,熟练掌握一元二次方程根与系数的关系是解题的关键.20.-43【分析】由根与系数的关系可得出关于p 或q 的一元一次方程解之即可得出结论【详解】解:根据题意得﹣3+(﹣1)=p ﹣3×(﹣1)=q 所以p =﹣4q =3故答案为﹣43【点睛】本题考查了根与系数的关系解析:-4 3【分析】由根与系数的关系可得出关于p 或q 的一元一次方程,解之即可得出结论.【详解】解:根据题意得﹣3+(﹣1)=p ,﹣3×(﹣1)=q ,所以p =﹣4,q =3.故答案为﹣4,3.【点睛】本题考查了根与系数的关系,根据根与系数的关系找出-3+(-1)=-p,(-3)⨯(-1)=q 是解题的关键.三、解答题21.(1)54k >; (2)54k <. 【分析】先化方程为一般形式,它是关于x 一元二次方程,据一元二次方程判别式和根的情况列出关于k 的不等式求解.【详解】方程化为:22(21)(2)0x k x k +-+-=, ∴∆22(21)4(2)1215k k k =--⨯-=-.(1)当12150k ->,54k >时,方程有两个不相等的实数根; (2)当12150k -<,54k <时,方程没有实数根. 【点睛】此题考查一元二次方程的判别式,其关键是撑握判别式与一元二次方程根情况的关系,并据此和题意列出不等式.22.(1)1215x x ==-,;(2)12132x x ==,;(3)1221x x ,=-=. 【分析】(1)利用配方法解方程即可;(2)利用公式法解方程即可;(3)方程整理后利用因式分解法解方程即可.【详解】(1)2450x x -=+,移项得:245x x +=,配方得:24454x x ++=+,即()229x +=,直接开平方得:23x +=±,∴1215x x ==-,;(2)22730x x -+=,∵2a =,7b =-,3c =,()2247423250b ac =-=--⨯⨯=>,∴775224x ±±==⨯, ∴12132x x ==,; (3)(1)(2)24x x x ++=+, 整理得:23224x x x ++=+,即220x x +-=,因式分解得:()()210x x +-=,∴20x +=或10x -=,∴1221x x ,=-=.【点睛】本题考查了解一元二次方程,解题的关键是会用配方法、公式法、因式分解法解方程. 23.(1)售价应定为150元;(2)选择在线上购买更优惠【分析】(1)设售价应定为x 元,则每件的利润为()100-x 元,月销售量为(5002)-x 件,列出方程计算即可;(2)分别算出线上购买和线下购买的费用,再进行比较即可;【详解】解:(1)当售价为200元时月利润为()2001001001000-⨯=(元).设售价应定为x 元,则每件的利润为()100-x 元,月销售量为2001002(5002)1x x -+⨯=-件, 依题意,得:()()100500210000x x --=,整理,得:2350300000--=x x ,解得:1150x =,2200x =(舍去).答:售价应定为150元.(2)线上购买所需费用为150385700⨯=(元);∵线下购买,买五送一,∴线下超市购买只需付32件的费用,∴线下购买所需费用为200326400⨯=(元).57006400<.答:选择在线上购买更优惠.【点睛】本题主要考查了一元二次方程的应用,准确列方程计算是解题的关键.24.(1)10%;(2)可以,理由见解析【分析】(1)设年平均增长率是x ,列式()2200012420x +=,求出结果;(2)利用(1)中算出的增长率算出2022年的教育经费,看是否超过2900万元.【详解】解:(1)设年平均增长率是x , ()2200012420x +=1 1.1x +=±10.1x =,2 2.1x =-(舍去),答:年平均增长率是10%;(2)2022年的教育经费是()2242010.12928.2⨯+=(万元), 2928.22900>,答:教育经费可以达到2900万元.【点睛】本题考查一元二次方程的应用,解题的关键是掌握增长率问题的列式方法.25.1241x x =-=,【分析】方程整理后,利用因式分解法求解即可.【详解】解:(2)4x x x +=-,方程整理得:2340x x +-=,因式分解得:()()410x x +-=,则40x +=或10x -=,∴1241x x =-=,.【点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是利用因式分解求出方程的解的方法,这种方法简便易用,是解一元二次方程最常用的方法.26.(1)4;(2)(2+秒或(2-秒;(3)小明说得对,理由见解析【分析】(1)求出0h =时t 的值即可得多少秒后足球回到地面;(2)根据高度为10米列方程可得;(3)列方程由根的判别式可作出判断.【详解】解:(1)当0h =时,22050t t -=,解得:0t =或4t =,答:经4秒后足球回到地面;(2)令220510h t t =-=,解得:2t =+2t =即经过(2+秒或(2-秒时足球距离地面的高度为10米. (3)小明说得对,理由如下:假设足球高度能够达到21米,即21h =,将21h =代入公式得:221205t t =-由判别式计算可知:2(20)4521200=--⨯⨯=-<△, 方程无解,假设不成立,所以足球确实无法到达21米的高度.【点睛】本题主要考查一元二次方程的应用,解题的关键是熟练掌握一元二次方程的解法.。
新人教版初中数学九年级数学上册第一单元《一元二次方程》测试题(含答案解析)

一、选择题1.用配方法转化方程2210x x +-=时,结果正确的是( )A .2(1)2x += B .2(1)2x -= C .2(2)3x += D .2(1)3x +=2.已知4是关于x 的方程()2120x m x m -++=的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC 的两条边的边长,则△ABC 的周长为( ) A .7B .7或10C .10或11D .113.若x=0是关于x 的一元二次方程(a+2)x 2- a-2x+a2+a-6=0的一个根,则a 的值是( ) A .a ≠2 B .a=2 C .a=-3 D .a=-3或a=2 4.方程(2)2x x x -=-的解是( )A .2B .2-,1C .1-D .2,1-5.日历中含有丰富的数学知识,如在图1所示的日历中用阴影圈出9个数,这9个数的大小之间存在着某种规律.小慧在2020年某月的日历中也按图1所示方式圈出9个数(如图2),发现这9个数中最大的数与最小的数乘积是297,则这9个数中,中间的数e 是( ) 日一二 三 四 五 六1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25262728293031abcd efghi图1图2A .17B .18C .19D .206.某中学举办篮球友谊赛,参赛的每两个队之间只比赛1场,共比赛10场,则参加此次比赛的球队数是( )A .4B .5C .6D .77.为促进消费,重庆市政府开展发放政府补贴消费的“消费券活动”,某超市的月销售额逐步增加;据统计4月份的销售额为200万元,接下来5月,6月的月增长率相同,6月份的销售额为500万元,若设5月、6月每月的增长率为x ,则可列方程为( ) A .()2001500x += B .()2002001500x ++= C .()22001500+=xD .()20012500+=x8.已知关于x 的一元二次方程()22210x m x m -+=-有实数根,则m 的取值范围是( )A .0m ≠B .14mC .14m <D .14m >9.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( ) A .290x +=B .24410x x -+=C .210x x ++=D .210x x +-= 10.已知m 是方程2210x x --=的一个根,则代数式2242020m m -+的值为( ) A .2022 B .2021 C .2020D .2019 11.一元二次方程(x ﹣3)2﹣4=0的解是( )A .x =5B .x =1C .x 1=5,x 2=﹣5D .x 1=1,x 2=512.如图,BD 为矩形ABCD 的对角线,将△BCD 沿BD 翻折得到BC D '△,BC '与边AD 交于点E .若AB =x 1,BC =2x 2,DE =3,其中x 1、x 2是关于x 的方程x 2﹣4x+m =0的两个实根,则m 的值是( )A .165B .125C .3D .2二、填空题13.把方程2230x x --=化为2()x h k +=的形式来求解的方法我们叫配方法,其中h ,k 为常数,那么本题中h k +的值是_________.14.某小区2019年的绿化面积为3000m 2,计划2021年的绿化面积为4320m 2,如果每年绿化面积的增长率相同,那么这个增长率是_________.15.已知 12,x x 是一元二次方程()23112x -=的两个解,则12x x +=_______. 16.若m 是方程210x x +-=的根,则2222018m m ++的值为__________ 17.一件商品原价300元,连续两次降价后,现售价是243元,若每次降价的百分率相同,那么这个百分率为______.18.等腰三角形ABC 中,8BC =,AB 、AC 的长是关于x 的方程2100x x m -+=的两根,则m 的值是___.19.若a 是方程210x x ++=的根,则代数式22020a a --的值是________. 20.已知关于x 的方程x 2﹣px +q =0的两根为﹣3和﹣1,则p =_____,q =_____.三、解答题21.商店销售某种商品,每件成本为30元.经市场调研,售价为40元时,可销售200件;售价每增加2元,销售量将减少20件.如果这种商品全部销售完,该商店可盈利2250元,那么该商品每件售价多少元? 22.解方程:2410y y --=.23.已知:关于x 的一元二次方程()232220-+++=tx t x t (0t >).(1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为1x ,2x (其中12x x <).若y 是关于t 的函数,且221=⋅+y t x x ,求这个函数的解析式.24.用适当的方法解一元二次方程: (1)()229x -=; (2)2230x x +-=. 25.解方程(1)()221250x --=(2)()22132x x y x x y ⎧-=+⎪⎨--=⎪⎩26.把一个足球垂直水平地面向上踢,时间为t (秒)时该足球距离地面的高度h (米)适用公式2205h t t =-.(1)经过多少秒后足球回到地面,(2)经过多少秒时足球距离地面的高度为10米?(3)小明同学说:“足球高度不可能达到21米!”你认为他说得对吗?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】方程两边都加上一次项系数的一半,利用完全平方公式进行转化,即可得到答案. 【详解】 解:2210xx +-=2212++=x x∴2x+=,(1)2故选:A.【点睛】此题考查一元二次方程的配方法,掌握配方法是计算方法是解题的关键.2.C解析:C【分析】把x=4代入已知方程求得m的值;然后通过解方程求得该方程的两根,即等腰△ABC的两条边长,由三角形三边关系和三角形的周长公式进行解答即可.【详解】解:把x=4代入方程得16-4(m+1)+2m=0,解得m=6,则原方程为x2-7x+12=0,解得x1=3,x2=4,因为这个方程的两个根恰好是等腰△ABC的两条边长,①当△ABC的腰为4,底边为3时,则△ABC的周长为4+4+3=11;②当△ABC的腰为3,底边为4时,则△ABC的周长为3+3+4=10.综上所述,该△ABC的周长为10或11.故选C.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.也考查了三角形三边的关系.3.B解析:B【分析】将x=0代入方程中,可得关于a的一元二次方程方程,然后解方程即可,注意a≥2这一隐含条件.【详解】解:将x=0代入(a+2)x2- 2+a-6=0中,得: a2+a-6=0,解得:a1=﹣3,a2=2,∵a+2≠0且a﹣2≥0,即a≥2,∴a=2,故选:B.【点睛】本题考查一元二次方程方程的解、解一元二次方程、二次根式有意义的条件,理解方程的解的意义,熟练掌握一元二次方程的解法是解答的关键,注意隐含条件a≥0.4.D解析:D 【分析】先移项得到x (2﹣x )+(2﹣x )=0,然后利用因式分解法解方程. 【详解】解:x (2﹣x )+(2﹣x )=0, (2﹣x )(x +1)=0, 2﹣x =0或x +1=0, 所以x 1=2,x 2=﹣1. 故选:D . 【点睛】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).5.C解析:C 【分析】根据日历的特点得到8i e =+,8a e =-,列出一元二次方程解出e 的值. 【详解】解:根据日历的特点,同一列上下两个数相差7,前后两个数相差1, 则7h e =+,18i h e =+=+,7b e =-,18a b e =-=-, ∵最大的数与最小的数乘积是297,∴()()88297ai e e =-+=,解得19e =±,取正数,19e =. 故选:C . 【点睛】本题考查一元二次方程的应用,解题的关键是根据题意列出方程进行求解.6.B解析:B 【分析】根据球赛问题模型列出方程即可求解. 【详解】解:设参加此次比赛的球队数为x 队,根据题意得:12x (x-1)=10, 化简,得x 2-x-20=0, 解得x 1=5,x 2=-4(舍去),∴参加此次比赛的球队数是5队. 故选:B . 【点睛】本题考查了一元二次方程的应用,解决本题的关键是掌握一元二次方程应用问题中的球赛问题.7.C解析:C 【分析】根据“4月份的销售额为200万元,接下来5月,6月的月增长率相同,6月份的销售额为500万元”,可以列出相应的一元二次方程,本题得以解决. 【详解】 解:由题意可得, 200(1+x )2=500, 故选:C . 【点睛】本题考查由实际问题抽象出一元二次方程,解答本题的关键是明确题意,列出相应的方程,这是一道典型的增长率问题,是中考常考题.8.B解析:B 【分析】由方程有实数根即△=b 2﹣4ac ≥0,从而得出关于m 的不等式,解之可得. 【详解】解:根据题意得,△=b 2﹣4ac =[﹣(2m ﹣1)]2﹣4m 2=﹣4m +1≥0, 解得:14m , 故选:B . 【点睛】本题主要考查根的判别式,熟练掌握一元二次方程的根与判别式间的关系是解题的关键.9.D解析:D 【分析】分别求出每个方程的根的判别式即可得到方程的根的情况. 【详解】A 选项:2049360∆=-⨯=-<,∴该方程没有实数根,故A 错误;B 选项:()244410∆=--⨯⨯=,∴该方程有两个相等的实数根,故B 错误; C 选项:2141130∆=-⨯⨯=-<,∴该方程没有实数根,故C 错误;D 选项:()2141150∆=-⨯⨯-=>,∴方程有两个不相等的实数根,故D 正确;故选:D.【点睛】此题考查一元二次方程的根的情况,正确求根的判别式的值,掌握一元二次方程的根的三种情况是解题的关键.10.A解析:A 【分析】把x m =代入方程2210x x --=求出221m m -=,把2242020m m -+化成()2222020m m -+,再整体代入求出即可.【详解】∵把x m =代入方程2210x x --=得:2210m m --=, ∴221m m -=,∴()222420202220202120202022m m m m -+=-+=⨯+=, 故选:A . 【点睛】本题考查了一元二次方程的解,采用了整体代入的方法.注意:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.11.D解析:D 【分析】利用直接开平方法求解即可. 【详解】解:∵(x ﹣3)2﹣4=0, ∴(x ﹣3)2=4, 则x ﹣3=2或x ﹣3=﹣2, 解得x 1=5,x 2=1, 故选:D . 【点睛】本题考查了用直接开平方法解一元二次方程,掌握解法是关键.12.A解析:A 【分析】利用根与系数的关系得到x 1+x 2=4,x 1x 2=m ,AB +12BC =4,m =AB×12BC ,再利用折叠的性质和平行线的性质得到∠EBD =∠EDB ,则EB =ED =3,所以AE =AD−DE =5−2AB ,利用勾股定理得到AB 2+(5−2AB )2=32,解得AB =105-或AB =105+(舍去),则BC =205+,然后计算m 的值. 【详解】∵x 1、x 2是关于x 的方程x 2−4x +m =0的两个实根, ∴x 1+x 2=4,x 1x 2=m , 即AB +12BC =4,m =AB×12BC , ∵△BCD 沿BD 翻折得到△BC′D ,BC′与边AD 交于点E , ∴∠CBD =∠EBD , ∵AD ∥BC , ∴∠CBD =∠EDB , ∴∠EBD =∠EDB , ∴EB =ED =3,在Rt △ABE 中,AE =AD−DE =BC−3=8−2AB−3=5−2AB ,∴AB 2+(5−2AB )2=32,解得AB 或AB (舍去),∴BC =8−2AB ,∴m =12=165. 故选:A . 【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx +c =0(a≠0)的两根时,x 1+x 2=−b a ,x 1x 2=ca.也考查了矩形的性质和折叠的性质. 二、填空题13.3【分析】首先把常数项移到等号右边经配方h 和k 即可求得进而通过计算即可得到答案【详解】根据题意移项得配方得:即∴∴故答案是:3【点睛】本题考查了配方法解一元二次方程的知识;解题的关键是熟练掌握配方法解析:3 【分析】首先把常数项移到等号右边,经配方,h 和k 即可求得,进而通过计算即可得到答案. 【详解】根据题意,移项得223x x -=,配方得:22131x x -+=+,即2(1)4x -=, ∴1h =-,4k = ∴143h k +=-+=故答案是:3. 【点睛】本题考查了配方法解一元二次方程的知识;解题的关键是熟练掌握配方法的性质,从而完成求解.14.20【分析】设每年绿化面积的增长率为x 根据该小区2019年及2021年的绿化面积即可得出关于x 的一元二次方程解之取其正值即可得出结论【详解】解:设每年绿化面积的增长率为x 依题意得:3000(1+x )解析:20% 【分析】设每年绿化面积的增长率为x ,根据该小区2019年及2021年的绿化面积,即可得出关于x 的一元二次方程,解之取其正值即可得出结论. 【详解】解:设每年绿化面积的增长率为x , 依题意,得:3000(1+x )2=4320,解得:x 1=0.2=20%,x 2=-2.2(不合题意,舍去). 故答案为:20%. 【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.15.2【分析】先将方程整理为x2-2x-3=0再根据根与系数的关系可得出x1+x2即可【详解】解:一元二次方程整理为∵x1x2是一元二次方程x2-2x-3=0的两个根∴x1+x2=2故答案为:2【点睛】解析:2 【分析】先将方程整理为x 2-2x-3=0,再根据根与系数的关系可得出x 1+x 2即可. 【详解】解:一元二次方程()23112x -=整理为2230x x --=, ∵x 1、x 2是一元二次方程x 2-2x-3=0的两个根, ∴x 1+x 2=2. 故答案为:2. 【点睛】本题考查了根与系数的关系,牢记两根之和等于ba-是解题的关键. 16.2020【分析】根据m 是方程的根得代入求值【详解】解:∵m 是方程的根∴即原式故答案是:2020【点睛】本题考查一元二次方程的根解题的关键是掌握一元二次方程根的定义解析:2020 【分析】根据m 是方程210x x +-=的根,得21m m +=,代入求值. 【详解】解:∵m 是方程210x x +-=的根, ∴210m m +-=,即21m m +=,原式()222018220182020m m =++=+=. 故答案是:2020. 【点睛】本题考查一元二次方程的根,解题的关键是掌握一元二次方程根的定义.17.10【分析】设这个百分率为x 然后根据题意列出一元二次方程最后求解即可【详解】解:设这个百分率为x 由题意得:300(1-x )2=243解得x=10或x=190(舍)故答案为10【点睛】本题主要考查了一解析:10% 【分析】设这个百分率为x%,然后根据题意列出一元二次方程,最后求解即可. 【详解】解:设这个百分率为x%,由题意得:300(1-x%)2=243,解得x=10或x=190(舍). 故答案为10%. 【点睛】本题主要考查了一元二次方程的应用—百分率问题,弄清题意、设出未知数、列出一元二次方程成为解答本题的关键.18.或【分析】等腰三角形ABC 中边可能是腰也可能是底应分两种情况进行讨论分别利用根与系数的关系三角形三边关系定理求得方程的两个根进而求得答案【详解】解:∵关于x 的方程∴∴∵是等腰三角形的长是关于x 的方程解析:25或16 【分析】等腰三角形ABC 中,边BC 可能是腰也可能是底,应分两种情况进行讨论,分别利用根与系数的关系、三角形三边关系定理求得方程的两个根,进而求得答案. 【详解】解:∵关于x 的方程2100x x m -+= ∴1a =,10b =-,c m = ∴1210b x x a +=-=,12cx x m a== ∵ABC 是等腰三角形,AB 、AC 的长是关于x 的方程2100x x m -+=的两根∴①当8BC =为底、两根AB 、AC 均为等腰三角形的腰时,有1210AB AC x x +=+=且AB AC =即5AB AC ==,此时等腰三角形的三边分别为5、5、8,根据三角形三边关系定理可知可以构成三角形,则1225m x x AB AC ==⋅=;②当8BC =为腰、两根AB 、AC 中一个为腰一个为底时,有122810x x x +=+=,即22x =,此时此时等腰三角形的三边分别为2、8、8,根据三角形三边关系定理可知可以构成三角形,则1216m x x AB AC ==⋅=.∴综上所述,m 的值为25或16.故答案是:25或16【点睛】本题考查了一元二次方程根与系数的关系、等腰三角形的性质、三角形三边关系定理等,熟练掌握相关知识点是解题的关键.19.2021【分析】把x=a 代入已知方程并求得a2+a=-1然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a 代入x2+x+1=0得a2+a+1=0解得a2+a=-1所以2020-a2-a=2解析:2021【分析】把x=a 代入已知方程,并求得a 2+a=-1,然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a 代入x 2+x+1=0,得a 2+a+1=0,解得a 2+a=-1,所以2020-a 2-a=2020+1=2021.故答案是:2021.【点睛】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.20.-43【分析】由根与系数的关系可得出关于p 或q 的一元一次方程解之即可得出结论【详解】解:根据题意得﹣3+(﹣1)=p ﹣3×(﹣1)=q 所以p =﹣4q =3故答案为﹣43【点睛】本题考查了根与系数的关系解析:-4 3【分析】由根与系数的关系可得出关于p 或q 的一元一次方程,解之即可得出结论.【详解】解:根据题意得﹣3+(﹣1)=p ,﹣3×(﹣1)=q ,所以p =﹣4,q =3.故答案为﹣4,3.【点睛】本题考查了根与系数的关系,根据根与系数的关系找出-3+(-1)=-p,(-3)⨯(-1)=q 是解题的关键.三、解答题21.每件售价为45元【分析】设该商品的单价为x 元,根据题意得到方程,解方程即可求解.【详解】解:设该商品的单价为x 元.根据题意,得()()3020010402250---=⎡⎤⎣⎦x x .解这个方程,得1245x x ==.答:每件售价为45元.【点睛】本题考查一元一次方程的应用,解题的关键是根据利润得到相应的等量关系是解题的关键.22.12y =,22y =【分析】方程移项变形后,利用完全平方公式化简,开方即可得到答案.【详解】解:2410y y --= 24=1y y -24+4=5y y -2(2)=5y -2=y -±解得,12y =22y =【点睛】此题主要考查了解一元二次方程---配方法,熟练掌握各种解法是解答此题的关键. 23.(1)证明见解析;(2)222 1.y t t =++【分析】(1)先求解()2242b ac t =-=+,再证明>0,即可得出结论; (2)把原方程化为:()()1220,x tx t ---=再解方程,根据0t >,12x x <,确定12,x x ,最后代入函数解析式即可得到答案.【详解】(1)证明: ()232220-+++=tx t x t , (),32,22,a t b t c t ∴==-+=+()()22=43242+2b ac t t t ∴-=-+-⎡⎤⎣⎦22912488t t t t =++--244t t =++()22t =+, t >0,()22t ∴=+>0,所以原方程有两个不相等的实数根.(2) ()232220-+++=tx t x t , ()()1220,x tx t ∴---=10x ∴-=或220,tx t --=1x ∴=或22,x t=+ 0t >,22t∴+>1,12x x <,1221,2,x x t∴==+ ∴ 221=⋅+y t x x2221t t ⎛⎫=++ ⎪⎝⎭ 222 1.t t =++【点睛】本题考查的一元二次方程根的判别式,利用因式分解法解一元二次方程,不等式的性质,列函数关系式,掌握以上知识是解题的关键.24.(1)15=x ,21x =-;(2)13x =-,21x =【分析】(1)利用直接开平方法解方程即可;(2)利用公式法解方程即可.【详解】解:(1)∵()229x -=,∴23x -=±,∴23x -=或23x -=-,∴15=x ,21x =-.(2)∴ 1a =,2b =,3c =-,则()22413160=-⨯⨯-=>△,∴22x -±=, 即13x =-,21x =.【点睛】本题主要考查解一元二次方程.通过开平方运算解一元二次方程的方法叫做直接开平方法.公式法解一元二次方程的一般步骤,把方程化为一般形式确定各系数的值利用2b a- 求解. 25.(1)123,2x x ==-;(2)51x y =⎧⎨=⎩ 【分析】(1)方程移项后,运用直接开平方法求解即可;(2)方程组运用加减消元法求解即可.【详解】解:(1)()221250x --= ()22125x -=215x -=或215x -=-∴123,2x x ==-;(2)()22132x x y x x y ⎧-=+⎪⎨--=⎪⎩①② 由①得:4x y =+③,把③代入②可得:1342x y y -+-=, 5x =,∴1y =,∴方程组的解为51x y =⎧⎨=⎩. 【点睛】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.同时还考查了二元一次方程组的解法.26.(1)4;(2)(2+秒或(2-秒;(3)小明说得对,理由见解析【分析】(1)求出0h =时t 的值即可得多少秒后足球回到地面; (2)根据高度为10米列方程可得;(3)列方程由根的判别式可作出判断.【详解】解:(1)当0h =时,22050t t -=,解得:0t =或4t =,答:经4秒后足球回到地面;(2)令220510h t t =-=,解得:2t =+2t =即经过(2+秒或(2-秒时足球距离地面的高度为10米. (3)小明说得对,理由如下:假设足球高度能够达到21米,即21h =,将21h =代入公式得:221205t t =-由判别式计算可知:2(20)4521200=--⨯⨯=-<△, 方程无解,假设不成立,所以足球确实无法到达21米的高度.【点睛】本题主要考查一元二次方程的应用,解题的关键是熟练掌握一元二次方程的解法.。
人教版初中数学九年级数学上册第一单元《一元二次方程》检测(含答案解析)

一、选择题1.关于x 的一元二次方程()2230x a a x a +-+=的两个实数根互为倒数,则a 的值为( )A .-3B .0C .1D .-3或0 2.某超市今年1月份的营业额为50万元,已知2月至3月营业额的月增长率是1月至2月营业额的月增长率的2倍,3月份的营业额是66万元,设该超市1月至2月营业额的月增长率为x ,根据题意,可列出方程( )A .()50166x +=B .()250166x +=C .()2501266x += D .()()5011266x x ++= 3.下列方程属于一元二次方程的是( )A .222-=x x xB .215x x +=C .220++=ax bx cD .223x x +=4.将4张长为a 、宽为b (a >b )的长方形纸片按如图的方式拼成一个边长为(a +b )的正方形,图中空白部分的面积之和为S 1,阴影部分的面积之和为S 2.若S 1=53S 2,则a ,b 满足( )A .2a =5bB .2a =3bC .a =3bD .3a =2b 5.方程()55x x x +=+的根为( )A .15=x ,25x =-B .11x =,25x =-C .0x =D .125x x ==-6.下列关于一元二次方程23210x x ++=的根的情况判断正确的是( )A .有一个实数根B .有两个相等的实数根C .没有实数根D .有两个不相等的实数根 7.不解方程,判断方程23620x x --=的根的情况是( ) A .无实数根B .有两个相等的实数根C .有两个不相等的实数根D .以上说法都不正确 8.关于x 的方程2mx 0x +=的一个根是1-,则m 的值为( )A .1B .0C .1-D .1或09.下列方程是关于x 的一元二次方程的是( )A .212x x x -=B .2(2)x x x -=C .23(2)x x =+D .20ax bx c ++= 10.已知关于x 的一元二次方程()22210x m x m -+=-有实数根,则m 的取值范围是( )A .0m ≠B .14mC .14m <D .14m > 11.关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根,那么m 的取值范围是( ) A .m≤14 B .m≥14-且m≠2 C .m≤14-且m≠﹣2 D .m≥14- 12.已知方程2202030x x +-=的根分别为a 和b ,则代数式2a a 2020a b ++的值为( )A .0B .2020C .1D .-2020二、填空题13.已知实数α,β满足α2+3α﹣1=0,β2﹣3β﹣1=0,且αβ≠1,则21a +3β的值为________.14.三角形两边长分别为3和5,第三边满足方程x 2-6x+8=0,则这个三角形的形状是__________.15.一元二次方程x 2=2x 的解为__________16.已知函数2y mx m m =++为正比例函数,则常数m 的值为______.17.当m =___________时,方程(2150m m x mx --+=是一元二次方程. 18.若a 是方程210x x ++=的根,则代数式22020a a --的值是________. 19.函数()2835my m x -=+-是一次函数,则m =______. 20.若()22214x y +-=,则22x y +=________.三、解答题21.解方程:2250x x +-=.22.用适当的方法解方程:(l )2(3)26x x +=+(2)2810x x -+=.23.手工课上,小明打算用一张周长为40cm 的长方形白纸做一张贺卡,白纸内的四周涂上宽为2cm 的彩色花边,小明想让中间白色部分的面积大于彩色花边的面积,但又不能确定能否办到.请同学们帮助小明判断他是否能办到,并说明理由.24.解方程:(1)2x2+1=3x(配方法)(2)(2x-1)2=(3-x)2(因式分解法)25.小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元:如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买了这种服装x 件.(1)填空:购买件数x513③(件)单价(元)① ② 5026.某地为刺激旅客来旅游及消费,讨论5月至9月推出全城推广活动.杭州某旅行社为吸引市民组团去旅游,推出了如下收费标准:某单位组织员工去旅游,共支付给该旅行社旅游费用54000元,请问该单位这次共有多少员工去旅游?【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据方程两个实数根互为倒数,得到两根之积为1,利用根与系数的关系求出a的值即可.【详解】解:∵关于x的一元二次方程x2+(a2-3a)x+a=0的两个实数根互为倒数,∴x1•x2=a=1.故选:C.【点睛】本题考查了根与系数的关系,能熟记根与系数的关系的内容是解此题的关键,注意:已知一元二次方程ax 2+bx+c=0(a 、b 、c 为常数,a≠0,b 2-4ac≥0)的两根是x 1,x 2,那么x 1+x 2=-b a ,x 1•x 2=c a. 2.D解析:D【分析】根据2月份的营业额=1月份的营业额×(1+x ),3月份的营业额=2月份的营业额×(1+2x ),把相关数值代入即可得到相应方程.【详解】解:∵1月份的营业额为50万元,2月份的营业额比1月份增加x ,∴2月份的营业额=50×(1+x ),∴3月份的营业额=50×(1+x )×(1+2x ),∴可列方程为:50(1+x )(1+2x )=66.故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b .注意先求得2月份的营业额.3.D解析:D【分析】一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.据此判断即可.【详解】解:A 、移项得:20x -=,是一元一次方程,不是一元二次方程,故本选项错误; B 、不是整式方程,即不是一元二次方程,故本选项错误;C 、ax 2+bx+c=0,当a=0时,它不是一元二次方程,故C 错误;D 223x x +=符合一元二次方程的定义,故D 正确;故选:D .【点睛】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.4.C解析:C【分析】由题意可以得到关于a 、b 的方程,并进而变形为关于a b 的方程,求出a b的值即可得到a 、b 的关系式 .解:由图可知21422S ab ab =⨯=, ∵1253S S =,∴1255102333S S ab ab ==⨯=, 又()222122S S a b a ab b +=+=++, ∴2210223ab ab a ab b +=++,即 22103a b ab +=, ∴231030a a b b ⎛⎫-⨯+= ⎪⎝⎭, ∴133a ab b ==,(舍去), ∴a=3b ,故先C .【点睛】 本题考查正方形面积、三角形面积及一元二次方程的综合运用,熟练掌握正方形面积和三角形面积的计算方法及一元二次方程的解法是解题关键.5.B解析:B【分析】根据因式分解法解方程即可;【详解】()55x x x +=+,()()550+-+=x x x ,()()510x x +-=,11x =,25x =-;故答案选B .【点睛】本题主要考查了因式分解法解一元二次方程,准确计算是解题的关键.6.C解析:C【分析】根据方程的系数结合根的判别式,可得出△=-8<0,进而可得出方程23210x x ++=没有实数根.【详解】解:∵△=22-4×1×3=-8<0,∴方程23210x x ++=没有实数根.【点睛】本题考查了根的判别式,牢记“当△<0时,方程无实数根”是解题的关键.7.C解析:C【分析】根据方程的系数结合根的判别式即可得出△=60>0,由此即可得出结论.【详解】解:∵在方程23620x x --=中,△=(-6)2-4×3×(2)=60>0,∴方程23620x x --=有两个不相等的实数根.故选: C【点睛】本题考查了根的判别式,熟练掌握“当△>0时方程有两个不相等的实数根”是解题的关键.8.A解析:A【分析】由关于x 的方程x 2+mx=0的一个根为-1,得出将x=-1,代入方程x 2+mx=0求出m 即可.【详解】解:∵-1是方程x 2+mx=0的根,∴1-m=0,∴m=1,故答案为:A.【点睛】此题主要考查了一元二次方程的解,由方程的根为-1,代入方程是解决问题的关键. 9.C解析:C【分析】根据一元二次方程的定义逐项判断即可得.【详解】A 、方程212x x x -=中的1x不是整式,不满足一元二次方程的定义,此项不符题意; B 、方程2(2)x x x -=可整理为20x -=,是一元一次方程,此项不符题意;C 、方程23(2)x x =+满足一元二次方程的定义,此项符合题意;D 、当0a =时,方程20ax bx c ++=不是一元二次方程,此项不符题意;故选:C .【点睛】本题考查了一元二次方程,熟记一元二次方程的概念是解题关键.10.B解析:B【分析】由方程有实数根即△=b 2﹣4ac ≥0,从而得出关于m 的不等式,解之可得.【详解】解:根据题意得,△=b 2﹣4ac =[﹣(2m ﹣1)]2﹣4m 2=﹣4m +1≥0, 解得:14m, 故选:B .【点睛】本题主要考查根的判别式,熟练掌握一元二次方程的根与判别式间的关系是解题的关键. 11.B解析:B【分析】关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根,由于二次项系数有字母,要考虑二次项系数不为0,再由一元二次方程(m-2)x 2+3x-1=0有实数根,满足△≥0,取它们的公共部分即可.【详解】关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根,m-2≠0,m≠2,△=9-4×(-1)×(m-2)≥0,m 1-4≥, 关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根,m 的取值范围是m 1-4≥且m≠2. 故选:B .【点睛】本题考查关于x 的一元二次方程(m-2)x 2+3x-1=0有实数根的问题,关键掌握方程的定义,二次项系数不为0,含x 的最高次项的次数为2,而且是整式的方程,注意判别式使用条件,前提是一元二次方程,还要求一般形式.12.A解析:A【分析】将a 代入方程,可得2202030a a +-=,即220302a a =-,代入要求的式子,即可得到3+ab ,而a 、b 是方程的两个根,根据韦达定理,可求出ab 的值,即可求出答案.【详解】解:∵方程2202030x x +-=的根分别为a 和b∴2202030a a +-=,即220302a a =-∴2a a 2020a b ++=32020a -+ab+2020a=3+ab∵ab=-3∴2a a 2020a b ++=32020a -+ab+2020a=3+ab=3-3=0故选:A .【点睛】本题主要考查一元二次方程的解以及韦达定理,熟练解代入方程以及观察式子特点,抵消部分式子是解决本题的关键.二、填空题13.10【分析】原方程变为()-3()-1=0得到β是方程x2-3x-1=0的两根根据根与系数的关系得到关系式代入求出即可【详解】解:∵α2+3α﹣1=0∴()-3()-1=0∵实数αβ满足α2+3α﹣解析:10【分析】 原方程变为(21a)-3(1a )-1=0,得到1a 、β是方程x 2-3x-1=0的两根,根据根与系数的关系得到关系式,代入求出即可.【详解】解:∵α2+3α﹣1=0, ∴(21a)-3(1a )-1=0, ∵实数α,β满足α2+3α﹣1=0,β2﹣3β﹣1=0,且αβ≠1, ∴1a 、β是方程x 2﹣3x ﹣1=0的两根, ∴1a +β=3, a β =﹣1,2131a a=+, ∴原式=1+3a +3β=1+3(1a+β)=1+3×3=10, 故答案为10.【点睛】 本题考查了根与系数的关系,熟练的根据根与系数的关系进行计算是解题的关键. 14.直角三角形【分析】先利用因式分解法解方程得到x1=4x2=2再利用三角形三边的关系得到x=4然后根据勾股定理的逆定理进行判断【详解】解:x2-6x+8=0(x-4)(x-2)=0x-4=0或x-2=解析:直角三角形【分析】先利用因式分解法解方程得到x 1=4,x 2=2,再利用三角形三边的关系得到x=4,然后根据勾股定理的逆定理进行判断.【详解】解:x 2-6x+8=0,(x-4)(x-2)=0,x-4=0或x-2=0,所以x 1=4,x 2=2,∵两边长分别为3和5,而2+3=5,∴x=4,∵32+42=52,∴这个三角形的形状是直角三角形.故答案为:直角三角形.【点睛】本题考查了解一元二次方程-因式分解法、勾股定理的逆定理和三角形三边的关系,熟练掌握相关的知识是解题的关键.15.0或2【分析】移项后分解因式即可得出两个一元一次方程求出方程的解即可【详解】解:x2=2xx2-2x=0x (x-2)=0x=0x-2=0x=0或2故答案为:0或2【点睛】本题考查了解一元二次方程的应解析:0或2.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】解:x 2=2x ,x 2-2x=0,x (x-2)=0,x=0,x-2=0,x=0或2.故答案为:0或2.【点睛】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程,难度适中.16.-1【分析】根据正比例函数的概念可直接进行列式求解【详解】解:∵函数为正比例函数∴且解得:;故答案为-1【点睛】本题主要考查正比例函数的概念及一元二次方程的解法熟练掌握正比例函数的概念及一元二次方程 解析:-1【分析】根据正比例函数的概念可直接进行列式求解.【详解】解:∵函数2y mx m m =++为正比例函数,∴20m m +=,且0m ≠,解得:1m =-;故答案为-1.【点睛】本题主要考查正比例函数的概念及一元二次方程的解法,熟练掌握正比例函数的概念及一元二次方程的解法是解题的关键.17.【分析】根据一元二次方程的定义解答【详解】∵是一元二次方程∴且解得故答案为:【点睛】本题考查了一元二次方程的概念只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程一般形式是(且)特别要注意【分析】根据一元二次方程的定义解答.【详解】∵(2150m m x mx -+-+=是一元二次方程,∴212m -=且0m +≠,解得m =,【点睛】本题考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是20ax bx c ++=(且0a ≠).特别要注意0a ≠的条件.这是在做题过程中容易忽视的知识点.18.2021【分析】把x=a 代入已知方程并求得a2+a=-1然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a 代入x2+x+1=0得a2+a+1=0解得a2+a=-1所以2020-a2-a=2解析:2021【分析】把x=a 代入已知方程,并求得a 2+a=-1,然后将其整体代入所求的代数式进行求值即可【详解】解:把x=a 代入x 2+x+1=0,得a 2+a+1=0,解得a 2+a=-1,所以2020-a 2-a=2020+1=2021.故答案是:2021.【点睛】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.19.3;【分析】根据一次函数的定义得到m2-8=1且m+3≠0据此求得m 的值【详解】解:依题意得:m2-8=1且m+3≠0 解得m=3 故答案是:3【点睛】本题考查了一次函数的定义一般地形如y=kx+b解析:3;【分析】根据一次函数的定义得到m 2-8=1且m+3≠0,据此求得m 的值.【详解】解:依题意得:m 2-8=1且m+3≠0,解得m=3.故答案是:3.【点睛】本题考查了一次函数的定义.一般地,形如y=kx+b (k≠0,k 、b 是常数)的函数,叫做一次函数.会利用x 的指数构造方程,会解方程,会利用k 限定字母的值是解题关键 20.3【分析】根据题意将两边开方即可分情况得出的值【详解】解:两边开方得或故答案为:3【点睛】本题考查开方运算熟练掌握开方运算以及整体代换思想是解题的关键解析:3【分析】根据题意将()22214x y +-=两边开方,即可分情况得出22x y +的值.【详解】解:两边开方得2212x y +-=±, 223x y ∴+=或221x y +=-,220x y +≥,223x y ∴+=.故答案为:3.【点睛】本题考查开方运算,熟练掌握开方运算以及整体代换思想是解题的关键.三、解答题21.1211x x =-=-【分析】利用配方法解方程.【详解】2250x x +-=225x x +=1x =-±∴1211x x =-=-【点睛】此题考查解一元二次方程的方法—配方法,将等式变形为平方形式是解题的关键.22.(1)13x =-,21x =-;(2)1x =,24x =【分析】(1)用因式分解法求解可得;(2)用配方法求解即可.【详解】解:(1)∵(x+3)2-2(x+3)=0,∴(x+3)(x+1)=0,∴x+3=0或x+1=0,解得:x=-3或x=-1;(2)2810x x -+=281x x -=-28+1615x x -=2(4)15x -=4x -=∴1x =,24x =【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.23.不能办到,见解析【分析】设中间部分的面积为:S 求出S 与x 的关系式,即关于中间部分的面积公式,并求出该二次函数的最大值,即中间部分的最大值,与花边部分的面积相比较,若大于则能做到,小于则做不到.【详解】答:不能办到.理由:设纸的一边长为cm x则另一边为(20)cm x -.依题意得:彩色花边面积为:2222(204)64x x ⨯⨯+⨯⨯--=中间白色部分面积为:22(4)(16)2064(10)36S x x x x x =--=-+-=--+当10x =时,白色部分面积最大为36.3664<,∴小明不能办到.【点睛】本题主要考查一元二次方程的应用,关键在于理解清楚题意找出等量关系,即:花边部分的面积=总面积-中间部分的面积;已知花边部分的面积,而中间部分的面积又不定,只需求出中间部分面积的最值与其比较即可.24.(1)11x =,212x =;(2)12x =-,243x = 【分析】(1)首先把方程移项变形为2x 2-3x=-1的形式,二次项系数化为1,再进行配方即可; (2)根据平方差公式可以解答此方程.【详解】(1)解:移项,得2x 2-3x=-1二次项系数化为1,得x 2-32x =12- 配方,得x 2-32x +234⎛⎫ ⎪⎝⎭=12-+234⎛⎫ ⎪⎝⎭231416x ⎛⎫-= ⎪⎝⎭ 解得11x =,212x =. (2)解:原方程化为: ()()222130x x ---=()()2132130x x x x -+---+=()()2340x x +-=20x +=或340x -=解得 12x =-,243x =. 【点睛】 此题考查了解一元二次方程-因式分解法(公式法),配方法,熟练掌握各种解法是解本题的关键.25.(1)①80;②74;③25x ≥(2)20件【分析】(1)①如果一次性购买不超过10件,单价为80元;②用单价80元减去(13-10)×2,得出答案即可;③求出单价恰好是50元时的购买件数,即可分析得到;(2)根据一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,表示出每件服装的单价,进而得出等式方程求出即可.【详解】解:(1)①∵如果一次性购买不超过10件,单价为80元,故填:80;②80-(13-10)×2=74,故填:74;③设购买a件时,单价恰好是50元,80-(a-10)×2=50,解得:a=25,而题目中“单价不得低于50元”,x≥时,单价是50元,∴25x≥;故填:25(2)因为1200>800,所以一定超过了10件,设购买了x件这种服装且多于10件,根据题意得出:[80-2(x-10)]x=1200,解得:x1=20,x2=30,当x=20时,80-2(20-10)=60元>50元,符合题意;当x=30时,80-2(30-10)=40元<50元,不合题意,舍去;答:购买了20件这种服装.【点睛】此题主要考查了一元二次方程的应用,根据已知得出每件服装的单价是解题关键.26.30名【分析】首先根据共支付给旅行社旅游费用54000元,确定旅游的人数的范围,然后根据每人的旅游费用×人数=总费用,设该单位这次共有x名员工去旅游.即可由对话框,超过25人的人数为(x-25)人,每人降低20元,共降低了20(x-25)元.实际每人收了[1000-20(x-25)]元,列出方程求解.【详解】解:设该单位这次共有x名员工去旅游.因为2000×25=50000<54000,所以员工人数一定超过25人.根据题意列方程得:[2000-40(x-25)]x=54000.解得x1=45,x2=30.当x1=45时,2000-40(x-25)=1200<1700,故舍去;当x2=30时,2000-40(x-25)=1800>1700,符合题意.答:该单位这次共有30名员工去旅游.【点睛】本题考查了列一元二次方程解实际问题的应用,一元二次方程的解法的运用,有利于培养学生应用数学解决生活中实际问题的能力.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.本题应注意的地方有两点:1、确定人数的范围;2、用人均旅游费用不低于1700元来判断,得到满足题意的x的值.。
(人教版)哈尔滨市九年级数学上册第一单元《一元二次方程》检测(有答案解析)

一、选择题1.方程()224(2)0m x x m y -+--=是关于x ,y 的二元一次方程,则m 的值为( ) A .2±B .2-C .2D .42.下列方程是关于x 的一元二次方程的是( ) A .20ax bx c ++= B .210x y -+= C .2120x x+-=D .(1)(2)1x x x -+=-3.已知一元二次方程2210x x --=的两个根分别是1x ,2x ,则2112x x x -+的值为( ). A .-1 B .0 C .2 D .3 4.x=-2是关于x 的一元二次方程2x 2+3ax -2a 2=0的一个根,则a 的值为( ) A .1或4 B .-1或-4 C .-1或4 D .1或-45.用配方法解方程2x 4x 70+-=,方程应变形为( )A .2(2)3x +=B .2 (x+2)11=C .2 (2)3?x -= D .2()211x -=6.由于疫情得到缓和,餐饮行业逐渐回暖,某地一家餐厅重新开张,开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元,若设每天的增长率为x ,则x 满足的方程是( ) A .5000(1+x )=6050 B .5000(1+2x )=6050 C .5000(1﹣x )2=6050D .5000(1+x )2=60507.将4张长为a 、宽为b (a >b )的长方形纸片按如图的方式拼成一个边长为(a +b )的正方形,图中空白部分的面积之和为S 1,阴影部分的面积之和为S 2.若S 1=53S 2,则a ,b 满足( )A .2a =5bB .2a =3bC .a =3bD .3a =2b8.方程29180x x -+=的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为( ) A .12 B .15 C .12或15 D .18 9.若关于x 的一元二次方程260x x c -+=有两个相等的实数根,则常数c 的值为( ) A .3B .6C .8D .910.方程23x x =的解为( )A .3x =B .3x =-C .10x =,23x =D .10x =,23x =-11.下列方程是关于x 的一元二次方程的是( ) A .212x x x-=B .2(2)x x x -=C .23(2)x x =+D .20ax bx c ++=12.一元二次方程(x ﹣3)2﹣4=0的解是( )A .x =5B .x =1C .x 1=5,x 2=﹣5D .x 1=1,x 2=5二、填空题13.对于任意实数a ,b ,定义:22a b a ab b =++◆.若方程()250x -=◆的两根记为m 、n ,则22m n +=______.14.方程220x x +-=的两个根分别为,m n ,则11m n+的值为_________. 15.若关于x 的一元二次方程240x x k -+=有两个相等的实数根,则k =______. 16.已知方程22610x x -+=的两根为12,x x ,则2212x x +=_______.17.等腰三角形ABC 中,8BC =,AB 、AC 的长是关于x 的方程2100x x m -+=的两根,则m 的值是___.18.如图,将一张矩形纸片ABCD 折叠,使两个顶点A C 、重合,折痕为FG ,若4,8AB BC ==,则线段BF 的长为_________.19.已知x 1和x 2是方程2x 2-5x+1=0的两个根,则1212x x x x +的值为_____.20.若关于x 的一元二次方程x 2+2x ﹣m 2﹣m =0(m >0),当m =1、2、3、…2020时,相应的一元二次方程的两个根分别记为α1、β1,α2、β2,…,α2020、β2020,则112220202020111111αβαβαβ++++++的值为_____.三、解答题21.解方程: (1)x 2+10x +9=0;(2)x 2=14. 22.5月10日,重庆正式启动“加快发展直播带货行动计划”,以推动直播带货和“网红经济”发展,已知云阳桃片糕每盒12元,仙女山红茶每盒50元,第一次直播期间,共卖出云阳桃片糕和仙女山红茶共计2000盒.(1)若卖出桃片糕和红茶的总销售额不低于54400元,则至少卖出仙女山红茶多少盒? (2)第一次直播结束,为了回馈顾客,在第二次直播期向,桃片糕每盒降价10%3a ,红茶每盒降价4a %,桃片糕数量在(1)问最多的数量下增加6a %,红茶数量在(1)问最少的数量下增加4a %,最终第二次直播总销售额比第一次直播的最低销售额54400元少80a 元,求a 的值.23.先阅读理解下面的例题,再按要求解答下面的问题: 例题:说明代数式m 2+2m+4的值一定是正数. 解:m 2+2m+4=m 2+2m+1+3=(m+1)2+3. ∵(m+1)2≥0, ∴(m+1)2+3≥3,∴m 2+2m+4的值一定是正数.(1)说明代数式﹣a 2+6a ﹣10的值一定是负数.(2)设正方形面积为S 1,长方形的面积为S 2,正方形的边长为a ,如果长方形的一边长比正方形的边长少3,另一边长为4,请你比较S 1与S 2的大小关系,并说明理由. 24.已知12,x x 是关于x 的一元二次方程()222110x m x m --+-=两个实数根.(1)求m 取值范围; (2)若()12210x x x -+=,求实数m 的值.25.回答下列问题. (1(2|1-. (3)计算:102(1)-++.(4)解方程:2(1)90x +-=.26.解方程(1)2420x x -+= (2)()255210x x ++=(3)2560x x -+= (4)()3133x x x +=+【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】含有两个未知数,并且含有未知数的项的次数都是1的整式方程是二元一次方程,根据定义解答. 【详解】∵()224(2)0m x x m y -+--=是关于x ,y 的二元一次方程, ∴240,20m m -=-≠, ∴m=-2, 故选:B . 【点睛】此题考查二元一次方程的定义,熟记定义是解题的关键.2.D解析:D 【分析】利用一元二次方程定义进行解答即可. 【详解】A 、当a =0时,不是一元二次方程,故此选项不合题意;B 、含有两个未知数,不是一元二次方程,故此选项不合题意;C 、不是整式方程,故此选项不合题意;D 、是一元二次方程,故此选项符合题意; 故选:D . 【点睛】此题主要考查了一元二次方程定义,关键是掌握判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.3.D解析:D 【分析】分别根据一元二次方程的根的意义和一元二次方程根与系数的关系分别得到21112210,2x x x x --=+=,变形代入求值即可得到答案.【详解】解:由题意得21112210,2x x x x --=+=,即21121x x -=,∴原式211122123x x x x =-++=+=. 故选:D . 【点睛】此题主要考查了一元二次方程的解的根与系数的关系,灵活运用根与系数的关系是解答此题的关键.4.D解析:D 【分析】根据一元二次方程的解的定义知,x=-2满足关于x 的一元二次方程2x 2+3ax -2a 2=0,可得出关于a 的方程,通过解方程即可求得a 的值. 【详解】解:将x=-2代入一元二次方程2x 2+3ax -2a 2=0, 得:()()222-23-2-20a a ⨯+⋅=, 化简得:2+340a a -=, 解得:a=1或a=-4. 故选:D . 【点睛】本题考查了一元二次方程的解的定义.一元二次方程ax 2+bx+c=0(a≠0)的所有解都满足该一元二次方程的关系式.5.B解析:B 【分析】根据配方法解一元二次方程的方法解答即可. 【详解】解:用配方法解方程2470x x ,方程应变形为24411x x ++=,即()2211x +=.故选:B . 【点睛】本题考查了一元二次方程的解法,熟练掌握配方的方法是解题的关键.6.D解析:D 【分析】根据开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元列方程即可得到结论. 【详解】解:设每天的增长率为x , 依题意,得:5000(1+x )2=6050.故选:D . 【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.7.C解析:C 【分析】由题意可以得到关于a 、b 的方程,并进而变形为关于a b 的方程,求出ab的值即可得到a 、b 的关系式 . 【详解】 解:由图可知21422S ab ab =⨯=, ∵1253S S =,∴1255102333S S ab ab ==⨯=, 又()222122S S a b a ab b +=+=++, ∴2210223ab ab a ab b +=++,即 22103a b ab +=, ∴231030a a b b ⎛⎫-⨯+= ⎪⎝⎭,∴133a a b b ==,(舍去), ∴a=3b , 故先C . 【点睛】本题考查正方形面积、三角形面积及一元二次方程的综合运用,熟练掌握正方形面积和三角形面积的计算方法及一元二次方程的解法是解题关键.8.B解析:B 【分析】首先求出方程的根,再根据三角形三边关系定理列出不等式,确定是否符合题意. 【详解】解:解方程x 2-9x+18=0,得x 1=3,x 2=6, 当3为腰,6为底时,不能构成等腰三角形;当6为腰,3为底时,能构成等腰三角形,周长为6+6+3=15. 故选:B . 【点睛】本题考查了解一元二次方程,从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.9.D解析:D 【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于c 的一元一次方程,解方程即可得出结论. 【详解】 解:260x x c -+=有两个相等的实根,2(6)40c ∴∆=--=,解得:9c = 故选:D . 【点睛】本题考查了根的判别式以及解一元一次方程,由方程有两个相等的实数根结合根的判别式得出关于c 的一元一次方程是解题的关键.10.C解析:C 【分析】方程变形后分解因式,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解. 【详解】解:方程变形得:x 2-3x=0, 分解因式得:x (x-3)=0, 可得x=0或x-3=0, 解得:x 1=3,x 2=0. 故选:C . 【点睛】此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键.11.C解析:C 【分析】根据一元二次方程的定义逐项判断即可得. 【详解】 A 、方程212x x x -=中的1x不是整式,不满足一元二次方程的定义,此项不符题意; B 、方程2(2)x x x -=可整理为20x -=,是一元一次方程,此项不符题意; C 、方程23(2)x x =+满足一元二次方程的定义,此项符合题意; D 、当0a =时,方程20ax bx c ++=不是一元二次方程,此项不符题意;【点睛】本题考查了一元二次方程,熟记一元二次方程的概念是解题关键.12.D解析:D【分析】利用直接开平方法求解即可.【详解】解:∵(x﹣3)2﹣4=0,∴(x﹣3)2=4,则x﹣3=2或x﹣3=﹣2,解得x1=5,x2=1,故选:D.【点睛】本题考查了用直接开平方法解一元二次方程,掌握解法是关键.二、填空题13.6【分析】根据新定义可得出mn为方程x2+2x﹣1=0的两个根利用根与系数的关系可得出m+n=﹣2mn=﹣1将其代入m2+n2=(m+n)2﹣2mn中即可得出结论【详解】解:∵(x◆2)﹣5=x2+解析:6【分析】根据新定义可得出m、n为方程x2+2x﹣1=0的两个根,利用根与系数的关系可得出m+n=﹣2、mn=﹣1,将其代入m2+n2=(m+n)2﹣2mn中即可得出结论.【详解】解:∵(x◆2)﹣5=x2+2x+4﹣5,∴m、n为方程x2+2x﹣1=0的两个根,∴m+n=﹣2,mn=﹣1,∴m2+n2=(m+n)2﹣2mn=6.故答案为6.【点睛】本题考查了根与系数的关系,牢记两根之和等于﹣ba、两根之积等于ca是解题的关键.14.;【分析】根据根与系数的关系可得出m+n=-1mn=-2将其代入中即可求出结论【详解】解:∵方程x2+x﹣2=0的两个根分别为mn∴m+n=﹣1mn=﹣2故答案为:【点睛】本题考查了根与系数的关系牢解析:12;根据根与系数的关系可得出m+n=-1,mn=-2,将其代入11n m m n mn++=中即可求出结论. 【详解】解:∵方程x 2+x ﹣2=0的两个根分别为m ,n , ∴m +n =﹣1,mn =﹣2,111122n m n m m n mn mn mm +-∴+=+===-. 故答案为:12. 【点睛】本题考查了根与系数的关系,牢记“两根之和等于-b a ,两根之积等于ca是解题的关键. 15.4【分析】根据一元二次方程根的判别式可直接进行求解【详解】解:∵关于的一元二次方程有两个相等的实数根∴解得:;故答案为4【点睛】本题主要考查一元二次方程根的判别式熟练掌握一元二次方程根的判别式是解题解析:4 【分析】根据一元二次方程根的判别式可直接进行求解. 【详解】解:∵关于x 的一元二次方程240x x k -+=有两个相等的实数根, ∴()224440b ac k ∆=-=--=,解得:4k =; 故答案为4. 【点睛】本题主要考查一元二次方程根的判别式,熟练掌握一元二次方程根的判别式是解题的关键.16.8【分析】利用一元二次方程根与系数的关系可列出两根之和及两根之积的值再对其进行变形即可求解【详解】由题可得:∴故答案为:8【点睛】本题考查一元二次方程根与系数的关系进行变形求值熟记结论且灵活变形是解解析:8 【分析】利用一元二次方程根与系数的关系,可列出两根之和及两根之积的值,再对其进行变形即可求解. 【详解】由题可得:1212132x x x x +==,,∴()222212121212329182x x x x x x +=+-=-⨯=-=, 故答案为:8. 【点睛】本题考查一元二次方程根与系数的关系进行变形求值,熟记结论且灵活变形是解题关键.17.或【分析】等腰三角形ABC 中边可能是腰也可能是底应分两种情况进行讨论分别利用根与系数的关系三角形三边关系定理求得方程的两个根进而求得答案【详解】解:∵关于x 的方程∴∴∵是等腰三角形的长是关于x 的方程解析:25或16 【分析】等腰三角形ABC 中,边BC 可能是腰也可能是底,应分两种情况进行讨论,分别利用根与系数的关系、三角形三边关系定理求得方程的两个根,进而求得答案. 【详解】解:∵关于x 的方程2100x x m -+= ∴1a =,10b =-,c m = ∴1210b x x a +=-=,12cx x m a== ∵ABC 是等腰三角形,AB 、AC 的长是关于x 的方程2100x x m -+=的两根∴①当8BC =为底、两根AB 、AC 均为等腰三角形的腰时,有1210AB AC x x +=+=且AB AC =即5AB AC ==,此时等腰三角形的三边分别为5、5、8,根据三角形三边关系定理可知可以构成三角形,则1225m x x AB AC ==⋅=;②当8BC =为腰、两根AB 、AC 中一个为腰一个为底时,有122810x x x +=+=,即22x =,此时此时等腰三角形的三边分别为2、8、8,根据三角形三边关系定理可知可以构成三角形,则1216m x x AB AC ==⋅=. ∴综上所述,m 的值为25或16. 故答案是:25或16 【点睛】本题考查了一元二次方程根与系数的关系、等腰三角形的性质、三角形三边关系定理等,熟练掌握相关知识点是解题的关键.18.3【分析】根据折叠性质可得AF=FC 设AF=x 则BF=8-x 则根据勾股定理可以得到关于x 的方程解方程得到x 的值后即可得到8-x 即BF 的值【详解】∵将一矩形纸片折叠使两个顶点重合折痕为∴是的垂直平分线解析:3 【分析】根据折叠性质可得AF=FC ,设AF=x ,则BF=8-x ,则根据勾股定理可以得到关于x 的方程,解方程得到x 的值后即可得到8-x 即BF 的值 .【详解】∵将一矩形纸片ABCD 折叠,使两个顶点,A C 重合,折痕为FG ,∴FG 是AC 的垂直平分线,∴AF CF =,设AF FC x ==,在Rt ABF ∆中,由勾股定理得:222AB BF AF +=,即()22248x x +-=解得:5x =,即5,853CF BF ==-=,故答案为:3.【点睛】本题考查矩形与折叠的综合运用,综合运用折叠性质、方程思想和勾股定理求解是解题关键. 19.5【分析】直接根据根与系数的关系求出再代入求值即可【详解】解:∵x1x2是方程2x2-5x+1=0的两个根∴x1+x2=-∴故答案为:5【点睛】本题考查了根与系数的关系:若x1x2是一元二次方程ax解析:5【分析】直接根据根与系数的关系,求出12x x +,12x x 再代入求值即可.【详解】解:∵x 1,x 2是方程2x 2-5x+1=0的两个根,∴x 1+x 2=--55-=22,121=2x x . ∴121252==512x x x x + 故答案为:5.【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=b a -,x 1x 2=c a. 20.【分析】由一元二次方程根与系数的关系解题即【详解】解:∵x2+2x ﹣m2﹣m =0m =123…2020∴由根与系数的关系得:α1+β1=﹣2α1β1=﹣1×2;α2+β2=﹣2α2β2=﹣2×3;…α 解析:40402021【分析】 由一元二次方程根与系数的关系解题,即+=-b c a aαβαβ=,. 【详解】解:∵x 2+2x ﹣m 2﹣m =0,m =1,2,3, (2020)∴由根与系数的关系得:α1+β1=﹣2,α1β1=﹣1×2;α2+β2=﹣2,α2β2=﹣2×3;…α2020+β2020=﹣2,α2020β2021=﹣2020×2021; ∴原式=3320202020112211223320202020++++++++αβαβαβαβαβαβαβαβ 2222=++++12233420202021⨯⨯⨯⨯ 1111111=2(1)2233420202021⨯-+-+-++- 1=2(1)2021⨯-4040=2021 故答案为:40402021. 【点睛】本题考查一元二次方程根与系数的关系,是重要考点,难度较易,掌握相关知识是解题关键.三、解答题21.(1)121,9x x =-=-;(2)1222,22x x == 【分析】(1)运用因式分解法求解即可(2)运用公式法求解即可.【详解】解:(1)∵x 2+10x +9=0,∴(x +1)(x +9)=0, 则x +1=0或x +9=0,解得x 1=﹣1,x 2=﹣9;(2)x 2=14整理,得:x 2﹣14=0,∵a=1,b c=﹣14,∴△2﹣4×1×(﹣14)=4>0,则x,即x1,x2【点睛】此题考查了一元二次方程的解法,熟练掌握一元二次方程的解法是解答此题的关键.22.(1)至少卖出仙女山红茶800盒;(2)a的值为5.【分析】(1)设卖出仙女山红茶x盒,则卖出桃片糕(2000-x)盒,由题意得关于x的不等式,求解即可;(2)根据(1)的结果得出桃片糕最多卖出的盒数,根据题意得出关于x的方程,解方程即可.【详解】解:(1)设卖出仙女山红茶x盒,则卖出桃片糕(2000-x)盒,由题意得:50x+12(2000-x)≥54400,解得:x≥800,∴x的最小值是800,∴至少卖出仙女山红茶800盒;(2)∵(1)中最少卖出仙女山红茶800盒,∴桃片糕最多卖出的盒数为:2000-800=1200(盒).由题意得:12×(110%3a-)×1200×(1+6a%)+50(1-4a%)×800×(1+4a%)=54400-80a,解得:a1=0(舍去),a2=5.∴a的值为5.【点睛】本题考查了一元一次不等式和一元二次方程在实际问题中的应用,理清题中的数量关系并正确列式是解题的关键.23.(1)见解析;(2)S1>S2,见解析【分析】(1)利用配方法,将原式化成含平方代数式形式﹣(a﹣3)2﹣1,可判断其值为负数;(2)用a分别表示出S1与S2,再作差比较即可.【详解】解:(1)﹣a2+6a﹣10=﹣(a2﹣6a+9)﹣1=﹣(a ﹣3)2﹣1,∵(a ﹣3)2≥0,∴﹣(a ﹣3)2≤0,∴﹣(a ﹣3)2﹣1<0,∴代数式﹣a 2+6a ﹣10的值一定是负数;(2)S 1>S 2,理由是:∵S 1=a 2,S 2=4(a ﹣3),∴S 1﹣S 2=a 2﹣4(a ﹣3)=a 2﹣4a+12=a 2﹣4a+4+8=(a ﹣2)2+8,∵(a ﹣2)2≥0,∴(a ﹣2)2+8≥8,∴S 1﹣S 2>0,∴S 1>S 2.【点睛】本题主要考查配方法的应用,掌握配方法是解题的关键,注意两数比较大小时可用作差法.24.(1)54m ≤;(2)0m = 【分析】(1)利用根的判别式,因为方程有两个实数根,所以0∆≥,列式求出m 取值范围;(2)利用韦达定理公式得1221x x m +=-,2121x x m ⋅=-,代入原式得到与m 有关的一元二次方程,解出m 的值.【详解】(1)∵()222110x m x m --+-=有两个实数根,∴24b ac ∆=- ()()222141m m =----⎡⎤⎣⎦2244144m m m =-+-+45m =-+,∴450m -+≥45m -≥-54m ≤; (2)∵()222110x m m --+-=, ∴1221b x x m a +=-=-,2121x x m ⋅=-,()12210x x x -+=11220x x x x -⋅+=()12120x x x x +-⋅=,()22110m m ---=22110m m --+=220m m -+=()20m m --=,∴0m =或2m =,∵由①知,54m ≤, ∴0m =.【点睛】本题考查一元二次方程根的判别式和根于系数的关系式,解题的关键是熟练运用这两个知识点去解决问题.25.(13;(2)12+;(3)4;(4)12x =,24x =-. 【分析】(1)利用用二次根式的性质化成最简二次根式,再合并同类二次根式即可;(2)根据二次根式的乘除法则以及绝对值的性质计算,再合并同类二次根式即可; (3)根据零指数幂,负整数指数幂以及完全平方公式计算,再合并同类二次根式即可; (4)移项,利用直接开平方法即可求解.【详解】(13=+3=;(2|11)=-1=1=;(3)102(1)-++121=+-4=-(4)2(1)90x +-=, 移项得:2(1)9x +=,∴13x +=或13x +=-, 12x =,24x =-.【点睛】本题考查了解一元二次方程-直接开平方法,二次根式的混合运算,掌握运算法则是解答本题的关键.26.(1)1222x x ==2)121x x ==-;(3)1232x x ==,;(4)1211x x =-=,【分析】(1)直接利用配方法解方程得出答案即可;(2)方程整理后,利用利用配方法解方程得出答案即可;(3)利用分解因式法解方程即可;(4)方程整理后,利用提取公因式法分解因式进而解方程即可.【详解】(1)2420x x -+=,移项得:242x x -=-,配方得:24424x x -+=-+,即2(2)2x -=,开方得:2x -=,解得:1222x x ==(2)()255210x x ++=, 整理得:2210x x ++=,即2(1)0x +=,∴121x x ==-;(3)2560x x -+=,因式分解得:()()320x x --=,∴30x -=,20x -=,∴1232x x ==,;(4)()3133x x x +=+,整理得:()()110x x x +-+=,因式分解得:()()110x x +-=,∴10x +=,10x -=,∴1211x x =-=,. 【点睛】本题主要考查了解一元二次方程,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.。
新人教版初中数学九年级数学上册第一单元《一元二次方程》检测题(含答案解析)(1)

一、选择题1.下列方程是关于x 的一元二次方程的是( )A .20ax bx c ++=B .210x y -+=C .2120x x +-=D .(1)(2)1x x x -+=-2.用直接开平方的方法解方程22(31)(25)x x +=-,做法正确的是( )A .3125x x +=-B .31(25)x x +=--C .31(25)x x +=±-D .3125x x +=±-3.27742322x -±+⨯⨯=⨯是下列哪个一元二次方程的根( ) A .22730x x ++=B .22730x x --=C .22730x x +-=D .22730x x -+=4.如图,若将上图正方形剪成四块,恰能拼成下图的矩形,设1a =,则b =( )A .512B .512C 53+D 21 5.已知4是关于x 的方程()2120x m x m -++=的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC 的两条边的边长,则△ABC 的周长为( )A .7B .7或10C .10或11D .11 6.关于x 的一元二次方程()25410a x x ---=有实数根,则a 满足( ). A .5a ≠ B .1a ≥且5a ≠ C .1a ≥ D .1a <且5a ≠ 7.由于疫情得到缓和,餐饮行业逐渐回暖,某地一家餐厅重新开张,开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元,若设每天的增长率为x ,则x 满足的方程是( )A .5000(1+x )=6050B .5000(1+2x )=6050C .5000(1﹣x )2=6050D .5000(1+x )2=60508.用配方法解方程23620x x -+=时,方程可变形为( )A .21(3)3x -=B .21(1)33x -=C .21(1)3-=x D .2(31)1x -= 9.关于x 的一元二次方程(a -1)x²-x +a²-1=0的一个根是0,则a 的值为( ) A .1 B .-1 C .1或-1 D .010.若关于x 的一元二次方程2(1)210m x x +--=有实数根,则m 的取值范围是( ) A .2m >- B .2m ≥- C .2m >-且1m ≠- D .2m ≥-且1m ≠-11.已知关于x 的一元二次方程()22210x m x m -+=-有实数根,则m 的取值范围是( )A .0m ≠B .14mC .14m <D .14m > 12.一元二次方程(x ﹣3)2﹣4=0的解是( )A .x =5B .x =1C .x 1=5,x 2=﹣5D .x 1=1,x 2=5二、填空题13.一元二次方程 x ( x +3)=0的根是__________________.14.将一元二次方程(32)(1)83x x x -+=-化成一般形式是_____.15.某校八年级举行足球比赛,每个班级都要和其他班级比赛一次,结果一共进行了6场比赛,则八年级共有_____个班级.16.方程2350x x -=的一次项系数是______.17.一元二次方程x 2=2x 的解为__________18.已知关于x 的方程2x m =有两个相等的实数根,则m =________.19.2019女排世界杯于9月14月至29日在日本举行,赛制为单循环比赛(即每两个队之间比赛一场)一共比赛66场,中国女排以全胜成绩卫冕世界杯冠军为国庆70周年献上大礼,则中国队在本届世界杯比赛中连胜__场20.已知关于x 的方程28m 0x x ++=有一根为2-,则方程的另一根为______三、解答题21.已知关于x 的一元二次方程kx 2+6x ﹣1=0有两个不相等的实数根.(Ⅰ)求实数k 的取值范围;(Ⅱ)写出满足条件的k 的最小整数值,并求此时方程的根.22.新冠疫情蔓延全球,口罩成了人们的生活必须品.某商店销售一款口罩,每袋进价为12元,计划每袋售价大于12元但不超过20元,通过市场调查发现,这种口罩每袋售价为18元时,日均销售量为50袋,而当每袋售价提高1元时,日均销售量就减少5袋. (1)在每袋售价为18元的基础上,将这种口罩的售价每袋提高x 元,则日均销售量是_________袋;(用含x 的代数式表示)(2)经综合考察,要想使这种口罩每天赢利315元,该商场每袋口罩的销售价应定为多少元?23.关于x 的一元二次方程()2220x k x k -++=. (1)判断方程根的情况,并说明理由.(2)若1x =是方程的一个根,求k 的值和方程的另一根.24.解下列方程:(1)2410x x --=;(2)(4)123x x x -=-.25.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边由长为30米的篱笆围成.已知墙长为18米(如图所示),若苗圃园的面积为72平方米.求这个苗圃园垂直于墙的一边长为多少米?26.解下列方程:(1)2320x x +-=(2)()220x x x -+-=【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】利用一元二次方程定义进行解答即可.【详解】A 、当a =0时,不是一元二次方程,故此选项不合题意;B 、含有两个未知数,不是一元二次方程,故此选项不合题意;C 、不是整式方程,故此选项不合题意;D 、是一元二次方程,故此选项符合题意;故选:D .【点睛】此题主要考查了一元二次方程定义,关键是掌握判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.2.C解析:C【分析】一元二次方程22(31)(25)x x +=-,表示两个式子的平方相等,因而这两个数相等或互为相反数,据此即可把方程转化为两个一元一次方程,即可求解.【详解】解:22(31)(25)x x +=-开方得31(25)x x +=±-,故选:C .【点睛】本题考查了解一元二次方程-直接开平方法,关键是将方程右侧看做一个非负已知数,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.3.C解析:C【分析】根据求根公式逐一列出每个方程根的算式即可得出答案.【详解】A 、22730x x ++=的解为x =B 、22730x x --=的解为x =C 、22730x x +-=的解为722x -±=⨯,符合题意;D 、22730x x -+=的解为x =故选:C .【点睛】 本题主要考查了一元二次方程的根,用求根公式解一元二次方程的方法是公式法. 4.B解析:B【分析】根据上图可知正方形的边长为a+b ,下图长方形的长为a+b+b ,宽为b ,并且它们的面积相等,由此可列出(a+b )2=b(a+b+b),解方程即可求得结论.【详解】解:根据题意得:正方形的边长为a+b ,长方形的长为a+b+b ,宽为b ,则(a+b )2=b(a+b+b),即a 2﹣b 2+ab=0,∴2)10aa b b+-=(,解得:12a b -±=, ∵a b >0,∴a b =,∴当a=1时,b ==, 故选:B .【点睛】 本题考查了图形的拼接、解一元二次方程、正方形的面积、长方形的面积,正确理解题意,找到隐含的数量关系列出方程是解答的关键.5.C解析:C【分析】把x=4代入已知方程求得m 的值;然后通过解方程求得该方程的两根,即等腰△ABC 的两条边长,由三角形三边关系和三角形的周长公式进行解答即可.【详解】解:把x=4代入方程得16-4(m+1)+2m=0,解得m=6,则原方程为x 2-7x+12=0,解得x 1=3,x 2=4,因为这个方程的两个根恰好是等腰△ABC 的两条边长,①当△ABC 的腰为4,底边为3时,则△ABC 的周长为4+4+3=11;②当△ABC 的腰为3,底边为4时,则△ABC 的周长为3+3+4=10.综上所述,该△ABC 的周长为10或11.故选C .【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.也考查了三角形三边的关系.6.B解析:B【分析】由方程有实数根可知根的判别式b 2-4ac≥0,结合二次项的系数非零,可得出关于a 一元一次不等式组,解不等式组即可得出结论.【详解】解:由已知得:()()()25044510a a -≠⎧⎪⎨--⨯-⨯-≥⎪⎩, 解得:a ≥1且a≠5.故选:B .【点睛】本题考查了根的判别式,解题的关键是得出关于a 的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,由根的判别式结合二次项系数非零得出不等式组是关键.7.D解析:D【分析】根据开业第一天收入约为5000元,之后两天的收入按相同的增长率增长,第3天收入约为6050元列方程即可得到结论.【详解】解:设每天的增长率为x ,依题意,得:5000(1+x )2=6050.故选:D .【点睛】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.8.C解析:C【分析】先移项得到2362x x -=-,再把方程两边都除以3,然后把方程两边加上1即可得到()2113x -=. 【详解】移项得:2362x x -=-,二次系数化为1得:2223x x -=-, 方程两边加上1得:222113x x -+=-+, 所以()2113x -=. 故选:C .【点睛】 本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键. 9.B【分析】把0x =代入,求出a 的值即可.【详解】解:把0x =代入可得210a -=,解得1a =±,∵一元二次方程二次项系数不为0,∴1a ≠,∴1a =-,故选:B .【点睛】本题考查一元二次方程的解,注意二次项系数不为0.10.D解析:D【分析】根据一元二次方程的定义和判别式的意义得到10m +≠且240b ac =-≥,然后求写出两不等式的公共部分即可.【详解】根据题意得10m +≠且()()224(2)4110b ac m =-=--+⨯-≥, 解得1m ≠-且2m ≥-.故选:D .【点睛】本题考查了根的判别式:一元二次方程20ax bx c ++=(0a ≠)的根与24b ac =-有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.11.B解析:B【分析】由方程有实数根即△=b 2﹣4ac ≥0,从而得出关于m 的不等式,解之可得.【详解】解:根据题意得,△=b 2﹣4ac =[﹣(2m ﹣1)]2﹣4m 2=﹣4m +1≥0, 解得:14m, 故选:B .【点睛】本题主要考查根的判别式,熟练掌握一元二次方程的根与判别式间的关系是解题的关键. 12.D解析:D利用直接开平方法求解即可.【详解】解:∵(x ﹣3)2﹣4=0,∴(x ﹣3)2=4,则x ﹣3=2或x ﹣3=﹣2,解得x 1=5,x 2=1,故选:D .【点睛】本题考查了用直接开平方法解一元二次方程,掌握解法是关键.二、填空题13.【分析】用因式分解法解方程即可【详解】解:x(x+3)=0x =0或x+3=0;故答案为:【点睛】本题考查了一元二次方程的解法掌握两个数的积为0这两个数至少有一个为0是解题关键解析:12x 0x -3==,【分析】用因式分解法解方程即可.【详解】解:x ( x +3)=0,x =0或 x +3=0,12x 0x -3==,;故答案为:12x 0x -3==,.【点睛】本题考查了一元二次方程的解法,掌握两个数的积为0,这两个数至少有一个为0是解题关键.14.【分析】先计算多项式乘以多项式并移项再合并同类项即可【详解】故答案为:【点睛】此题考查一元二次方程的一般形式掌握多项式乘以多项式合并同类项计算法则是解题的关键解析:23710x x -+=【分析】先计算多项式乘以多项式,并移项,再合并同类项即可.【详解】(32)(1)83x x x -+=-23322830x x x x +---+=23710x x -+=故答案为:23710x x -+=.此题考查一元二次方程的一般形式,掌握多项式乘以多项式,合并同类项计算法则是解题的关键.15.3【分析】设共有个班级参加比赛根据共有45场比赛列出方程求出方程的解即可得到结果【详解】解:设共有个班级参加比赛根据题意得:整理得:即解得:或(舍去)则共有3个班级球队参加比赛故答案为:3【点睛】此 解析:3.【分析】设共有x 个班级参加比赛,根据共有45场比赛列出方程,求出方程的解即可得到结果.【详解】解:设共有x 个班级参加比赛, 根据题意得:(1)62x x -=, 整理得:260x x --=,即(3)(2)0x x -+=, 解得:3x =或2x =-(舍去).则共有3个班级球队参加比赛.故答案为:3.【点睛】此题考查了一元二次方程的应用,解题的关键是找出等量关系“需安排6场比赛”. 16.-5【分析】根据一元二次方程的一般形式解答【详解】解:方程的一次项是其系数是故答案是:【点睛】本题考查一元二次方程的一般式解题的关键是掌握一次项系数的定义解析:-5【分析】根据一元二次方程的一般形式解答.【详解】解:方程2350x x -=的一次项是5x -,其系数是5-.故答案是:5-.【点睛】本题考查一元二次方程的一般式,解题的关键是掌握一次项系数的定义.17.0或2【分析】移项后分解因式即可得出两个一元一次方程求出方程的解即可【详解】解:x2=2xx2-2x=0x (x-2)=0x=0x-2=0x=0或2故答案为:0或2【点睛】本题考查了解一元二次方程的应解析:0或2.【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】解:x 2=2x ,x(x-2)=0,x=0,x-2=0,x=0或2.故答案为:0或2.【点睛】本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程,难度适中.18.0【分析】先将方程化成一般式然后再运用根的判别式求解即可【详解】解:∵关于的方程有两个相等的实数根∴关于的方程有两个相等的实数根∴△=02-4m=0解得m=0故答案为0【点睛】本题主要考查了一元二次解析:0【分析】先将方程化成一般式,然后再运用根的判别式求解即可.【详解】=有两个相等的实数根,解:∵关于x的方程2x m∴关于x的方程20-=有两个相等的实数根,x m∴△=02-4m=0,解得m=0.故答案为0.【点睛】本题主要考查了一元二次方程根的判别式,掌握“当△=0时,方程有两个相等的实数根”是解答本题的关键.19.11【分析】设中国队在本届世界杯比赛中连胜x场则共有(x+1)支队伍参加比赛根据一共比赛66场即可得出关于x的一元二次方程解之取其正值即可得出结论【详解】设中国队在本届世界杯比赛中连胜x场则共有(x解析:11【分析】设中国队在本届世界杯比赛中连胜x场,则共有(x+1)支队伍参加比赛,根据一共比赛66场,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【详解】设中国队在本届世界杯比赛中连胜x场,则共有(x+1)支队伍参加比赛,依题意,得:1x(x+1)=66,2整理,得:x2+x-132=0,解得:x1=11,x2=-12(不合题意,舍去).所以,中国队在本届世界杯比赛中连胜11场.故答案为11.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 20.【分析】根据一元二次方程根与系数的关系直接求解即可【详解】因为已知关于的方程有一个根是-2由二次方程根与系数的关系可知:即有:解得:故答案为:【点睛】本题主要考查一元二次方程根与系数的关系如果方程的 解析:6-【分析】根据一元二次方程根与系数的关系直接求解即可.【详解】因为已知关于x 的方程 280x x m ++=有一个根是-2,由二次方程根与系数的关系可知:128x x +=-,即有:228x -+=-解得:26x =-.故答案为:6-.【点睛】本题主要考查一元二次方程根与系数的关系,如果方程20x px q ++=的两个根是 1x ,2x ,那么12x x p +=-, 12·x x q =,熟练掌握一元二次方程根与系数的关系是解题的关键.三、解答题21.(Ⅰ)k >﹣9且k ≠0;(Ⅱ)8k =-,112x =,214x = 【分析】(Ⅰ)根据一元二次方程的定义以及根的判别式得到k ≠0,且△>0,然后解两个不等式即可得到实数k 的取值范围;(Ⅱ)根据(Ⅰ)中k 的取值范围,任取一k 的值,然后解方程即可.【详解】解:(Ⅰ)根据题意得,k ≠0,且△>0,即2640k +>,解得k >﹣9,∴实数k 的取值范围为k >﹣9且k ≠0;(Ⅱ)由(1)知,实数k 的取值范围为k >﹣9且k ≠0,故取8k =-,所以该方程为28610x x -+-=,解得112x =,214x =. 【点睛】本题考查一元二次方程的根的判别式和解一元二次方程,解题的关键是熟练运用根的判别式和解一元二次方程的方法.22.(1)505x -;(2)19元.(1)销售量=原来销售量-下降销售量,据此列式即可;(2)设这种口罩的售价每袋提高x 元,根据销售量×每袋利润=总利润列出方程求解即可.【详解】(1)∵每袋售价提高1元时,日均销售量就减少5袋,∴每天销量减少5x 袋,∵售价为18元时,日均销售量为50袋,∴将这种口罩的售价每袋提高x 元,则日均销售量是:505x -.故答案为:505x -(2)设这种口罩的售价每袋提高x 元,根据题意得:(1812)(505)315x x +--=,化简得:2430x x -+=,解得:121,3x x ==,当11x =时,每袋售价是:18119+=(元);当23x =时,每袋售价是:18321+=(元);∵计划每袋售价大于12元但不超过20元,∴23x =舍去.∴当1x =时,每袋售价是19元.答:该商场每袋口罩的售价应定为19元.【点睛】本题考查一元二次方程的应用,关键是根据售价和销售量的关系,以利润做为等量关系列方程求解.23.(1)有两个实数根,证明见解析;(2)1k =,2x =【分析】(1)利用根的判别式进行判断根的情况,即可得到答案;(2)把1x =代入方程,即可求出k 的值,然后解一元二次方程,即可得到另一个根.【详解】解:(1)根据题意,在一元二次方程()2220x k x k -++=中, ∵2(2)42k k ∆=+-⨯,244k k =-+,2(2)0k =-,∴对于任意的实数k ,原方程总有两个实数根.(2)∵1x =是方程2(2)20x k x k -++=的一个根.∴1(2)120k k -+⨯+=,解得:1k =,∴原方程为2320x x -+=,解得:11x =,22x =,∴原方程的另一根为22x =. 【点睛】本题考查了解一元二次方程以及根的判别式,牢记当0∆≥时方程有两个实数根是解题的关键.24.(1)12x =22x =2)x 4=或x 3=-【分析】(1)利用配方法解方程;(2)利用因式分解法解方程.【详解】(1)2410x x --=2445x x +=-2(2)5x -=则2x -=解得12x =22x =(2)解:(4)3(4)0x x x -+-=,(4)(3)0x x -+=,则40x -=或30x +=,解得x 4=或x 3=-.【点睛】此题考查解一元二次方程:直接开平方法、配方法、公式法、因式分解法,根据一元二次方程的特点选择恰当的解法是解题的关键.25.这个苗圃园垂直于墙的一边长为12米.【分析】设这个苗圃园垂直于墙的一边长为x 米,利用长方形面积公式列方程求解,再根据靠墙边的长度范围确定取值即可.【详解】设这个苗圃园垂直于墙的一边长为x 米,根据题意得:()30272x x -=解得:13x =,212x =,∵30218x -≤,∴6x ≥,∴12x =.答:这个苗圃园垂直于墙的一边长为12米.【点睛】本题考查了长方形的周长公式的运用,长方形的面积公式的运用,一元二次方程的解法的运用,解答时根据长方形的面积公式建立方程是关键,注意实际应用中的取值范围.26.(1)1x =,2x =2)11x =-,22x =【分析】(1)直接应用公式法即可求解;(2)利用因式分解法即可求解.【详解】解:(1)2320x x +-=1,2x ==∴1x =,2x (2)()220x x x -+-=因式分解可得:()()120x x +-=,即10x +=或20x -=,解得11x =-,22x =. 【点睛】本题考查解一元二次方程,根据方程特点选择合适的求解方法是解题的关键.。
人教版初中数学九年级数学上册第一单元《一元二次方程》检测题(有答案解析)

一、选择题1.关于x 的一元二次方程()2230x a a x a +-+=的两个实数根互为倒数,则a 的值为( ) A .-3 B .0C .1D .-3或02.关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则k 的取值范围是( ) A .1k >-B .1k ≥-C .0k ≠D .1k >-且0k ≠3.下列一元二次方程中,没有实数根的是( ) A .(2)(2)0x x -+= B .220x -= C .2(1)0x -=D .2(1)20x ++=4.日历中含有丰富的数学知识,如在图1所示的日历中用阴影圈出9个数,这9个数的大小之间存在着某种规律.小慧在2020年某月的日历中也按图1所示方式圈出9个数(如图2),发现这9个数中最大的数与最小的数乘积是297,则这9个数中,中间的数e 是( ) 日一二 三 四 五 六图1图2A .17B .18C .19D .205.一元二次方程2304y y +-=,配方后可化为( ) A .21()12y +=B .21()12y -=C .211()22y +=D .213()24y -=6.方程29180x x -+=的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为( ) A .12B .15C .12或15D .187.新冠肺炎是一种传染性极强的疾病,如果有一人患病,经过两轮传染后有81人患病,设每轮传染中平均一个人传染了x 个人,下列列式正确是( ) A .(1)81x x x ++=B .2181x x ++=C .1(1)81x x x +++=D .(1)81x x += 8.下列关于一元二次方程23210x x ++=的根的情况判断正确的是( ) A .有一个实数根 B .有两个相等的实数根 C .没有实数根D .有两个不相等的实数根9.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为xcm ,那么x 满足的方程是( )A .x 2+65x-350=0B .x 2+130x-1400=0C .x 2-130x-1400=0D .x 2-65x-350=010.《代数学》中记载,形如2833x x +=的方程,求正数解的几何方法是:“如图1,先构造一个面积为2x 的正方形,再以正方形的边长为一边向外构造四个面积为2x 的矩形,得到大正方形的面积为331649+=,则该方程的正数解为743-=.”小聪按此方法解关于x 的方程2100x x m ++=时,构造出如图2所示的图形,已知阴影部分的面积为50,则该方程的正数解为( ).A .6B .3532C .532D .53511.用一条长40cm 的绳子怎样围成一个面积为75cm 2的矩形?设矩形的一边为x 米,根据题意,可列方程为( ) A .x (40-x )=75 B .x (20-x )=75C .x (x +40)=75D .x (x +20)=712.下列方程是一元二次方程的是( )A .20ax bx c ++=B .22(1)x x x -=-C .2325x x y -+=D .2210x +=二、填空题13.生物学家研究发现,很多植物的生长都有这样的规律:即主干长出若干数目的支干后,每个支干又会长出同样数目的小分支.现有符合上述生长规律的某种植物,它的主干、支干和小分支的总数是91,则这种植物每个支干长出多少个小分支?设这种植物每个支干长出x 个小分支,可列方程___________.14.若关于x 的一元二次方程210(0)ax bx a +-=≠有一根为2020x =,则一元二次方程2(1)(1)1a x b x +++=必有一根为________.15.将方程2630x x +-=化为()2x h k +=的形式是______. 16.将一元二次方程(32)(1)83x x x -+=-化成一般形式是_____. 17.方程230x -=的解为___________. 18.若()22214x y +-=,则22x y +=________.19.2019女排世界杯于9月14月至29日在日本举行,赛制为单循环比赛(即每两个队之间比赛一场)一共比赛66场,中国女排以全胜成绩卫冕世界杯冠军为国庆70周年献上大礼,则中国队在本届世界杯比赛中连胜__场20.若关于x 的一元二次方程x 2+2x ﹣m 2﹣m =0(m >0),当m =1、2、3、…2020时,相应的一元二次方程的两个根分别记为α1、β1,α2、β2,…,α2020、β2020,则112220202020111111αβαβαβ++++++的值为_____.三、解答题21.用适当的方法解下列方程: (1)22580x x --=;(2)23(5)2(5)x x -=-.22.关于x 的一元二次方程()2220x k x k -++=.(1)判断方程根的情况,并说明理由.(2)若1x =是方程的一个根,求k 的值和方程的另一根. 23.解方程: (1) 2890x x --= (2)(x+1)2=6x+6 24.请回答下列各题: (1)先化简,再求值:2319369x x x x x x x +--⎛⎫-÷⎪--+⎝⎭,其中x = (2)已知关于x 的方程2320x x m +-=没有实数根,求实数m 的取值范围. 25.解方程: (1)2340x x --=;(2)()()2151140x x -+--=.26.物美商场于今年年初以每件25元的进价购进一批商品.当商品售价为40元时,一月份销售256件.二、三月该商品十分畅销,销售量持续走高.在售价不变的基础上,三月底的销售量达到400件,设二、三这两个月月平均增长率不变.(1)求二、三这两个月的月平均增长率;(2)从四月份起,商场决定采用降价促销的方式回馈顺客,经调查发现,销售单价与月平均销售的关系如下表:【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据方程两个实数根互为倒数,得到两根之积为1,利用根与系数的关系求出a的值即可.【详解】解:∵关于x的一元二次方程x2+(a2-3a)x+a=0的两个实数根互为倒数,∴x1•x2=a=1.故选:C.【点睛】本题考查了根与系数的关系,能熟记根与系数的关系的内容是解此题的关键,注意:已知一元二次方程ax2+bx+c=0(a、b、c为常数,a≠0,b2-4ac≥0)的两根是x1,x2,那么x1+x2=-b a ,x1•x2=ca.2.D解析:D【分析】根据一元二次方程根的判别式得到关于k的不等式,然后求解不等式即可.【详解】是一元二次方程,k∴≠.有两个不相等的实数根,则Δ0>,2Δ24(1)0k=-⨯-⨯>,解得1k>-.1k∴>-且0k≠.故选D 【点睛】本题考查一元二次方程ax 2+bx +c =0(a ≠0)根的判别式: (1)当△=b 2﹣4ac >0时,方程有两个不相等的实数根; (2)当△=b 2﹣4ac =0时,方程有有两个相等的实数根; (3)当△=b 2﹣4ac <0时,方程没有实数根.3.D解析:D 【分析】分别利用因式分解法和直接开平方法解一元二次方程、一元二次方程的根的判别式即可得. 【详解】A 、由因式分解法得:122,2x x ==-,此项不符题意;B 、由直接开平方法得:120x x ==,此项不符题意;C 、由直接开平方法得:121x x ==,此项不符题意;D 、方程2(1)20x ++=可变形为2230x x ++=,此方程的根的判别式2241380∆=-⨯⨯=-<,则此方程没有实数根,此项符合题意; 故选:D . 【点睛】本题考查了解一元二次方程,熟练掌握各解法是解题关键.4.C解析:C 【分析】根据日历的特点得到8i e =+,8a e =-,列出一元二次方程解出e 的值. 【详解】解:根据日历的特点,同一列上下两个数相差7,前后两个数相差1, 则7h e =+,18i h e =+=+,7b e =-,18a b e =-=-, ∵最大的数与最小的数乘积是297,∴()()88297ai e e =-+=,解得19e =±,取正数,19e =. 故选:C . 【点睛】本题考查一元二次方程的应用,解题的关键是根据题意列出方程进行求解.5.A解析:A 【分析】根据配方法解一元二次方程的步骤计算可得. 【详解】解:∵230 4y y+-=,∴y2+y=34,则y2+y+14=34+14,即(y+12)2=1,故选:A.【点睛】本题主要考查解一元二次方程-配方法,用配方法解一元二次方程的步骤:①把原方程化为ax2+bx+c=0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.6.B解析:B【分析】首先求出方程的根,再根据三角形三边关系定理列出不等式,确定是否符合题意.【详解】解:解方程x2-9x+18=0,得x1=3,x2=6,当3为腰,6为底时,不能构成等腰三角形;当6为腰,3为底时,能构成等腰三角形,周长为6+6+3=15.故选:B.【点睛】本题考查了解一元二次方程,从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.7.C解析:C【分析】平均一人传染了x人,根据有一人患病,第一轮有(x+1)人患病,第二轮共有x+1+(x+1)x人,即81人患病,由此列方程求解.【详解】解:设每轮传染中平均一个人传染了x个人,根据题意得,x+1+(x+1)x=81故选:C.【点睛】本题考查了一元二次方程的应用,关键是得到两轮传染数量关系,从而可列方程求解.8.C解析:C 【分析】根据方程的系数结合根的判别式,可得出△=-8<0,进而可得出方程23210x x ++=没有实数根. 【详解】解:∵△=22-4×1×3=-8<0, ∴方程23210x x ++=没有实数根. 故选:C . 【点睛】本题考查了根的判别式,牢记“当△<0时,方程无实数根”是解题的关键.9.A解析:A 【分析】本题可设长为(80+2x ),宽为(50+2x ),再根据面积公式列出方程,化简即可. 【详解】解:依题意得:(80+2x )(50+2x )=5400, 即4000+260x+4x 2=5400, 化简为:4x 2+260x-1400=0, 即x 2+65x-350=0. 故选:A . 【点睛】本题考查的是一元二次方程的应用,解此类题目要注意运用面积的公式列出等式再进行化简.10.D解析:D 【分析】仿照题目中的做法可得空白部分小正方形的边长为52,先计算出大正方形的面积=阴影部分的面积+4个小正方形的面积,从而可得大正方形的边长,再用其减去两个空白正方形的边长即可. 【详解】解:如图2,先构造一个面积为2x 的正方形,再以正方形的边长为一边向外构造四个面积为52x 的矩形,得到大正方形的面积为255045025752⎛⎫+⨯=+= ⎪⎝⎭,∴525⨯=.2故选:D.【点睛】本题考查了一元二次方程的几何解法,读懂题意并数形结合是解题的关键.11.B解析:B【分析】根据长方形的周长可以用x表示另一边,然后根据面积公式即可列出方程.【详解】解:设矩形的一边为x米,则另一边为(20-x)米,∴x(20-x)=75,故选:B.【点睛】此题考查一元二次方程的实际应用,根据题意抽象出一元二次方程是解题的关键.12.D解析:D【分析】根据“只含有一个未知数,并且未知数的最高次数是2的整式方程:进行判断即可.【详解】解:A、当a=0时,该方程不是一元二次方程,故本选项不符合题意.B、该方程化简整理后是一元一次方程,故本选项不符合题意.C、该方程含有2个未知数,不是一元二次方程,故本选项不符合题意.D、该方程符合一元二次方程的定义,故本选项符合题意.故选:D.【点睛】本题主要考查了一元二次方程,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.二、填空题13.1+x+x2=91【分析】如果设每个支干分出x个小分支根据每个支干又长出同样数目的小分支可知:支干的数量为x个小分支的数量为x•x=x2个然后根据主干支干和小分支的总数是91就可以列出方程【详解】解解析:1+x+x2=91【分析】如果设每个支干分出x个小分支,根据“每个支干又长出同样数目的小分支”可知:支干的数量为x个,小分支的数量为x•x=x2个,然后根据主干、支干和小分支的总数是91就可以【详解】解:依题意得支干的数量为x 个, 小分支的数量为x•x=x 2个,那么根据题意可列出方程为:1+x+x 2=91, 故答案为:1+x+x 2=91. 【点睛】本题考查了由实际问题抽象出一元二次方程的知识,找到关键描述语,找到等量关系是解决问题的关键.14.x=2019【分析】对于一元二次方程设t=x+1得到at2+bt=1利用at2+bt-1=0有一个根为t=2020得到x+1=2020从而可判断一元二次方程a (x-1)2+b (x-1)-1=0必有一解析:x=2019 【分析】对于一元二次方程2(1)(1)1a x b x +++=,设t=x+1得到at 2+bt=1,利用at 2+bt-1=0有一个根为t=2020得到x+1=2020,从而可判断一元二次方程a (x-1)2+b (x-1)-1=0必有一根为x=2019. 【详解】解:对于一元二次方程2(1)(1)1a x b x +++=, 设t=x+1,所以at 2+bt=1,即at 2+bt-1=0,而关于x 的一元二次方程ax 2+bx-1=0(a≠0)有一根为x=2020, 所以at 2+bt-1=0有一个根为t=2020, 则x+1=2020, 解得x=2019,所以2(1)(1)1a x b x +++=必有一根为x=2019. 故答案为:x=2019. 【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.15.【分析】将方程常数项移到方程右边左右两边都加上9左边化为完全平方式右边合并即可得到所求的结果【详解】∵∴∴∴故答案为:【点睛】考查了解一元二次方程-配方法利用此方法解方程时首先将二次项系数化为1常数 解析:()2312x +=【分析】将方程常数项移到方程右边,左右两边都加上9,左边化为完全平方式,右边合并即可得到所求的结果.∵2630+-=x x∴263+=x x∴26939x x+++=∴()2312x+=x+=故答案为:()2312【点睛】考查了解一元二次方程-配方法,利用此方法解方程时,首先将二次项系数化为1,常数项移到方程右边,然后方程两边都加上一次项系数一半的平方,左边化为完全平方式,右边合并为一个常数,开方即可求出解.16.【分析】先计算多项式乘以多项式并移项再合并同类项即可【详解】故答案为:【点睛】此题考查一元二次方程的一般形式掌握多项式乘以多项式合并同类项计算法则是解题的关键解析:2-+=x x3710【分析】先计算多项式乘以多项式,并移项,再合并同类项即可.【详解】-+=-x x x(32)(1)8323322830+---+=x x x x2x x-+=3710故答案为:2-+=.x x3710【点睛】此题考查一元二次方程的一般形式,掌握多项式乘以多项式,合并同类项计算法则是解题的关键.17.【分析】先移项然后利用数的开方直接求出即可【详解】移项得解得:故答案为:【点睛】此题主要考查了直接开平方法解一元二次方程用直接开方法求一元二次方程的解要仔细观察方程的特点解析:x=【分析】先移项,然后利用数的开方直接求出即可.【详解】x=,移项得,23解得:x=故答案为:x=【点睛】此题主要考查了直接开平方法解一元二次方程,用直接开方法求一元二次方程的解,要仔细观察方程的特点.18.3【分析】根据题意将两边开方即可分情况得出的值【详解】解:两边开方得或故答案为:3【点睛】本题考查开方运算熟练掌握开方运算以及整体代换思想是解题的关键解析:3【分析】根据题意将()22214x y +-=两边开方,即可分情况得出22x y +的值.【详解】解:两边开方得2212x y +-=±, 223x y ∴+=或221x y +=-,220x y +≥,223x y ∴+=.故答案为:3.【点睛】本题考查开方运算,熟练掌握开方运算以及整体代换思想是解题的关键.19.11【分析】设中国队在本届世界杯比赛中连胜x 场则共有(x+1)支队伍参加比赛根据一共比赛66场即可得出关于x 的一元二次方程解之取其正值即可得出结论【详解】设中国队在本届世界杯比赛中连胜x 场则共有(x解析:11【分析】设中国队在本届世界杯比赛中连胜x 场,则共有(x+1)支队伍参加比赛,根据一共比赛66场,即可得出关于x 的一元二次方程,解之取其正值即可得出结论.【详解】设中国队在本届世界杯比赛中连胜x 场,则共有(x+1)支队伍参加比赛,依题意,得:12x(x+1)=66, 整理,得:x 2+x-132=0,解得:x 1=11,x 2=-12(不合题意,舍去).所以,中国队在本届世界杯比赛中连胜11场.故答案为11.【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 20.【分析】由一元二次方程根与系数的关系解题即【详解】解:∵x2+2x ﹣m2﹣m =0m =123…2020∴由根与系数的关系得:α1+β1=﹣2α1β1=﹣1×2;α2+β2=﹣2α2β2=﹣2×3;…α解析:40402021【分析】 由一元二次方程根与系数的关系解题,即+=-b c a a αβαβ=,. 【详解】解:∵x 2+2x ﹣m 2﹣m =0,m =1,2,3, (2020)∴由根与系数的关系得:α1+β1=﹣2,α1β1=﹣1×2;α2+β2=﹣2,α2β2=﹣2×3;…α2020+β2020=﹣2,α2020β2021=﹣2020×2021;∴原式=3320202020112211223320202020++++++++αβαβαβαβαβαβαβαβ 2222=++++12233420202021⨯⨯⨯⨯ 1111111=2(1)2233420202021⨯-+-+-++-1=2(1)2021⨯-4040=2021故答案为:40402021. 【点睛】本题考查一元二次方程根与系数的关系,是重要考点,难度较易,掌握相关知识是解题关键. 三、解答题21.(1)12x x ==2)12175,3x x == 【分析】(1)用公式法求解即可;(2)用因式分解法求解即可.【详解】解:(1)2,5,8a b c ==-=-,2(5)42(8)890∴∆=--⨯⨯-=>,524b x a -±±∴==, 1255,44x x ∴==(2)23(5)2(5)0x x ---=,移项得,23(5)2(5)0x x ---=,因式分解得,(5)(317)0x x --=,50x ∴-=或3170x -=,12175,3x x ∴== 【点睛】本题主要考查解一元二次方程的解法,熟练掌握解一元二次方程的几种常用方法:直接开平方法、配方法、公式法、因式分解法,结合方程的特点选择合适、简便的方法是解题的关键.22.(1)有两个实数根,证明见解析;(2)1k =,2x =【分析】(1)利用根的判别式进行判断根的情况,即可得到答案;(2)把1x =代入方程,即可求出k 的值,然后解一元二次方程,即可得到另一个根.【详解】解:(1)根据题意,在一元二次方程()2220x k x k -++=中, ∵2(2)42k k ∆=+-⨯,244k k =-+,2(2)0k =-,∴对于任意的实数k ,原方程总有两个实数根.(2)∵1x =是方程2(2)20x k x k -++=的一个根.∴1(2)120k k -+⨯+=,解得:1k =,∴原方程为2320x x -+=,解得:11x =,22x =,∴原方程的另一根为22x =. 【点睛】本题考查了解一元二次方程以及根的判别式,牢记当0∆≥时方程有两个实数根是解题的关键.23.(1)11x =-,29x =;(2)11x =-,25x =.【分析】(1)利用配方法求解即可;(2)利用因式分解法求解即可.【详解】(2)289x x ,2228494x x -+=+2(4)25x -=,45x =±,∴11x =-,29x =;(2)()2166x x +=+, ()21(66)0x x +-+=, ()216(1)0x x +-+=, ()()1160++-=x x ,(1)(5)0x x +-=,11x =-, 25x =.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.24.(1)12)13m <-. 【分析】(1)根据分式的加减乘除混合运算法则计算即可,求值时注意分母有理化.(2)根据方程没有实数根,可知∆<0,进而求得m 得取值范围.【详解】 (1)由题意得:原式23193(3)x x x xx x +--⎛⎫=-÷ ⎪--⎝⎭ 2(3)(3)(1)(3)(3)9x x x x x x x x ⎡⎤+----=⨯⎢⎥--⎣⎦ 2229(3)(3)9x x x x x x x --+-=⨯-- 29(3)(3)9x x x x x --=⨯-- 29(3)(3)9x x x x x --=⨯--3x x-=.3x =,∴原式1===. (2)该方程没有实数根,2242430b ac m ∴∆=-=+⨯⨯<,故4120m +<,解得13m <-. 【点睛】 本题考查分式的混合运算以及一元二次方程根的判别,熟练掌握分式运算法则以及根的判别公式是解题关键.25.(1)14x =,21x =-;(2)16x =-,23x =.【分析】(1)用十字相乘法分解因式求解即可;(2)把x-1看作一个整体,用十字相乘法分解因式求解即可;【详解】解:(1)2340x x --=,()()410x x -+=,40x ∴-=或10x +=,14x ∴=,21x =-;(2)()()2151140x x -+--=, ()()17120x x -+-⎡⎤⎡⎤⎣⎦⎣⎦-=,60x ∴+=或30x -=,16x ∴=-,23x =.【点睛】本题考查了一元二次方程的解法,常用的方法有直接开平方法、配方法、因式分解法、求根公式法,熟练掌握各种方法是解答本题的关键.26.(1)25%;(2)35元【分析】(1)由题意可得,1月份的销售量为:256件;设2月份到3月份销售额的月平均增长率,则二月份的销售量为:256(1+x );三月份的销售量为:256(1+x )(1+x ),又知三月份的销售量为:400元,由此等量关系列出方程求出x 的值,即求出平均增长率; (2)利用销量×每件商品的利润=4250求出即可.【详解】解:(1)设二、三这两个月的月平均增长率为x ,根据题意可得:256(1+x )2=400,解得:x 1=14=25%,x 2=94(不合题意舍去). 答:二、三这两个月的月平均增长率为25%; (2)由表可知:该商品每降价1元,销售量增加5件,设当商品降价m 元时,商品获利4250元,根据题意可得:(40-25-m )(400+5m )=4250,解得:m 1=5,m 2=-70(不合题意舍去),40-5=35元.答:销售单价应定为35元,商品获利4250元.【点睛】此题主要考查了一元二次方程的应用,本题的关键在于理解题意,找到等量关系准确的列出方程是解决问题的关键.。
人教版初中数学九年级数学上册第一单元《一元二次方程》测试(包含答案解析)

一、选择题1.用配方法解方程x 2﹣4x ﹣7=0,可变形为( )A .(x+2)2=3B .(x+2)2=11C .(x ﹣2)2=3D .(x ﹣2)2=11 2.方程2240x x --=经过配方后,其结果正确的是( )A .()215x -=B .()217x -=C .()214x -=D .()215x += 3.用配方法解下列方程时,配方错误的是( )A .x 2﹣2x ﹣99=0化为(x ﹣1)2=100B .x 2+8x+9=0化为(x+4)2=25C .2x 2﹣7x ﹣4=0化为(x ﹣74)2=8116D .3x 2﹣4x ﹣2=0化为(x ﹣23)2=109 4.若关于x 的方程kx²+4x-1=0有实数根,则k 的取值范围是( )A .k-4且k≠0B .k≥-4C .k>-4且k≠0D .k>-4 5.关于x 的一元二次方程()25410a x x ---=有实数根,则a 满足( ). A .5a ≠ B .1a ≥且5a ≠ C .1a ≥ D .1a <且5a ≠ 6.一个大正方形内放入两个同样大小的小正方形纸片,按如图1放置,两个小正方形纸片的重叠部分面积为4;按如图2放置(其中一小张正方形居大正方形的正中),大正方形中没有被小正方形覆盖的部分(阴影部分)的面积为44,则把两张小正方形按如图3放置时,两个小正方形重叠部分的面积为( )A .10B .12C .14D .16 7.当分式2369x x x --+的值为0时,则x 等于( ) A .3B .0C .3±D .-3 8.某商品经过连续两次降价,售价由原来的每件100元降到每件64元,则平均每次降价的百分率为( )A .15%B .40%C .25%D .20%9.已知2x 2+x ﹣1=0的两根为x 1、x 2,则x 1•x 2的值为( )A .1B .﹣1C .12D .12- 10.关于x 的方程x 2﹣kx ﹣2=0的根的情况是( )A .有两个相等的实数根B .没有实数根C .有两个不相等的实数根D .无法确定11.下列关于x 的一元二次方程中,有两个不相等的实数根的方程是( )A .290x +=B .24410x x -+=C .210x x ++=D .210x x +-= 12.已知关于x 的二次方程()21210--+=k x kx (k ≠1),则方程根的情况是( )A .没有实数根B .有两不等实数根C .有两相等实数根D .无法确定二、填空题13.生物学家研究发现,很多植物的生长都有这样的规律:即主干长出若干数目的支干后,每个支干又会长出同样数目的小分支.现有符合上述生长规律的某种植物,它的主干、支干和小分支的总数是91,则这种植物每个支干长出多少个小分支?设这种植物每个支干长出x 个小分支,可列方程___________.14.若关于x 的一元二次方程210(0)ax bx a +-=≠有一根为2020x =,则一元二次方程2(1)(1)1a x b x +++=必有一根为________.15.已知x a =是方程2350x x --=的根,则代数式234a a -++的值为________. 16.对于任意实数a ,b ,定义:22a b a ab b =++◆.若方程()250x -=◆的两根记为m 、n ,则22m n +=______.17.某农场的粮食产量在两年内从增加3000t 到3630,t 则平均每年增产的百分率是______________.18.已知x =1是一元二次方程(m -2)x 2+4x -m 2=0的一个根,则m 的值是_____. 19.已知a 为方程210x x -+=的一个根,则代数式2233a a -+的值为_____20.若()22214x y +-=,则22x y +=________.三、解答题21.已知关于x 的方程()220x mx m -+=-. (1)求证:不论m 为何值,该方程总有两个不相等的实数根;(2)若方程有一个根是2,求m 的值以及方程的另一个根.22.解下列方程:(1)2x 2﹣4x +1=0;(2)(2x ﹣1)2=(3﹣x )2.23.(1)x 2﹣8x+1=0;(2)2(x ﹣2)2=x 2﹣4.24.已知关于x 的方程kx 2﹣(3k ﹣1)x +2(k ﹣1)=0.(1)求证:无论k 为何实数,方程总有实数根;(2)若此方程有两个根x 1,x 2,且x 12+x 22=8,求k 的值.25.用适当的方法解一元二次方程:(1)()229x -=;(2)2230x x +-=.26.已知m 是方程220x x --=的一个实数根,求代数式22()(1)m m m m--+的值. 对于代数式2ax bx c ++,若存在实数n ,当x=n 时,代数式的值也等于n ,则称n 为这个代数式的不变值. 例如:对于代数式2x ,当x=0时,代数式等于0;当x=1时,代数式等于1,我们就称0和1都是这个代数式的不变值. 在代数式存在不变值时,该代数式的最大不变值与最小不变值的差记作A .特别地,当代数式只有一个不变值时,则A=0.(1)代数式22x -的不变值是________,A=________.(2)已知代数式231x bx -+,若A=0,求b 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】方程常数项移到右边,两边加上4变形得到结果即可.【详解】解:x 2﹣4x ﹣7=0,移项得:247x x -=配方得:24474x x -+=+ ,即2()211x -=故答案为:D .【点睛】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.2.A解析:A【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.【详解】解:∵x 2﹣2x ﹣4=0,∴x 2﹣2x =4,∴x 2﹣2x +1=4+1,∴(x ﹣1)2=5.故选:A .【点睛】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.3.B解析:B【分析】将常数项移到方程的右边,然后将二次项系数化为1,继而两边都加上一次项系数一半的平方配成完全平方式后即可得出答案.【详解】解:A、由x2﹣2x﹣99=0得x2﹣2x=99,则x2﹣2x+1=100,即(x﹣1)2=100,故本选项正确,不符合题意;B、由x2+8x+9=0得x2+8x=-9,则x2+8x+16=-9+16即(x+4)2=7此选项错误,符合题意;C、由2x2﹣7x﹣4=0得2x2﹣7x=4,则x2﹣72x=2,∴x2﹣72x+4916=2+4916,即274x⎛⎫-⎪⎝⎭=8116,故本选项正确,不符合题意;D、由3x2﹣4x﹣2=0,得3x2﹣4x=2,则x2﹣43x=23,∴故x2﹣43x+49=23+49,即(x﹣23)2=109,故本选项正确,不符合题意;故选:B.【点睛】本题主要考查解一元二次方程−配方法,用配方法解一元二次方程的步骤:①把原方程化为a2x+bx+c=0(a≠0)的形式;②方程两边同除以二次项系数,使二次项系数为1,并把常数项移到方程右边;③方程两边同时加上一次项系数一半的平方;④把左边配成一个完全平方式,右边化为一个常数;⑤如果右边是非负数,就可以进一步通过直接开平方法来求出它的解,如果右边是一个负数,则判定此方程无实数解.4.B解析:B【分析】分k=0和k≠0两种情况考虑,当k=0时可以找出方程有一个实数根;当k≠0时,根据方程有实数根结合根的判别式可得出关于m的一元一次不等式,解不等式即可得出k的取值范围.结合上面两者情况即可得出结论.【详解】解:当k=0时,原方程为-4x+1=0,解得:x=14,∴k=0符合题意;当k≠0时,∵方程kx 2-4x-1=0有实数根,∴△=(-4)2+4k≥0,解得:k≥-4且k≠0.综上可知:k 的取值范围是k≥-4.故选:B .【点睛】本题考查了根的判别式,总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.5.B解析:B【分析】由方程有实数根可知根的判别式b 2-4ac≥0,结合二次项的系数非零,可得出关于a 一元一次不等式组,解不等式组即可得出结论.【详解】解:由已知得:()()()25044510a a -≠⎧⎪⎨--⨯-⨯-≥⎪⎩, 解得:a≥1且a≠5.故选:B .【点睛】本题考查了根的判别式,解题的关键是得出关于a 的一元一次不等式组.本题属于基础题,难度不大,解决该题型题目时,由根的判别式结合二次项系数非零得出不等式组是关键.6.B解析:B【分析】设大正方形的边长为 a ,小正方形的边长为 b ,利用图1得到一个 a 与 b 关系式,再利用图2得到一个 a 与 b 关系式,即可求出 a 和 b ,然后再求图3阴影面积即可.【详解】图1中重叠部分的为正方形且其面积为4,∴重叠部分的边长为2,设大正方形边长为a ,小正方形的边长为b ,∴a -b +2=b ,如图2,阴影部分面积=a 2-2b 2+(b -2a b -)2=44,解得:b =6,∴a =10, 如图3,两个小正方形重叠部分的面积=()2b b a ⨯-=12.故答案为:B .【点睛】此题考查的是代数式的运算,正方形的性质,解一元二次方程,找到每个图中的等量关系式是解决此题的关键.7.D解析:D【分析】先根据分式的值为0的条件列出关于x 的不等式组,求出x 的值即可.【详解】 依题意得:230690x x x ⎧-⎨-+≠⎩=, 解得x =−3.故选:D【点睛】本题考查的是分式的值为0的条件,熟知分式值为零的条件是分子等于零且分母不等于零是解答此题的关键.8.D解析:D【分析】设平均每次降价的百分率为x ,根据该商品的原价及经过两次降价后的价格,即可得出关于x 的一元二次方程,解之即可得出结论.【详解】解:设平均每次降价的百分率为x ,依题意,得:100(1-x )2=64,解得:x 1=0.2=20%,x 2=1.8(不合题意,舍去).故选:D .【点睛】本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键. 9.D解析:D【分析】直接利用根与系数的关系解答.【详解】解:∵2x 2+x ﹣1=0的两根为x 1、x 2,∴x 1•x 2=12-=﹣12. 故选:D .【点睛】 此题主要考查了根与系数的关系,一元二次方程ax 2+bx+c=0(a≠0)的根与系数的关系为:x 1+x 2=-b a ,x 1•x 2=c a. 10.C解析:C【分析】根据一元二次方程根的判别式可得△=(﹣k )2﹣4×1×(﹣2)=k 2+8>0,即可得到答案.【详解】解:△=(﹣k )2﹣4×1×(﹣2)=k 2+8.∵k 2≥0,∴k 2+8>0,即△>0,∴该方程有两个不相等的实数根.故选:C .【点睛】本题考查一元二次方程根的判别式, 24b ac ∆=-,当0∆>时方程有两个不相等的实数根,当0∆=时方程有两个相等的实数根,当∆<0时方程没有实数根.11.D解析:D【分析】分别求出每个方程的根的判别式即可得到方程的根的情况.【详解】A 选项:2049360∆=-⨯=-<,∴该方程没有实数根,故A 错误;B 选项:()244410∆=--⨯⨯=,∴该方程有两个相等的实数根,故B 错误; C 选项:2141130∆=-⨯⨯=-<,∴该方程没有实数根,故C 错误;D 选项:()2141150∆=-⨯⨯-=>,∴方程有两个不相等的实数根,故D 正确; 故选:D.【点睛】此题考查一元二次方程的根的情况,正确求根的判别式的值,掌握一元二次方程的根的三种情况是解题的关键.12.B解析:B【分析】根据方程的系数结合根的判别式,可得出△21432k ⎛⎫=-+ ⎪⎝⎭>0,由此即可得出:无论k (k≠1)为何值,该方程总有两个不相等的实数根.【详解】在方程()21210--+=k x kx 中,∵1a k =-,2b k =-,1c =,∴()()224241b ac k k =-=--- 214302k ⎛⎫=-+> ⎪⎝⎭, ∴无论k (k≠1)为何值,该方程总有两个不相等的实数根.故选:B .【点睛】本题考查了根的判别式,解题的关键是熟练掌握“当△>0时,方程有两个不相等的实数根”. 二、填空题13.1+x+x2=91【分析】如果设每个支干分出x 个小分支根据每个支干又长出同样数目的小分支可知:支干的数量为x 个小分支的数量为x•x=x2个然后根据主干支干和小分支的总数是91就可以列出方程【详解】解解析:1+x+x 2=91【分析】如果设每个支干分出x 个小分支,根据“每个支干又长出同样数目的小分支”可知:支干的数量为x 个,小分支的数量为x•x=x 2个,然后根据主干、支干和小分支的总数是91就可以列出方程.【详解】解:依题意得支干的数量为x 个,小分支的数量为x•x=x 2个,那么根据题意可列出方程为:1+x+x 2=91,故答案为:1+x+x 2=91.【点睛】本题考查了由实际问题抽象出一元二次方程的知识,找到关键描述语,找到等量关系是解决问题的关键.14.x=2019【分析】对于一元二次方程设t=x+1得到at2+bt=1利用at2+bt-1=0有一个根为t=2020得到x+1=2020从而可判断一元二次方程a (x-1)2+b (x-1)-1=0必有一解析:x=2019【分析】对于一元二次方程2(1)(1)1a x b x +++=,设t=x+1得到at 2+bt=1,利用at 2+bt-1=0有一个根为t=2020得到x+1=2020,从而可判断一元二次方程a (x-1)2+b (x-1)-1=0必有一根为x=2019.【详解】解:对于一元二次方程2(1)(1)1a x b x +++=,所以at 2+bt=1,即at 2+bt-1=0,而关于x 的一元二次方程ax 2+bx-1=0(a≠0)有一根为x=2020,所以at 2+bt-1=0有一个根为t=2020,则x+1=2020,解得x=2019,所以2(1)(1)1a x b x +++=必有一根为x=2019.故答案为:x=2019.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解. 15.-1【分析】利用x=a 是方程x2-3x-5=0的根得到a2-3a=5然后利用整体代入的方法计算代数式的值【详解】解:∵x=a 是方程x2-3x-5=0的根∴a2-3a-5=0∴a2-3a=5∴故答案为解析:-1【分析】利用x=a 是方程x 2-3x-5=0的根得到a 2-3a=5,然后利用整体代入的方法计算代数式的值.【详解】解:∵x=a 是方程x 2-3x-5=0的根,∴a 2-3a-5=0,∴a 2-3a=5,∴()223434541a a a a -++=--+=-+=-.故答案为-1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解. 16.6【分析】根据新定义可得出mn 为方程x2+2x ﹣1=0的两个根利用根与系数的关系可得出m+n=﹣2mn=﹣1将其代入m2+n2=(m+n )2﹣2mn 中即可得出结论【详解】解:∵(x ◆2)﹣5=x2+解析:6【分析】根据新定义可得出m 、n 为方程x 2+2x ﹣1=0的两个根,利用根与系数的关系可得出m+n=﹣2、mn=﹣1,将其代入m 2+n 2=(m+n )2﹣2mn 中即可得出结论.【详解】解:∵(x ◆2)﹣5=x 2+2x+4﹣5,∴m 、n 为方程x 2+2x ﹣1=0的两个根,∴m+n=﹣2,mn=﹣1,∴m 2+n 2=(m+n )2﹣2mn=6.【点睛】 本题考查了根与系数的关系,牢记两根之和等于﹣b a 、两根之积等于c a是解题的关键. 17.【分析】此题是平均增长率问题一般用增长后的量=增长前的量×(1+增长率)参照本题如果设平均每年增产的百分率为x 根据粮食产量在两年内从3000吨增加到3630吨即可得出方程求解【详解】解:设平均每年增解析:10%【分析】此题是平均增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设平均每年增产的百分率为x ,根据“粮食产量在两年内从3000吨增加到3630吨”,即可得出方程求解.【详解】解:设平均每年增产的百分率为x ;第一年粮食的产量为:3000(1+x );第二年粮食的产量为:3000(1+x )(1+x )=3000(1+x )2;依题意,可列方程:3000(1+x )2=3630;解得:x=-2.1(舍去)或x=0.1=10%故答案为:10%.【点睛】本题考查了由实际问题抽象出一元二次方程中求平均变化率的方法.若设变化前的量为a ,变化后的量为b ,平均变化率为x ,则经过两次变化后的数量关系为a (1±x )2=b . 18.-1【分析】一元二次方程的根就是一元二次方程的解就是能够使方程左右两边相等的未知数的值即把x=1代入方程求解可得m 的值【详解】把x=1代入方程(m-2)x2+4x-m2=0得到(m-2)+4-m2=解析:-1【分析】一元二次方程的根就是一元二次方程的解,就是能够使方程左右两边相等的未知数的值.即把x =1代入方程求解可得m 的值.【详解】把x =1代入方程(m -2)x 2+4x -m 2=0得到(m -2)+4-m 2=0,整理得:220m m --=,因式分解得:()()120m m +-=,解得:m =-1或m =2,∵m -2≠0∴m =-1,故答案为:-1.【点睛】本题考查了一元二次方程的解的定义以及因式分解法解一元二次方程,解题的关键是正确的代入求解.注意:二次项系数不为0的条件.19.【分析】把代入已知方程求得然后将其整体代入所求的代数式求值【详解】由题意得:则所以故答案为:【点睛】本题考查了一元二次方程的解的定义解题时注意整体代入数学思想的应用解析:5【分析】把x a =代入已知方程,求得21a a =-,然后将其整体代入所求的代数式求值.【详解】由题意,得:210a a -+=,则21a a =-,所以,()2233231323335a a a a a a -+=--+=-++=. 故答案为:5.【点睛】本题考查了一元二次方程的解的定义.解题时,注意“整体代入”数学思想的应用. 20.3【分析】根据题意将两边开方即可分情况得出的值【详解】解:两边开方得或故答案为:3【点睛】本题考查开方运算熟练掌握开方运算以及整体代换思想是解题的关键解析:3【分析】根据题意将()22214x y +-=两边开方,即可分情况得出22x y +的值.【详解】解:两边开方得2212x y +-=±, 223x y ∴+=或221x y +=-,220x y +≥,223x y ∴+=.故答案为:3.【点睛】本题考查开方运算,熟练掌握开方运算以及整体代换思想是解题的关键.三、解答题21.(1)见解析;(2)m 的值为2,另一个根为0【分析】(1)先计算判别式的值得到△=(m-2)2+4,然后根据判别式的意义得到结论;(2)设方程的另一个为t ,利用根与系数的关系得到2+t=m ,2t=m-2,然后解方程组即可.(1)证明:∵1a =,b m =-,2c m =-∴()()()222244124824-=--⨯⨯-=-+=-+b ac m m m m m ∵()220m -≥,∴()2240m -+>. ∴无论m 为何值,该方程总有两个不相等的实数根.(2)根据题意:()22220-+-=m m ,∴2m = 则220x x -=,∴10x =,22x =. ∴m 的值为2,另一个根为0.【点睛】 本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=-b a ,x 1x 2=c a,也考查了判别式的意义.22.(1)x 1=1+2,x 2=1﹣2;(2)x 1=﹣2,x 2=43 【分析】(1)利用配方法解一元二次方程;(2)利用因式分解法解方程.【详解】(1)解:2x 2﹣4x +1=0,x 2﹣2x =﹣12, x 2﹣2x +1=﹣12+1,即(x ﹣1)2=12,∴x ﹣1=±2,∴x 1=1+2,x 2=1﹣2; (2)解:(2x ﹣1)2=(3﹣x )2.(2x ﹣1)2﹣(3﹣x )2=0,[(2x ﹣1)+(3﹣x )][(2x ﹣1)﹣(3﹣x )]=0,∴x +2=0或3x ﹣4=0,∴x 1=﹣2,x 2=43. 【点睛】本题考查一元二次方程的解法,熟练掌握配方法、因式分解法、公式法,并熟练运用是关键.23.(1)x 1=x 2=42)x 1=2,x 2=6.(1)先配方、然后运用直接开平方求解即可;(2)先将等式右边因式分解,然后移项,最后用因式分解法求解即可.【详解】解:(1)x 2﹣8x+1=0,x 2﹣8x =﹣1,x 2﹣8x+16=﹣1+16,(x ﹣4)2=15,∴x ﹣4=∴x1=x 2=4(2)∵2(x ﹣2)2=x 2﹣4,∴2(x ﹣2)2﹣(x+2)(x ﹣2)=0,则(x ﹣2)(x ﹣6)=0,∴x ﹣2=0或x ﹣6=0.解得x 1=2,x 2=6.【点睛】本题主要考查了一元二次方程的解法,掌握配方法、直接开平方法和因式分解法是解答本题的关键.24.(1)见解析;(2)-1或13 【分析】(1)根据方程kx 2﹣(3k ﹣1)x +2(k ﹣1)=0计算判别式的值得到△=(k +1)2≥0,即可证明结论;(2)利用根与系数的关系得到x 1+x 2=31k k -,x 1x 2=()21k k -,再根据x 12+x 22=8得出(31k k -)2﹣2•()21k k-=8,解此方程即可求解. 【详解】(1)证明:关于x 的方程kx 2﹣(3k ﹣1)x +2(k ﹣1)=0中,∵a =k ,b =﹣(3k ﹣1),c =2(k ﹣1),△()()231421k k k ⋅⋅=-﹣- 2296188k k k k ++=--221k k =++2(1)k =+,∴无论k 为任何实数,△0≥.∴无论k 为任何实数,方程总有实数根;(2)解:根据题意得x 1+x 2=31k k -,x 1x 2=()21k k -, ∵x 12+x 22=8,∴(x 1+x 2)2﹣2x 1x 2=8,∴(31k k -)2﹣2•()21k k-=8, 整理得3k 2+2k ﹣1=0,解得k 1=13,k 2=﹣1, 经检验k 1=13,k 2=﹣1为原方程的解, ∵k ≠0,∴k 的值为﹣1或13. 【点睛】 本题考查了根的判别式及根与系数关系,掌握一元二次方程根的判别式及根与系数的关系是解题的关键.25.(1)15=x ,21x =-;(2)13x =-,21x =【分析】(1)利用直接开平方法解方程即可;(2)利用公式法解方程即可.【详解】解:(1)∵()229x -=,∴23x -=±,∴23x -=或23x -=-,∴15=x ,21x =-.(2)∴ 1a =,2b =,3c =-,则()22413160=-⨯⨯-=>△,∴x = 即13x =-,21x =.【点睛】本题主要考查解一元二次方程.通过开平方运算解一元二次方程的方法叫做直接开平方法.公式法解一元二次方程的一般步骤,把方程化为一般形式确定各系数的值利用求解.26.(1)-1,2;3;(2)11b =-+21b =--【分析】(1)根据不变值的定义可得出关于x 的一元二次方程,解之即可求出x 的值,再作差后可求出A 的值;(2)由A=0可得出方程23(1)1x b x -++=0有两个相等的实数根,进而可得出△=0,解答即可得出结论.【详解】解:(1)根据题意得,220x x --=,解得,11x =-,22x =∴A=2-(1)=2+1=3,故答案为:-1,2;3;(2)根据题意得,23(1)1x b x -++=0有两个相等的实数根,∴△=[- (b+1)]2-4×3×1=0∴11b =-+21b =--【点睛】本题考查了一元二次方程的应用以及根的判别式,根据不变值的定义,求出一元二次方程的解是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版2020年第一单元《一元二次方程》真题再现一.一元二次方程的解(共2小题)1.(2019•兰州)x =1是关于x 的一元二次方程x 2+ax +2b =0的解,则2a +4b =( )A .﹣2B .﹣3C .﹣1D .﹣6【分析】先把x =1代入方程x 2+ax +2b =0得a +2b =﹣1,然后利用整体代入的方法计算2a +4b 的值.【解答】解:把x =1代入方程x 2+ax +2b =0得1+a +2b =0,所以a +2b =﹣1,所以2a +4b =2(a +2b )=2×(﹣1)=﹣2.故选:A .2.(2016•攀枝花)若x =﹣2是关于x 的一元二次方程x 2+23ax ﹣a 2=0的一个根,则a 的值为( ) A .﹣1或4 B .﹣1或﹣4 C .1或﹣4D .1或4 【分析】把x =﹣2代入已知方程,列出关于a 的新方程,通过解新方程可以求得a 的值.【解答】解:根据题意,将x =﹣2代入方程x 2+23ax ﹣a 2=0,得: 4﹣3a ﹣a 2=0,即a 2+3a ﹣4=0,左边因式分解得:(a ﹣1)(a +4)=0,∴a ﹣1=0,或a +4=0,解得:a =1或﹣4,故选:C .二.解一元二次方程-配方法(共1小题)3.(2019•南通)用配方法解方程x 2+8x +9=0,变形后的结果正确的是( )A .(x +4)2=﹣9B .(x +4)2=﹣7C .(x +4)2=25D .(x +4)2=7【分析】方程移项后,利用完全平方公式配方即可得到结果.【解答】解:方程x 2+8x +9=0,整理得:x 2+8x =﹣9,配方得:x 2+8x +16=7,即(x +4)2=7,故选:D .三.根的判别式(共5小题)4.(2020•自贡)关于x 的一元二次方程ax 2﹣2x +2=0有两个相等实数根,则a 的值为( )A .21B .﹣21C .1D .﹣1【分析】根据一元二次方程的定义及根的判别式△=0,即可得出关于a 的一元一次不等式及一元一次方程,解之即可得出a 的值.【解答】解:∵关于x 的一元二次方程ax 2﹣2x +2=0有两个相等实数根,∴()⎩⎨⎧=⨯⨯--=∆≠024202a a , ∴a =21. 故选:A .5.(2020•湖州)已知关于x 的一元二次方程x 2+bx ﹣1=0,则下列关于该方程根的判断,正确的是( )A .有两个不相等的实数根B .有两个相等的实数根C.没有实数根D.实数根的个数与实数b的取值有关【分析】先计算出判别式的值,再根据非负数的性质判断△>0,然后利用判别式的意义对各选项进行判断.【解答】解:∵△=b2﹣4×(﹣1)=b2+4>0,∴方程有两个不相等的实数根.故选:A.6.(2020•铜仁市)已知m、n、4分别是等腰三角形(非等边三角形)三边的长,且m、n是关于x的一元二次方程x2﹣6x+k+2=0的两个根,则k的值等于()A.7B.7或6C.6或﹣7D.6【分析】当m=4或n=4时,即x=4,代入方程即可得到结论,当m=n时,即△=(﹣6)2﹣4×(k+2)=0,解方程即可得到结论.【解答】解:当m=4或n=4时,即x=4,∴方程为42﹣6×4+k+2=0,解得:k=6,当m=n时,即△=(﹣6)2﹣4×(k+2)=0,解得:k=7,综上所述,k的值等于6或7,故选:B.7.(2020•黔西南州)已知关于x的一元二次方程(m﹣1)x2+2x+1=0有实数根,则m的取值范围是()A.m<2B.m≤2C.m<2且m≠1D.m≤2且m≠1【分析】根据二次项系数非零及根的判别式△≥0,即可得出关于m的一元一次不等式组,解之即可得出m 的取值范围.【解答】解:∵关于x 的一元二次方程(m ﹣1)x 2﹣2x +1=0有实数根,∴()⎩⎨⎧≥-⨯⨯-=∆≠-01142012m m ,解得:m ≤2且m ≠1.故选:D .8.(2018•鄂州)已知关于x 的方程x 2﹣(3k +3)x +2k 2+4k +2=0(1)求证:无论k 为何值,原方程都有实数根;(2)若该方程的两实数根x 1、x 2为一菱形的两条对角线之长,且x 1x 2+2x 1+2x 2=36,求k 值及该菱形的面积.【分析】(1)根据根的判别式的意义得到当△=[﹣(3k +3)]2﹣4(4k +2)≥0时,方程有实数根;(2)根据根与系数的关系得到x 1+x 2=3k +3,x 1x 2=4k +2,则代入所求的代数式进行求值;然后根据菱形的面积公式进行计算即可.【解答】(1)证明:根据题意得:△=[﹣(3k +3)]2﹣4(2k 2+4k +2)=(k +1)2.∵无论k 为何值,总有(k +1)2≥0,∴无论k 为何值,原方程都有实数根;(2)∵关于x 的方程x 2﹣(3k +3)x +2k 2+4k +2=0的两实数根是x 1、x 2,∴x 1+x 2=3k +3,x 1x 2=2k 2+4k +2,∴由x 1x 2+2x 1+2x 2=36,得2k 2+4k +2+2(3k +3)=36,整理,得(k +7)(k ﹣2)=0.解得k 1=﹣7(舍去),k 2=2. ∴21x 1x 2=21×2(k +1)2=(2+1)2=9. 即菱形的面积是9.四.根与系数的关系(共5小题)9.(2020•黔东南州)已知关于x的一元二次方程x2+5x﹣m=0的一个根是2,则另一个根是()A.﹣7B.7C.3D.﹣3【分析】根据根与系数的关系即可求出答案.【解答】解:设另一个根为x,则x+2=﹣5,解得x=﹣7.故选:A.10.(2020•遵义)已知x1,x2是方程x2﹣3x﹣2=0的两根,则x12+x22的值为()A.5B.10C.11D.13【分析】利用根与系数的关系得到x1+x2=3,x1x2=﹣2,再利用完全平方公式得到x12+x22=(x1+x2)2﹣2x1x2,然后利用整体代入的方法计算.【解答】解:根据题意得x1+x2=3,x1x2=﹣2,所以x12+x22=(x1+x2)2﹣2x1x2=32﹣2×(﹣2)=13.故选:D.11.(2019•遵义)一元二次方程x2﹣3x+1=0的两个根为x1,x2,则x12+3x2+x1x2﹣2的值是()A.10B.9C.8D.7【分析】先利用一元二次方程的解的定义得到x12=3x1﹣1,则x12+3x2+x1x2﹣2=3(x1+x2)+x1x2﹣3,接着利用根与系数的关系得到x1+x2=3,x1x2=1,然后利用整体代入的方法计算.【解答】解:∵x1为一元二次方程x2﹣3x+1=0的根,∴x12﹣3x1+1=0,∴x 12=3x 1﹣1,∴x 12+3x 2+x 1x 2﹣2=3x 1﹣1+3x 2+x 1x 2﹣2=3(x 1+x 2)+x 1x 2﹣3,根据题意得x 1+x 2=3,x 1x 2=1,∴x 12+3x 2+x 1x 2﹣2=3×3+1﹣3=7.故选:D .12.(2019•绥化)已知关于x 的方程kx 2﹣3x +1=0有实数根.(1)求k 的取值范围;(2)若该方程有两个实数根,分别为x 1和x 2,当x 1+x 2+x 1x 2=4时,求k 的值.【分析】(1)分k =0及k ≠0两种情况考虑:当k =0时,原方程为一元一次方程,通过解方程可求出方程的解,进而可得出k =0符合题意;当k ≠0时,由根的判别式△≥0可得出关于k 的一元一次不等式,解之即可得出k 的取值范围.综上,此问得解;(2)利用根与系数的关系可得出x 1+x 2=k 3,x 1x 2=k1,结合x 1+x 2+x 1x 2=4可得出关于k 的分式方程,解之经检验后即可得出结论. 【解答】解:(1)当k =0时,原方程为﹣3x +1=0,解得:x =31, ∴k =0符合题意;当k ≠0时,原方程为一元二次方程,∵该一元二次方程有实数根,∴△=(﹣3)2﹣4×k ×1≥0,解得:k ≤49. 综上所述,k 的取值范围为k ≤49.(2)∵x 1和x 2是方程kx 2﹣3x +1=0的两个根,x 1+x 2=k 3,x 1x 2=k1. ∵x 1+x 2+x 1x 2=4, ∴k 3+k1=4, 解得:k =1,经检验,k =1是分式方程的解,且符合题意.∴k 的值为1.13.(2019•巴中)已知关于x 的一元二次方程x 2+(2m +1)x +m 2﹣1=0有两不相等的实数根. ①求m 的取值范围.②设x 1,x 2是方程的两根且x 12+x 22+x 1x 2﹣17=0,求m 的值.【分析】①根据“关于x 的一元二次方程x 2+(2m +1)x +m 2﹣1=0有两不相等的实数根”,结合判别式公式,得到关于m 的不等式,解之即可,②根据“x 1,x 2是方程的两根且x 12+x 22+x 1x 2﹣17=0”,结合根与系数的关系,列出关于m 的一元二次方程,解之,结合(1)的结果,即可得到答案.【解答】解:①根据题意得:△=(2m +1)2﹣4(m 2﹣1)>0, 解得:45 >m , ②根据题意得:x 1+x 2=﹣(2m +1),x 1x 2=m 2﹣1,x 12+x 22+x 1x 2﹣17()()()17112172221221=---+=--+=m m x x x x 解得:m 1=35,m 2=﹣3(不合题意,舍去), ∴m 的值为35. 五.由实际问题抽象出一元二次方程(共3小题)14.(2020•衢州)某厂家2020年1~5月份的口罩产量统计如图所示.设从2月份到4月份,该厂家口罩产量的平均月增长率为x ,根据题意可得方程( )A .180(1﹣x )2=461B .180(1+x )2=461C .368(1﹣x )2=442D .368(1+x )2=442 【分析】本题为增长率问题,一般用增长后的量=增长前的量×(1+增长率),如果设这个增长率为x ,根据“2月份的180万只,4月份的利润将达到461万只”,即可得出方程.【解答】解:从2月份到4月份,该厂家口罩产量的平均月增长率为x ,根据题意可得方程:180(1+x )2=461,故选:B .15.(2020•遵义)如图,把一块长为40cm ,宽为30cm的矩形硬纸板的四角剪去四个相同小正方形,然后把纸板的四边沿虚线折起,并用胶带粘好,即可做成一个无盖纸盒.若该无盖纸盒的底面积为600cm2,设剪去小正方形的边长为xcm,则可列方程为()A.(30﹣2x)(40﹣x)=600B.(30﹣x)(40﹣x)=600C.(30﹣x)(40﹣2x)=600D.(30﹣2x)(40﹣2x)=600【分析】设剪去小正方形的边长是x cm,则纸盒底面的长为(40﹣2x)cm,宽为(30﹣2x)cm,根据长方形的面积公式结合纸盒的底面积是600cm2,即可得出关于x的一元二次方程,此题得解.【解答】解:设剪去小正方形的边长是x cm,则纸盒底面的长为(40﹣2x)cm,宽为(30﹣2x)cm,根据题意得:(30﹣2x)(40﹣2x)=600.故选:D.16.(2019•日照)某省加快新旧动能转换,促进企业创新发展.某企业一月份的营业额是1000万元,月平均增长率相同,第一季度的总营业额是3990万元.若设月平均增长率是x,那么可列出的方程是()A.1000(1+x)2=3990B.1000+1000(1+x)+1000(1+x)2=3990C.1000(1+2x)=3990D.1000+1000(1+x)+1000(1+2x)=3990【分析】设月平均增长的百分率是x,则该超市二月份的营业额为1000(1+x)万元,三月份的营业额为1000(1+x)2万元,根据该超市第一季度的总营业额是3990万元,即可得出关于x的一元二次方程,此题得解.【解答】解:设月平均增长的百分率是x,则该超市二月份的营业额为1000(1+x)万元,三月份的营业额为1000(1+x)2万元,依题意,得1000+1000(1+x )+1000(1+x )2=3990.故选:B .六.一元二次方程的应用(共3小题)17.(2019•徐州)如图,有一块矩形硬纸板,长30cm ,宽20cm .在其四角各剪去一个同样的正方形,然后将四周突出部分折起,可制成一个无盖长方体盒子.当剪去正方形的边长取何值时,所得长方体盒子的侧面积为200cm 2?【分析】设剪去正方形的边长为x cm ,则做成无盖长方体盒子的底面长为(30﹣2x )cm ,宽为(20﹣2x )cm ,高为x cm ,根据长方体盒子的侧面积为200cm 2,即可得出关于x 的一元二次方程,解之取其较小值即可得出结论.【解答】解:设剪去正方形的边长为x cm ,则做成无盖长方体盒子的底面长为(30﹣2x )cm ,宽为(20﹣2x )cm ,高为x cm ,依题意,得:2×[(30﹣2x )+(20﹣2x )]x =200,整理,得:2x 2﹣25x +50=0,解得:x 1=25,x 2=10. 当x =10时,20﹣2x =0,不合题意,舍去. 答:当剪去正方形的边长为25cm 时,所得长方体盒子的侧面积为200cm 2. 18.(2019•东营)为加快新旧动能转换,提高公司经济效益,某公司决定对近期研发出的一种电子产品进行降价促销,使生产的电子产品能够及时售出,根据市场调查:这种电子产品销售单价定为200元时,每天可售出300个;若销售单价每降低1元,每天可多售出5个.已知每个电子产品的固定成本为100元,问这种电子产品降价后的销售单价为多少元时,公司每天可获利32000元?【分析】设降价后的销售单价为x元,则降价后每天可售出[300+5(200﹣x)]个,根据总利润=每个产品的利润×销售数量,即可得出关于x的一元二次方程,解之即可得出结论.【解答】解:设降价后的销售单价为x元,则降价后每天可售出[300+5(200﹣x)]个,依题意,得:(x﹣100)[300+5(200﹣x)]=32000,整理,得:x2﹣360x+32400=0,解得:x1=x2=180.180<200,符合题意.答:这种电子产品降价后的销售单价为180元时,公司每天可获利32000元.19.(2019•广州)随着粤港澳大湾区建设的加速推进,广东省正加速布局以5G等为代表的战略性新兴产业,据统计,目前广东5G基站的数量约1.5万座,计划到2020年底,全省5G基站数是目前的4倍,到2022年底,全省5G基站数量将达到17.34万座.(1)计划到2020年底,全省5G基站的数量是多少万座?(2)按照计划,求2020年底到2022年底,全省5G基站数量的年平均增长率.【分析】(1)2020年全省5G基站的数量=目前广东5G基站的数量×4,即可求出结论;(2)设2020年底到2022年底,全省5G基站数量的年平均增长率为x,根据2020年底及2022年底全省5G基站数量,即可得出关于x的一元二次方程,解之取其正值即可得出结论.【解答】解:(1)1.5×4=6(万座).答:计划到2020年底,全省5G基站的数量是6万座.(2)设2020年底到2022年底,全省5G基站数量的年平均增长率为x,依题意,得:6(1+x)2=17.34,解得:x1=0.7=70%,x2=﹣2.7(舍去).答:2020年底到2022年底,全省5G基站数量的年平均增长率为70%.。