蛋白质分子量的测定方法
测定蛋白质分子质量的常用方法

测定蛋白质分子质量的常用方法
测定蛋白质分子质量是化学实验的重要环节,对于蛋白质的结构、功能及关联分子的组成、绝对结构等化学过程均有重要意义。
测定蛋白质分子质量的常用方法主要有氨基酸含量分析、蒸馏法、双杂质定量法、穆斯堡定律、电泳法、电晶体谱法、气相色谱法等。
1、氨基酸含量分析是分析蛋白质分子量最常用的方法,其原理是依靠氨基酸构成蛋白质,根据其组成比例结合穆斯堡定律,来计算蛋白质分子量的大小。
2、蒸馏法的原理是依靠蛋白质的分子量与其溶解度成反比,通过改变溶解度进行测定蛋白质分子量的大小
3、双杂质定量法是指利用双重折射定量痕量并加上溶解度分析,来测定蛋白质分子质量的大小
4、穆斯堡定律指的是将蛋白质结合其底物、激素等特定分子特定比例共存时,通过蛋白质分子质量计算法或重量法,得到蛋白质分子质量的大小
5、电泳法是指用可吸收光谱法来测定蛋白质的分子量,利用穆斯堡定律的原理,对蛋白质的分子量在空间形状上进行分析
6、电晶体谱法是通过电晶体技术分析实施蛋白质质量测量,在电晶体条件下,分子会向模式堆叠成固体,并通过电晶定质量的测定方法,得到蛋白质分子质量的大小
7、最后,气相色谱法是指通过批处理和连续样品处理结合色谱技术,来分析蛋白质大小并计算其质量。
以上就是几种常用测定蛋白质分子质量的方法,此类方法大多利用一定原理来实现,在蛋白质研究中起着不可替代的作用。
检验蛋白质的方法及现象

检验蛋白质的方法及现象检测蛋白质的方法有:1、分子量测定法:通过把蛋白质以某种介质流动,使其迅速穿越一定粒径的离子交换层,然后采取液相色谱法测定相应蛋白质的分子量,从而求出特定蛋白质的特征分子量。
2、凝胶电泳:是将蛋白质在 LED-偶联法分子量鉴定,是采用激光电子捕获和驱动,蛋白质和急性偶联物组合结合,以生产一种特殊的类聚多糖化合物,达到电泳分离蛋白质的目的。
3、蛋白质的细胞测定:通过把蛋白质放到不同浓度的离子条件下,以细胞技术手段测定蛋白质的稳定性和可被抑制的性能。
4、体外模拟实验:将不同比例的蛋白质与某种固定化剂混合,模拟体内条件,以测定蛋白质的稳定性和特异性。
5、放射性标记:把蛋白质结合放射性标记的药物标记物,然后使用凝胶电泳,紫外可见光谱等方法测定放射性标记的标记物显示的服用蛋白质的分布和定量,从而评价蛋白质的质量。
6、 DNA 分子测定:采用高效液相色谱法,把蛋白质代谢到个体 DNA 分子中,测试DNA 分子的碱性度,判断蛋白质含量。
7、蛋白质安定性分析:利用数据库软件(如Bridge),研究蛋白质在体外条件及温度、pH值、盐浓度、有机溶剂含量及催化剂等共表征环境中作用时,结构安定性的变化。
蛋白质性现象:1、可均质性降解及易损质:蛋白质对热、酸、碱、抗生素等有不同的稳定性,受物理化学作用的刺激,无论是天然的还是添加的成分,均可使其酶聚及脱氨键,影响溶解性。
2、亲和性:蛋白质分子由于其胞内的环境不同,构成不同的分子结构状态,各种实验条件的变化,均会影响蛋白质的亲合力,从而导致其亲合性的变化。
3、可流动性:蛋白质分子和结构会受到它们离子和结构性结合能力等因素的影响,当环境条件改变时,蛋白质分子之间的排斥力发生增大,从而减少可流动性。
4、免疫原性:由于蛋白质本身的分子结构和结合特性,出现不可逆的结构变化尤其是连锁反应,导致其免疫原性大大增强,从而产生特异性抗体。
5、细胞毒性:在一定条件下,蛋白质被细胞直接吸收,可抑制细胞的生理和代谢活动,使细胞破坏,从而产生细胞毒性。
测定蛋白质相对分子量的方法

测定蛋白质相对分子量的方法
《测定蛋白质相对分子量的方法》
测定蛋白质相对分子量是生物学研究中常用的技术之一,它可以帮助研究者了解蛋白质的结构、功能和互作关系。
测定蛋白质相对分子量的方法主要有电泳、沉淀和放射免疫测定等。
电泳是最常用的测定蛋白质相对分子量的方法,它通过将蛋白质电泳到电泳凝胶板上,然后将凝胶板置于电压场中,使蛋白质在凝胶中移动,根据蛋白质在凝胶中的移动距离来测定其相对分子量。
沉淀法是另一种测定蛋白质相对分子量的方法,它是通过将蛋白质溶液与沉淀剂混合,使蛋白质沉淀,然后测定沉淀物的质量来计算蛋白质的相对分子量。
放射免疫测定是一种特殊的测定蛋白质相对分子量的方法,它是通过将蛋白质混合物接种到动物体内,使其产生免疫反应,然后收集抗体,测定抗体的浓度来计算蛋白质的相对分子量。
以上是测定蛋白质相对分子量的几种方法,它们都能够帮助研究者更好地了解蛋白质的结构、功能和互作关系。
蛋白质分子量测定方法的比较

蛋白质分子量测定方法的比较蛋白质分子量是指蛋白质分子中所包含的氨基酸数量和分子量之和。
确定蛋白质分子量对于研究蛋白质结构和功能具有重要意义。
随着科技的发展,出现了多种蛋白质分子量测定方法。
本文将比较常用的几种方法:紫外吸收光谱法、凝胶电泳法、质谱法和核磁共振法。
1. 紫外吸收光谱法:该方法基于蛋白质中芳香族氨基酸(如酪氨酸、苯丙氨酸)吸收紫外光的特性,通过测量蛋白质在280nm处的吸光度来估计蛋白质的分子量。
该方法简单、快速,不需要额外的标准物质,适用于大多数蛋白质的分子量估计。
然而,该方法对蛋白质中其他吸光物质的影响较大,且误差较大,无法提供高精度的分子量测定结果。
2.凝胶电泳法:凝胶电泳法是常用的分离和测定蛋白质分子量的方法,主要包括SDS-和聚丙烯酰胺凝胶电泳()。
SDS-使用表面活性剂SDS使蛋白质在电场中具有相同的负电荷,根据蛋白质迁移速度的不同来估计其分子量。
通过聚丙烯酰胺分子筛效应,使蛋白质根据其分子量大小迁移至不同位置。
凝胶电泳法可以提供较高的分辨率和较准确的分子量测定结果,但需要标准物质来建立标准曲线。
3.质谱法:质谱法是一种通过测量样品分子在质谱仪中形成的离子质量和丰度信息来分析蛋白质分子量的方法。
常见的质谱技术包括基质辅助激光解析离子飞行时间质谱(MALDI-TOFMS)和液相色谱电喷雾离子源质谱(LC-ESI-MS)。
质谱法具有极高的灵敏度、分辨率和准确性,可以同时测定多个蛋白质的分子量,并且还可以提供蛋白质的部分序列信息。
然而,质谱法设备昂贵,操作复杂,通常需要专业技术人员进行操作和数据解析。
4.核磁共振法:核磁共振法是一种通过测量样品核自旋来分析分子结构和构象的方法。
对于蛋白质分子量的测定,核磁共振法通常使用质子核磁共振(^1H-NMR)或碳核磁共振(^13C-NMR)。
这些方法可以直接测量蛋白质中的原子数量,并通过相应的核磁共振谱图来确定蛋白质的分子量。
核磁共振法具有非常高的准确性和分辨率,但对于大多数蛋白质来说,需要大量的纯化样品,并且数据分析相对复杂。
蛋白质分子量测定

蛋白质分子量测定方法目前,蛋白质分子量测定的常用方法主要有四种:年度法、凝胶过滤层析法、凝胶电泳法和凝胶渗透色谱(GPC)法。
一、粘度法一定温度条件下,高聚物稀溶液的粘度与其分子量之间呈正相关性,随着分子量的增大,聚合物溶液的粘度增大。
通过测定高聚物稀溶液粘度随浓度的变化,即可计算出其平均分子量(粘均分子量)。
该方法操作简单、设备价格较低,通常不需要标准样品,但无法测定聚合物的分子量分布。
粘度法所需设备:恒温槽、乌倍路德粘度计。
二、凝胶过滤层析法在凝胶色谱柱中,分子量不同的聚合物分子,由于其渗入凝胶微孔的能力不同而在柱中得以分离。
分子量较大的分子,渗入凝胶微孔较浅,随洗脱液流动速度较快,因而先流出色谱柱;相反,分子量较小的聚合物分子后流出。
通过测定从进样到聚合物分子流出色谱柱期间流过凝胶柱的洗脱液的体积,并与标准样品比较,即可计算聚合物的分子量,并估算其分子量分布。
凝胶层析技术操作方便,设备简单,样品用量少,而且有时不需要纯物质,用一粗制品即可,目前已得到相当广泛的应用。
凝胶层析法测定分子量也有一定的局限性,在pH6—8的范围内,线性关系比较好,但在极端pH时,一般蛋白质有可能因变性而偏离。
糖蛋白在含糖量超过5%时,测得分子量比真实的要大,铁蛋白则与此相反,测得的分子量比真实的要小。
凝胶过滤层析法所需设备:层析柱、紫外分光光度计。
三、SDS-凝胶电泳法SDS是十二烷基硫酸钠的简称,它是一种阴离子表面活性剂,加入到电泳系统中能使蛋白质的氢键和疏水键打开,并结合到蛋白质分子上(在一定条件下,大多数蛋白质与SDS的结合比为1.4gSDS/1g蛋白质),使各种蛋白质-SDS复合物都带上相同密度的负电荷,其数量远远超过了蛋白质分子原有的电荷量,从而使其电泳迁移率只取决于分子大小这一因素,于是根据标准蛋白质分子量的对数和迁移率所作的标准曲线,可求得未知物的分子量。
SDS-凝胶电泳法是目前蛋白质分子量测定中使用最广泛的方法,实验成本较低,仪器设备也相对很简单,一套电泳装置即可。
蛋白质 分子量 色谱

蛋白质 分子量 色谱
蛋白质的分子量可以通过色谱法进行测定。
色谱法是一种分离和分析混合物的技术,它基于混合物中各成分在固定相和流动相之间的分配系数不同而实现分离。
在蛋白质分子量的测定中,常用的色谱技术是凝胶过滤色谱(Gel Filtration Chromatography,GFC)和高效液相色谱 (High Performance Liquid Chromatography,HPLC)。
凝胶过滤色谱是一种基于分子筛原理的色谱技术,它使用具有一定孔径大小的凝胶作为固定相,通过分子量大小的差异来分离蛋白质。
蛋白质分子通过凝胶孔时,分子量较小的蛋白质会更容易进入凝胶孔中,而分子量较大的蛋白质则会被排除在凝胶孔外,从而实现分离。
通过测量蛋白质的洗脱时间和分子量标准品的洗脱时间,可以计算出蛋白质的分子量。
高效液相色谱则是一种基于吸附-解吸原理的色谱技术,它使用高效液相色谱柱作为固定相,通过蛋白质与固定相之间的相互作用来分离蛋白质。
在高效液相色谱中,蛋白质的分子量可以通过测量其保留时间和分子量标准品的保留时间来计算。
蛋白质的分子量通常是一个范围,而不是一个确定的值,因为蛋白质
分子在溶液中的构象可能会发生变化,从而影响其分子量的测量结果。
因此,在使用色谱法测量蛋白质分子量时,需要选择合适的色谱条件和分子量标准品,并进行适当的校正和验证。
高等生化实验报告:蛋白质分子量的测定
实验一蛋白质分子量的测定—凝胶层析法一、原理凝胶层析法也称分子筛层析法,是利用具有一定孔径大小的多孔凝胶作固定相的层析技术。
当混合物随流动相经过凝胶层析柱时,其中各组分按其分子大小不同而被分离的技术。
该法设备简单、操作方便、重复性好、样品回收率高。
凝胶是一种不带电的具有三维空间的多孔网状结构、呈珠状颗粒的物质,每个颗粒的细微结构及筛孔的直径均匀一致,像筛子,小的分子可以进入凝胶网孔,而大的分子则排阻于颗粒之外。
当含有分子大小不一的蛋白质混合物样品加到用此类凝胶颗粒装填而成的层析柱上时,这些物质即随洗脱液的流动而发生移动。
大分子物质沿凝胶颗粒间隙随洗脱液移动,流程短,移动速率快,先被洗出层析柱;而小分子物质可通过凝胶网孔进入颗粒内部,然后再扩散出来,故流程长,移动速度慢,最后被洗出层析柱,从而使样品中不同大小的分子彼此获得分离。
若分子大小介于上述完全排阻或完全渗入凝胶的物质,则居二者之间从柱中流出。
总之,各种不同相对分子质量的蛋白质分子,最终由于它们被排阻和扩散的程度不同,在凝胶柱中所经过的路程和时间也不同,从而彼此可以分离开来。
将凝胶装在柱后,柱床体积称为“总体积”,以Vt表示。
实质上Vt是由Vo,Vi与Vg三部分组成,Vo称为“孔隙体积”或“外水体积”,即存在于柱床内凝胶颗粒外面空隙之间的水相体积,相应于一般层析法中柱内流动相的体积;Vi为内体积,即凝胶颗粒内部所含水相的体积。
Vg为凝胶本身的体积。
洗脱体积(Ve)与Vo与Vi之间的关系可用下式表示:Ve=Vo+KdVi。
式中Ve为洗脱体积,自加入样品时算起,到组分最大浓度(峰)出现时所流出的体积;Kd为样品组分在二相间的分配系数,也可以说Kd是分子量不同的溶质在凝胶内部与外部的分配系数。
它只与被分离的物质分子的大小和凝胶颗粒孔隙的大小分布有关,而与柱的长度粗细无关,也就是说它对每一物质为常数,与柱的物理条件无关。
Kd可通过实验求得,上式可以改写为:Kd=(Ve-Vo)/Vi。
测定蛋白质相对分子
测定蛋白质相对分子
相对分子量(Mw)是衡量蛋白质大小和形式,用来契合蛋白质之间的比较。
它可以被定义为某种蛋白质的分子重量除以其他某种蛋白质的分子重量的比例。
相对分子量的测定是有效的方法来确定蛋白分子的特定结构,因为它可以帮助有效地比较和分析多种蛋白分子之间的量,分子形式和结构。
蛋白质相对分子量的测定主要可以通过以下几种方法来实现:
一是电泳分析技术。
所谓电泳,就是将带有指定电荷的蛋白质投入到一种凝胶中,然后在电场作用下移动,和分割不同W,相对分子量的蛋白质。
这是一种简单快捷的方式来测量蛋白质相对分子量。
二是分光光度法。
这是一种利用飞行时间质谱来测定蛋白质相对分子量的先进技术,利用一种称为非相对质谱的先进仪器,以固态的质谱图显示和确定不同蛋白质的相对分子量。
三是双向电泳。
这是一种用于测量蛋白质相对分子量的灵活的技术,利用双向凝胶中的使用双向电场来分离不同的蛋白质。
它利用不同的电场,可以准确地测定蛋白质之间的区别,并准确确定相对分子量。
最后,细胞分解技术也可以用来测量蛋白质的相对分子量。
这种技术不仅可以测量蛋白质的相对分子量,而且还可以用来测量已有的蛋白质的完整性和数量,以用来研究特定的蛋白质性质。
通过以上所提及的几种方法,来测量蛋白质的相对分子量,使科学家们能够有效地了解蛋白质之间的关系,从而加深对蛋白质的研究。
它们也有助于确定新的蛋白质结构降解途径和深入研究该领域者关心的各种问题。
蛋白质分子量的测定方法
荧光光谱法是一种利用荧光物质发出 荧光的特性进行检测的方法。在蛋白 质分子量的测定中,荧光光谱法通过 测量荧光物质与蛋白质结合前后荧光 光谱的变化,推算出蛋白质的分子量。
VS
荧光物质能够吸收特定波长的光,并 发出特定波长的荧光。当荧光物质与 蛋白质结合时,荧光光谱会发生改变, 这种改变与蛋白质的分子量有关。
根据荧光光谱的变化,利 用已知的荧光物质分子量 和蛋白质分子量之间的关 系,计算出蛋白质的分子 量。
注意事项
选择合适的荧光物质
根据蛋白质的性质选择合适的荧光物质,以 确保测量结果的准确性。
避免光漂白
在测量过程中,应避免长时间照射导致荧光 物质光漂白的现象。
控制实验条件
保持实验温度、pH值等条件的恒定,以减 小误差。
操作步骤
样品准备
将蛋白质样品进行适当处理, 如溶解、变性等,以便进行离
子化处理。
离子化处理
通过电喷雾、激光解析等手段 将蛋白质样品进行离子化。
质谱分析
将离子化的蛋白质样品引入质 谱仪中,通过电场和磁场的作 用进行分离和检测。
结果处理
对检测到的质谱数据进行处理 和分析,推算出蛋白质的分子
量。
注意事项
操作步骤
01
02
03
04
05
准备荧光物质和 蛋白质样品
测量荧光光谱
蛋白质与荧光物 质结合
测量结合后的荧 光光谱
计算分子量
选择适当的荧光物质,制 备已知浓度的蛋白质样品 。
在激发波长下照射荧光物 质,测量其发射波长下的 荧光光谱。
将蛋白质样品与荧光物质 混合,静置一段时间,使 两者充分结合。
再次测量荧光光谱,观察 荧光光谱的变化。
01
测定蛋白质分子量的常用方法
测定蛋白质分子量的常用方法测定蛋白质分子质量常用的方法有三种:沉降分析法、凝胶过滤法和SDS-聚丙烯酰胺凝胶电泳法。
其基本原理如下:(1)沉降分析法:又叫超速离心法。
蛋白质溶液经高速离心分离时,在离心场的作用下蛋白质分子下沉,沉降速度与蛋白质颗粒大小成正比,应用光学方法观察离心过程中蛋白质颗粒的沉降行为,可判断出蛋白质的沉降速度。
根据沉降速度求出沉降系数(以s表示),即单位离心场的沉降速度。
将沉降系数代入公式,即可计算出蛋白质的相对分子质量。
M=RTs/D(1-Vρ)式中:R——气体常数(8.314×107);T——绝对温度;D——扩散系数;V——蛋白质分子的偏微比容(即无限大体积的溶液中加入1g蛋白质时溶液所增加的体积);ρ——溶剂密度[20℃时每毫升的质量(g)];s——沉降系数;M——蛋白质的相对分子质量。
(2)凝胶过滤法:又称分子筛层析法。
此法是在层析柱中装入葡聚糖(如Sephadex)凝胶,这种凝胶颗粒具有大量微孔,这些微孔只允许较小的分子进入,而大于胶粒微孔的分子则不能进入胶粒而被排阻。
当用洗脱液洗脱时,被排阻的分子量大的蛋白质先被洗脱下来,分子量小的后下来。
将已知分子量的标准蛋白质混合物上柱,洗脱,根据洗脱峰位置量出各种蛋白质的洗脱体积,然后用分子量的对数为横坐标,以洗脱体积为纵坐标,制作标准曲线。
测定时,根据紫外检测洗脱峰位置,量出待测样品的洗脱体积,由标准曲线可查出其分子质量。
(3)SDS聚丙烯酰胺凝胶电泳法:蛋白质在普通聚丙烯酰胺凝胶中的电泳速度取决于蛋白质分子大小、形状和所带的电荷。
而SDS(十二烷基硫酸钠)聚丙烯酰胺凝胶电泳与此不同。
SDS是一种阴离子去污剂,可使蛋白质变性并解离成亚基。
当蛋白质样品中加入SDS后,SDS与蛋白质分子结合,使蛋白质分子带上大量的负电荷,并且使蛋白质分子形状都变成长椭圆棒状,从而消除了蛋白质分子之间原有电荷和形状的差异。
这样电泳的速度只取决于蛋白质分子质量的大小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品课件
◆ 1.根据化学组成测定最低相对分子质量
◆ 用化学分析方法测出蛋白质中某一微量元素的含量,并假 设分子中只有一个这种元素的原子,就可以计算出蛋白质 的最低分子量。肌红蛋白、血红蛋白均含铁0.335%,分别 求它们的最低分子量:
◆ 肌红蛋白为55.8(Fe原子量)÷0.335×100=16700,与其 他方法测分子量相符。
精品课件
◆ 4.沉降法(超速离心法) ◆ 沉降系数(S)是指单位离心场强度溶质的
沉降速度。S也常用于近似地描述生物大分 子的大小。蛋白质溶液经高速离心分离时 ,由于比重关系,蛋白质分子趋于下沉, 沉降速度与蛋白质颗粒大小成正比,应用 光学方法观察离心过程中蛋白质颗粒的沉 降行为,可判断出蛋白质的沉降速度。根 据沉降速度可求出沉降系数,将S带入公式 ,即可计算出蛋白质的分子质量。
精品课件
.蛋白质空间结构与功能的关系
◆ 蛋白质的空间结构是其生物活性的基础, 空间结构变化,其功能也随之改变。肌红 蛋白(Mb)和血红蛋白(Hb)是典型的例 子。
精品课件
◆ 肌红蛋白(Mb)和血红蛋白(Hb)都能与氧进行 可逆的结合,氧结合在血红素辅基上。然而Hb是 四聚体分子,可以转运氧;Mb是单体,可以储存 氧,并且可以使氧在肌肉内很容易地扩散。它们 的氧合曲线不同,Mb为一条双曲线,Hb是一条 S 型曲线。在低p(O2)下,肌红蛋白比血红蛋白对氧 亲和性高很多,p(O2)为2.8torr(1torr≈133.3Pa) 时,肌红蛋白处于半饱和状态。在高p(O2)下,如 在肺部(大约100torr)时,两者几乎都被饱和。 其差异形成一个有效的将氧从肺转运到肌肉的氧 转运系统。
精品课件
◆ 3.SDS-聚丙烯酰胺凝胶电泳法
◆ 蛋白质在普通聚丙烯酰胺凝胶中的电泳速度取决于蛋白质 分子的大小、分子形状和所带电荷的多少。SDS(十二烷 基磺酸钠)是一种去污剂,可使蛋白质变性并解离成亚基 。当蛋白质样品中加入SDS后,SDS与蛋白质分子结合,使 蛋白质分子带上大量的强负电荷,并且使蛋白质分子的形 状都变成短棒状,从而消除了蛋白质分子之间原有的带电 荷量和分子形状的差异。这样电泳的速度只取决于蛋白质 分子量的大小,蛋白质分子在电泳中的相对迁移率和分子 质量的对数成直线关系。以标准蛋白质分子质量的对数和 其相对迁移率作图,得到标准曲线,根据所测样品的相对 迁移率,从标准曲线上便可查出其分子质量。
精品课件
◆ (二)种属差异
◆
大量实验结果证明,一级结构相似的多肽的同源蛋白质有同源
序列,反映其共同进化起源,通过比较可以揭示进化关系。
◆
例如哺乳动物的胰岛素,其一级结构仅个别氨基酸差
异(A链5、6、10位,B链30位),它们对生物活性调节糖
代谢的生理功能不起决定作用。
◆ 血红蛋白含铁也是0.335%,最低分子量也为16700,但用 其他方法测分子量为68000,即每一个血红蛋白含有4个铁 原子,由此计算更为准确分子量为:16700×4=66800。
精品课件
◆ 2.凝胶过滤法
◆ 凝胶过滤法分离蛋白质的原理是根据蛋白质分子 量的大小。由于不同排阻范围的葡聚糖凝胶有一 特定的蛋白质分子量范围,在此范围内,分子量 的对数和洗脱体积之间成线性关系。因此,用几 种已知分子量的蛋白质为标准,进行凝胶层析, 以每种蛋白质的洗脱体积对它们的分子量的对数 作图,绘制出标准洗脱曲线。未知蛋白质在同样 的条件下进行凝胶层析,根据其所用的洗脱体积 ,从标准洗脱曲线上可求出此未知蛋白质对应的 分子量。
精品课件
精品课件
蛋白质结构和功能的关系
◆ 1蛋白质一级结构和功能的关系 ◆ 2蛋白质空间结构和功能的关系
精品课件
蛋白质一级结构与功能的关系
◆ (一)一级结构是空间构象的基础
20世纪60年代初,美国科学家C.Anfinsen进行牛胰核糖核酸酶的变性和 复性实验,提出了蛋白质一级结构决定空间结构的命题。
核糖核酸酶由124个氨基酸残基组成,有4对二硫键。用尿素和β-巯基乙 醇处理该酶溶液,分别破坏次级键和二硫键,肽链完全伸展,变性的 酶失去催化活性;当用透析方法去除变性剂后,酶活性几乎完全恢复, 理化性质也与天然的酶一样。 概率计算表明,8个半胱氨酸残基结合成4对二硫键,可随机组合成105 种配对方式,而事实上只形成了天然酶的构象,这说明一级结构未破 坏,保持了氨基酸的排列顺序就可能回复到原来的三级结构,功能依 然存在。
精品课件
◆ Hb未与氧结合时,其亚基处于一种空间结 构紧密的构象(紧张态,T型),与氧的亲 和力小。只要有一个亚基与氧结合,就能 使4个亚基间的盐键断裂,变成松弛的构象 (松弛态,R型)。T型和R型的相互转换对 调节Hb运氧的功能有重要作用。一个亚基 与其配体结合后能促进另一亚基与配体的 结合是正协同效应,其理论解释是Hb是别 构蛋白,有别构效应。
◆ 从各种生物的细胞色素C(cytochrome c ) 的一级结构分 析,可以了解物种进化间的关系。进化中越接近的生物, 它们的细胞色素c的一级结构越近似。
精品课件
◆ (三)分子病
◆ 分子病是指机体DNA分子上基因缺陷引起mRNA分子 异常和蛋白质生物合成的异常,进而导致机体某 些功能和结构随之变异的遗传病。在1904年,发 现镰刀状红细胞贫血病。大约化费了40多年才清 楚患病原因,患者的血红蛋白(HbS)与正常人的 (HbA)相比,仅β-链的第6位上,Val取代了正 常的Glu。目前全世界已发现有异常血红蛋白400 种以上。