基于LMS算法的自适应噪声抵消器研究
基于LMS算法自适应噪声抵消系统的仿真研究概要

基于LMS算法自适应噪声抵消系统的仿真研究概要摘要:随着科技的进步和应用的广泛,我们日常生活中经常会遇到各种噪声干扰,对于一些噪声严重的环境,我们需要使用噪声抵消技术来提高信号质量。
本文主要研究了一种基于LMS算法的自适应噪声抵消系统,并通过仿真方法对其进行了评估和验证。
关键词:LMS算法,自适应,噪声抵消,信号质量1.引言噪声是一种对信号质量产生负面影响的因素,噪声抵消技术可以有效地降低噪声干扰,提高信号的质量。
LMS算法是一种常用的自适应滤波算法,它通过不断调整滤波器系数来最小化误差信号和输入信号之间的平方差,从而实现噪声抵消的目的。
本文基于LMS算法,设计了一个自适应噪声抵消系统,并使用MATLAB进行仿真评估。
2.系统模型我们考虑一个包含输入信号、噪声信号和输出信号的噪声抵消系统。
输入信号经过噪声干扰后得到输出信号,我们需要通过自适应滤波器来估计噪声信号,然后将其从输出信号中剔除。
系统模型可以表示如下:y(n)=s(n)+d(n)其中,y(n)为输出信号,s(n)为输入信号,d(n)为噪声信号。
3.LMS算法原理LMS算法可以通过不断更新自适应滤波器的系数来最小化估计误差。
算法的迭代过程如下:-初始化自适应滤波器的系数为0。
-通过滤波器对输入信号进行滤波,得到滤波后的输出信号。
-根据输出信号和期望信号之间的误差来更新滤波器系数。
-重复上述步骤,直到收敛。
4.仿真实验我们使用MATLAB软件来进行仿真实验。
首先,我们生成一个包含噪声干扰的输入信号,并设定期望信号为输入信号本身。
然后,根据LMS算法的迭代过程,不断更新自适应滤波器的系数。
最后,比较输出信号和期望信号之间的误差,评估噪声抵消系统的性能。
5.仿真结果分析通过比较输出信号和期望信号的误差,我们可以评估系统的性能。
通过调整LMS算法的参数,如步长和滤波器长度等,我们可以进一步优化系统的性能。
在本文的仿真实验中,我们发现当步长设置为0.01,滤波器长度为100时,系统的性能最佳。
LMS算法在自适应噪声对消器中的应用

LMS算法在自适应噪声对消器中的应用根据环境的改变,使用自适应算法来改变滤波器的参数和结构,这样的滤波器称为自适应滤波器。
自适应滤波器的系数是由自适应算法更新的时变系数,即其系数自动连续地适应于给定信号,以获得期望的响应。
自适应滤波器的最重要的特征就在于它能够在未知环境中有效工作,并能够跟踪输入信号的时变特征。
本文在理解LMS算法实质的基础上对LMS算法在自适应噪声对消器中的应用进行了仿真实现,同时对其收敛性进行了简单分析。
1、自适应噪声对消器原理如下图所示,自适应噪声对消器的原始输入端用jdj表示,j dj =jsj+nj,nj是要抵消的噪声,并且与jsj不相关,参考输入端用jxj 表示,这里jxj=1nj,1nj是与nj相关,与jsj 不相关的噪声信号,系统的输出用jzj表示j zj =jdj-jyj。
其中,滤波器的传输函数可以根据某一信号(这里为系统的输出信号)自动调整,假定js j,n j,1n j是零均值的平稳随机过程。
jz j=jd j-jy j=js j+n j-jy j(1-1)输出信号的均方值[]2j z E =()[]2j j y d E -= ()[]20j j y n s E -+= []2j s E +()[]20j y n E - +2()[]j j y n s E -0 (1-2)由于js j与n j,1n j不相关,因此js j与jy j也不相关,则[]2j z E =[]2j s E +()[]20j y n E - (1-3)[]2j s E 表示信号的功率。
由上面的表达式可以看出,要是输出信号只包含有用信号,或者输出信号的均方值最小,就要求()[]20j y n E -取得最小值,由(1-1)式推出等价的条件就是要求()[]2j j s z E -取得最小值,即要求输出信号与有用信号的误差的均方值为最小。
2、仿真实现MATLAB源代码如下:% 用LMS算法设计自适应滤波器clc;delta = 1/10000;t = 0:delta:1-delta;t = t'; % 转换成列向量s = sin(2*pi*t);sigma_n0 = 1;n0 = sigma_n0*randn(size(t));x = s + n0; % 原始输入端的输入信号,为被噪声污染的正弦信号d = x; % 对于自适应对消器,用x作为期望信号n1 = n0; % 参考输入端的输入信号,为与n0相关的噪声% 设计自适应滤波器N = 5; % 滤波器阶数w = ones(N,1); % 初始化滤波器权值u = 0.0026; % 步长因子y = zeros(length(t),1);for k = N:length(t)y(k) = n1(k-N+1:k)'*w;e(k) = d(k) - y(k);w = w + 2*u*e(k).*n1(k-N+1:k); % 更新权值endsubplot(211),plot(t,x);title('被噪声污染的正弦信号');subplot(212),plot(t,s,'k',t,e,'g'); % 对消噪声后,误差信号即为对原始信号的估计legend('原始正弦信号','自适应滤波后的信号');axis([0 1 -1 1]);title('滤波效果');3、结果分析被噪声污染的正弦信号滤波效果通过图像化仿真结果可以看出,通过自适应滤波后,噪声信号被有效地抑制了,较好地还原了原始正弦信号。
一种基于改进LMS算法的自适应消噪滤波器

这个解称为维纳解 , 即最佳滤波 系数值 。 自适应调整过程是沿着梯度 向量的负方 向校正滤波系数 ,即在误 差性 能曲面 的最陡下降法方 向移动和逐步调整滤波系数 ,最终到达均 方误差为最小的状态 , 获得最佳或准最优滤波器。即滤波器 系数调整方
程为:
=
( 2 1)
wn= (一 ) 1 () Jn 1 ()wn 1+ n (- ) = (一 ) ()()() wn 1 nenun + ‘ ( 3 1) () n是第 n次 自适应迭代的步长 , 来控制稳定性和收敛速 率。由于 瞬时梯度的期望值等 于最 陡下降法中的真实梯 度向量 ,因此 瞬时梯度 的是真实梯度的无偏估计 ,自 适应 滤波器 系数 也是维 纳滤波器系数 的 无偏估计。 在本文 的 自 适应 干扰对消应用 中 , 参考噪声 信号 vn 为滤波 器 ’) (作 输入 , 混有噪声 的接收信号 x ) ( 作为滤波器期望 响应 , n 当调整 自 适应滤 波器系数使 自适应滤波器输 出 () n与 n的均方误差最小 时, ) 干扰对 消 器的输出 en就和原始无噪声信号 s ) () ( 的均方误差最小 , n 即是所期望 的 输出结果。因此 自适应滤波算法步骤总结 如下 : 步骤 1 初始化 : ()0 w0= 步 骤 2更 新 := ’, n l … 2 e )d ) . 一 ) n ( =(一 I 1 ’) n n w( v n wn= (一 ) n 。)’ ) ()wn 1+ )( en ( v n ( 其 中步长 因子 () n的选择关系到 自适应滤波器的收敛速度和稳态 性能 , 其值应满足
wn= (— )  ̄nVd(- ) ()wn 1 1 z ) + ( n1
( 1 1)
Hale Waihona Puke 由于最 陡下 降算法需要求得 的误 差的梯度 J() n向量在实际工程 中很难实现 , 因此用瞬时梯度 V ()一 【(d(】2uIu() () J = 2un .) 【( Iwn n ) n + O r】 2 ( 【 ( 一 } )( 】 un d n u( wn ) ) l n ) 作为梯度向量 的估计值带入 ( 1式便得到 L S 】) M 算法。
自适应噪声抵消技术的研究

自适应噪声抵消技术的研究一、概述自适应噪声抵消技术是一种重要的信号处理技术,旨在从含噪信号中提取出有用的信息。
在现代通信、音频处理、语音识别等领域中,噪声往往是一个不可避免的问题,它可能来自于外部环境、设备本身的干扰或传输过程中的失真等。
研究并应用自适应噪声抵消技术,对于提高信号质量、增强系统性能具有重要意义。
自适应噪声抵消技术的基本原理是,利用噪声信号与有用信号之间的统计特性差异,通过设计合适的滤波器或算法,实时调整滤波器的参数,使得滤波器输出的噪声信号与原始噪声信号相抵消,从而得到较为纯净的有用信号。
这一过程中,滤波器的参数调整是自适应的,即根据输入信号的变化而自动调整,以实现最佳的噪声抵消效果。
随着数字信号处理技术的发展,自适应噪声抵消技术得到了广泛的研究和应用。
已有多种算法被提出并应用于不同领域的噪声抵消任务中,如最小均方误差算法、归一化最小均方误差算法、递归最小二乘算法等。
这些算法各具特点,适用于不同的应用场景和噪声类型。
自适应噪声抵消技术仍面临一些挑战和问题。
当噪声信号与有用信号在统计特性上较为接近时,滤波器的设计将变得更为复杂;在实际应用中,还需要考虑实时性、计算复杂度以及硬件实现等因素。
未来的研究方向之一是如何进一步提高自适应噪声抵消技术的性能,同时降低其实现的复杂度和成本。
自适应噪声抵消技术是一种具有广泛应用前景的信号处理技术。
通过深入研究其基本原理、算法实现以及应用挑战,有望为现代通信、音频处理等领域提供更加高效、可靠的噪声抵消解决方案。
1. 背景介绍:阐述噪声抵消技术在现代通信、音频处理等领域的重要性和应用广泛性。
在现代通信和音频处理领域,噪声抵消技术的重要性日益凸显,其应用广泛性也随之扩展。
随着科技的快速发展,通信设备和音频系统的使用越来越广泛,噪声干扰问题也愈发严重。
无论是移动通信、语音识别,还是音频录制、音乐播放,噪声都可能对信号质量产生严重影响,甚至导致信息丢失或误判。
基于LMS算法的自适应对消器的MATLAB实现

基于LMS算法的自适应对消器的MATLAB实现LMS(Least Mean Squares)算法是一种常用于自适应信号处理领域的算法,用于实现自适应滤波器或者自适应对消器。
本文将介绍基于LMS 算法的自适应对消器的MATLAB实现。
自适应对消器是一种用于消除信号中的干扰或噪声的滤波器,它的系数会随着输入信号的变化而自适应地调整。
LMS算法是一种广泛使用的自适应算法,它通过最小化预测误差的平方来更新滤波器的权值。
该算法适用于非线性系统、时变系统以及参数不确定的系统。
在MATLAB中,我们可以使用以下步骤来实现基于LMS算法的自适应对消器:1.定义输入信号和期望输出信号:```matlabinput_signal = ... % 输入信号desired_output = ... % 期望输出信号```2.初始化自适应对消器的滤波器系数和步长:```matlabfilter_order = ... % 滤波器阶数filter_coefficients = zeros(filter_order, 1); % 滤波器系数初始化为零step_size = ... % 步长```3.对于每个输入样本,计算预测输出和误差,并更新滤波器的系数:```matlabfor k = 1:length(input_signal)%根据当前输入样本计算预测输出predicted_output = filter_coefficients' * input_signal(k,:);%计算当前误差error = desired_output(k) - predicted_output;%更新滤波器系数filter_coefficients = filter_coefficients + step_size * error * input_signal(k,:);end```4.最后```matlabfiltered_signal = filter_coefficients' * new_input_signal;```需要注意的是,LMS算法的性能和收敛速度与步长的选择有很大关系。
基于LMS算法的自适应消噪系统研究

( olg f ce c sHe a giutrlUnv ri ,h n z o 5 0 2 C ia C l eo in e , n n A r l a iest Z e g h u 4 0 0 , hn ) e S c u y
第3 8卷 第 3期
Vo . 8 NO. 1 3 3
河 南 科 技 学 院 学 报
J u n lo n n I si t fS in e a d e h oo y o r a fHe a n t u e o ce c n T c n lg t
21 0 0年 9 月
f n a na h o y o MS a g rt m. h n a a t e n ie c n el t n s se b s d o MS ag rt m i e in d u d me tlt e r fL l o h T e d p i os a c l i y tm a e n L lo h sd s e . i v ao i g
r u n y b n ,if r t s n te o g o d sg ii l t f e o f in s r t e d sg e i f q e c a d n o ma in i o n u h t e in d gtl f tr wi x d c e ce t,o h e in r ls w l e o a ie hi i u l c a g w i i O S h n d p ie i tr a e Ol MS lo tm i p o o e . T e h ss i s i t d c s h n e h l t B .T e a a t f e b s d i e r v l L ag r h i s r p s d h te i rt nr u e f o
基于LMS算法自适应噪声抵消器的分析研究

( n) - y ( n) )
(2)
两边取数学期望 ,可得 :
E[ e2 ( n) ] = E[ s2 ( n) ] + E[ v0 ( n) - y ( n) ) 2 ] +
2 E[ s ( n) ( v0 ( n) - y ( n) ) ]
(3)
自适应过程就是自动调节权重 w j 使均方最小
的过程 ,式 (3) 中第一项为信号功率 ,与 w ( n) 无关 。
图 3 自适应噪声对消结果
图 3 中 ,信号源产生一个正弦信号 ,并与噪声 源产生的高斯白噪声信号叠加后进入噪声对消器 主通道 ,自适应滤波器的输入端是单一的噪声源产 生的噪声信号 ,通过 L MS 算法自适应调整线性组 合器的权系数 ,主通道与参考通道内的噪声信号对 消 ,所输出误差信号即为信号源产生的期望正弦信 号 。带噪声正弦信号经自适应对消后 ,能够达到较 好的去噪效果 。 3. 2 步长因子对仿真性能的影响分析
第 37 卷 (2009) 第 3 期
计算机与数字工程
85
基于 L M S 算法自适应噪声抵消器的分析研究3
王海峰 陈 伟 黄秋元
(武汉理工大学信息工程学院 武汉 430070)
摘 要 自适应信号处理的理论和技术已经成为人们常用的语音去噪技术 ,而 Matlab 为其提供了更为方便快捷的方 法来对语音信号进行消噪处理 。通过介绍自适应滤波器原理 ,在对自适应滤波器相关理论研究的基础上 ,重点研究了 L MS 自适应滤波算法 ,并对 L MS 自适应算法进行了分析 ,用 Matlab 对其进行了仿真和实现 。
3 收稿日期 :2008 年 11 月 27 日 ,修回日期 :2008 年 12 月 16 日 作者简介 :王海峰 ,男 ,硕士研究生 ,研究方向 :现代通信网络与技术 。陈伟 ,男 ,教授 ,博士生导师 ,研究方向 :信息传 输与处理 、光电子与通信网络 、计算机通信技术 。黄秋元 ,男 ,副教授 ,硕士生导师 ,研究方向 :高速数字电路设计 、光 纤通信技术 、电磁场与微波技术 。
自适应噪声对消的归一化LMS算法

自适应噪声对消的归一化LMS算法自适应滤波是一种在信号处理和通信系统中广泛应用的技术。
在实际应用中,滤波器的性能受到信号中的噪声和干扰的影响。
为了提高滤波器的性能,有必要采用自适应滤波算法来对抗这些噪声。
归一化最小均方算法(Normalized Least Mean Square, NLMS)是自适应滤波中一种常用的算法。
其背后的基本思想是根据梯度下降法不断调整滤波器的系数,以最小化误差信号的均方误差。
NLMS算法的主要思路是根据目标信号和输出信号的差异来不断更新滤波器的系数。
算法按照以下步骤进行迭代:1.初始化滤波器的系数向量w和步长参数μ,其中w是滤波器的系数,μ是步长参数。
2.读取输入信号x(n)和目标信号d(n)。
3.计算输出信号y(n):y(n)=w^T(n)x(n)其中,w^T(n)是滤波器系数向量w的转置。
4.计算误差信号e(n):e(n)=d(n)-y(n)5.更新滤波器的系数:w(n+1)=w(n)+μe(n)x(n)/(x(n)^Tx(n)+δ)其中,δ是一个小正数,用来避免零除的情况。
6.回到步骤2,进行下一次迭代。
在NLMS算法中,步长参数μ的选择非常关键。
若选择过大,会导致算法不稳定;若选择过小,会导致算法的收敛速度变慢。
一般来说,μ的值越小,算法越稳定,但收敛速度较慢,因此需要进行合理的调整。
归一化是NLMS算法中一个重要步骤。
归一化可以消除信号的幅度差异,使得每个信号的贡献相对均等。
归一化过程如下:1.计算输入信号的自相关矩阵:R=E[x(n)x^T(n)]其中,E[.]表示对信号进行期望估计,x^T(n)表示输入信号x(n)的转置。
2.计算自相关矩阵的迹:μ=Tr(R)/M其中,Tr(R)表示矩阵R的迹,M表示输入信号的维度。
3.将步长参数μ乘以自相关矩阵的逆矩阵:μ=μ/(R+δI)^{-1}其中,δ是一个小正数,I是单位矩阵。
4.将步长参数归一化至合适范围:μ = μ / max(μ)归一化步骤可以使得步长参数μ的取值在一个合理的范围内,从而提高算法的稳定性和收敛速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[ ] [ ] ξ = E e2 (n) = E s2 (n) + E[v0(n) − y(n)]2
从上式可以看出,自适应滤波器通过前面介绍的 LMS 算法调整其系数,可以使均方误差最小, y(n) 将十 分接近 v0 (n) ,取系统的输出为误差信号 e(n),则系统的输出将非常接近于信号 s(n)。
LMS 算法是一个随机的递推算法,它是用一个带噪声的梯度估计来代替最陡下降法中的真实梯度。 LMS 算法应包括以下三个方程:
M −1
∑ y(k ) = wi (k)x(k − i) i=0
e(k) = d (k) − y(k)
收稿日期:2001-09-07 作者简介:聂祥飞(1973-),男,云南宣威人,重庆三峡学院电子工程系讲师,硕士。 -112-
道中不包括有用信号 s(n),则可以得到自适应滤波器的输入为
u(n) = v1(n)
信号源 噪滤波器
u(n)
+
e(n) 输出
- y(n)
图1自适应噪声抵消器的结构组成
因此,自适应滤波器的输出 y(n) 只与 v1(n) 有关。从图中可得:
e(n) = d(n) − y(n) = s(n) + v0 (n) − y(n)
4.部分程序
实验中,滤波器的阶数 M=10,步长因子等于 0.1,进行自适应噪声抵消的程序采用 C 语言编写,参 考通道输入的数据保存在 reference.dat 文件中,主通道输入的数据保存在 prime.dat 文件中,经过消 噪处理后的数据保存在 result.dat 文件中,自适应滤波器的系数保存在数组 w 中,滤波器的输入数据保 存在数组 x 中。程序流程图如下:
自然科学
wi (k +1) = wi (k ) + 2µe(k) x(k − i) 0 ≤ i ≤ M −1 式中:x(k) 为自适应滤波器的输入,y(k) 为自适应滤波器的输出,d (k) 为参考信号,e(k) 为误差,w j 为滤波器的权重系数, µ 为步长,M 为滤波器阶数。
步长因子 µ 与滤波器阶数 M 和输入信号的功率都有关系。为使系统收敛,在输入同一信号的情况下, µ 的取值应该和滤波器的阶数成反比,且应根据不同的滤波器阶数取不同的步长,这样才能保证有最佳 的信号处理结果;当 M 一定时,µ 是唯一影响 LMS 算法收敛速度的参数,并且 µ 随输入信号功率的变化 而变化。µ 值的选取不能过大, µ 值过大时,在自适应的过程中会引入较大的梯度噪声,过渡过程将出 现振荡,不能收敛。如果 µ 值太小,虽然梯度噪声降低了,但是收敛速度较慢。所以对 µ 值要折中考虑。
1.引言
随着现代工业的发展,噪声污染已成为一个世界性的问题,早在 20 世纪 30 年代,人们就已经意识 到噪声控制的重要性。现在,噪声控制技术已广泛地应用于各个领域,如城市环境污染的治理,工厂生 产噪声的降低,语音通信产品的制造等,都涉及噪声控制问题。一些新出现的噪声源以及计算机、数字 信号处理、新材料等技术的快速发展既使噪声控制技术的研究与开发面临新的挑战,又为它提供了新的 机遇。虽然噪声控制技术的研究和开发已取得很大进展,但需进一步研究的问题仍然很多。
2
4
6
8
10
12
x 10 4
(责任编辑:黄秀山)
The Adaptive Noise Canceller Based on LMS Algorithm
NIE Xiang-fei
(Department of Electronic Engineering, Chongqing Three Gorges College, Wanzhou,Chongqing,404000)
摘要:当前,如何尽可能地降低噪声污染是一个重要的研究课题。随着计算机技术和信号处 理技术的发展,噪声控制技术已广泛地应用于各个领域。本文论述了基于 LMS 算法的自适应噪声 抵消器的工作原理,并进行了实验验证。结果表明,该方法具有良好的降噪效果。
关键词:LMS 算法,自适应噪声抵消器 中图分类号:TP273 文献标识码:B 文章编号:1009-8135(2002)02-0112-03
则均方误差为:
[ ] ξ = E e2 (n) = E[s(n) + v0 (n) − y(n)]2
[ ] = E s 2(n) + E[v0 (n) − y(n)]2 + 2E(s(n)[v0(n) − y(n)])
又因为:
-113-
自然科学
E(s(n)[v0 (n) − y(n)]) = 0 ,
输入信号波形 1
0.5
0
-0.5
-1
0
2
4
6
8
10
12
背景噪声波形
x 104
1
0.5
0
-0.5
-1
0
2
4
6
图 2、输入信号和输出信号的对比:
8
10
12
x 104
-115-
自然科学
输入信号波形 1
0.5
0
-0.5
-1
0
2
4
6
8
10
12
输出信号波形
x 10 4
1
0.5
0
-0.5
-1
0
Abstract: Recently, how to reduce the noise as much as possible has been an important subject. Noise controlling technology has been used in many fields because of the development of computer technology and signal processing technology. In this paper, the theory of adaptive noise canceller is discussed. The result of experimentation shows that adaptive noise canceller has good effect of reducing the noise.
开始
对w和x清0
M=10,u=0.1 从 reference.dat 文件中取一个数据并更新 x
从 prime.dat 文件中取一个数据减去 w*x 结果存入 result.dat 文件
-114-
更新滤波器系数 w
N 数据已处理完
Y 结束
5.实验结果
自然科学
实验时,声音从声卡录入,保存为.wav 文件,然后利用 MATLAB 把.wav 文件转换为.dat 文件,再对.dat 文件进行自适应处理,处理之后又把.dat 文件转换为.wav 文件。主通道和参考通道的输入信号波形以及 输出信号的波形如附录图 1、图 2 所示。从图中可以看出,输入信号与输出信号有明显的区别。在实验 中,将输入信号和输出信号变成声音波形文件并播放对比,发现噪声抵消的效果非常不错。 参考文献:
3.自适应噪声抵消原理
自适应噪声抵消器(ANC)的结构如图 1 所示。它有两个输入通道,一个称为主通道,另一个称为参 考通道。下面将采用最小均方误差准则来分析自适应噪声抵消的原理。
主通道输入的是带噪声 v0 (n) 的信号,如下式所示:
d (n) = s(n) + v0 (n)
参考通道是用来检测噪声的。从图中可知,由于传送路径不同,参考通道输入的噪声 v1(n) 和主通 道的噪声分量v0 (n) 是不同的,由于它们来自同一个噪声源,所以v1(n) 和v0 (n) 是相关的。假设参考通
[1] Sophocles J.Orfanidis. 信号处理导论[M]. 北京:清华大学出版社,1999. [2] 张贤达. 现代信号处理[M]. 北京:清华大学出版社,1995. [3] 沈福民. 自适应信号处理[M]. 西安:西安电子科技大学出版社,2001. 附录 图 1、输入信号的波形和背景噪声的波形:
自适应噪声抵消器是利用自适应噪声抵消技术,从背景噪声中提取语音信号,以 提高语音的清晰度。 其目的就是要把信号中的噪声和语音信号进行有效地分离,降低或抑制环境噪声的影响,这是电子技术、 声学技术和计算机技术三者的有效结合。
2.LMS 算法简介
当输入过程的统计特性未知时,或输入过程的统计特性变化时,自适应滤波器能够调整自己的参数, 以满足某种最佳准则的要求;根据不同的准则,产生许多自适应算法。总的来说,自适应算法都是递归 算法,它在某一最佳准则下不断地更新自己的参数。自适应滤波所采用的最佳准则有最小均方准则、最 小二乘准则、最大信噪比准则和统计检测准则等。其中,最小均方准则(MMSE)是研究得最多且应用最 广的一种。LMS 算法就是利用这一准则。
Key words: LMS algorithm;adaptive noise canceller
-116-
自然科学
重庆三峡学院学报——JOURNAL OF CHONGQING THREE-GORGES UNIVERSITY 2002 年第 2 期 第 18 卷——No.2. 2002 Vol.18.
基于 LMS 算法的自适应噪声抵消器研究
聂祥飞
(重庆三峡学院电子工程系,重庆万州 404000)