4的倍数特征
常用数倍数的特征

2的倍数:若一个整数的个位数字是0、2、4、6或8,则这个数就能被2整除。
3的倍数:若一个整数的各位数字的和能被3整除,则这个整数就能被3整除。
4的倍数:若一个整数的末尾两位数能被4整除,则这个数就能被4整除。
5的倍数:若一个整数的末位是0或5,则这个数就能被5整除。
6的倍数:若一个整数能被2和3整除,则这个数能被6整除。
7的倍数:若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7 整除。
如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595,59-5×2=49,所以6139是7的倍数,余类推。
8的倍数:若一个整数的未尾三位数能被8整除,则这个数能被8整除。
9的倍数:若一个整数的数字和能被9整除,则这个整数能被9整除。
11的倍数:两种方法:①若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。
②若一个整数的个位数字截去,再从余下的数中,减去个位数,如果差是11的倍数,则原数能被11整除。
如果差太大或心算不易看出是否11的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
例如,判断165 是否11的倍数的过程如下:16-5=11,所以165是11的倍数;又例如判断2112是否11的倍数的过程如下:211-2=209,20-9=11,所以2112是11的倍数,余类推。
13的倍数:若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。
如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。
例如,判断247是否13的倍数的过程如下:24+7×4=52,所以247是13的倍数;又例如判断2496是否13的倍数的过程如下:249+6×4=273,27+3×4=39,所以2496是13的倍数,余类推。
2、3、4、5、6、7、8、9、11、13、17、19、23、29的倍数特征

2、3、4、5、6、7、8、9、11、13、17、19、23、29的倍数特征2的倍数:若一个整数的个位数字是0、2、4、6或8,则这个数就能被2整除。
3的倍数:若一个整数的各位数字的和能被3整除,则这个整数就能被3整除。
4的倍数:若一个整数的末尾两位数能被4整除,则这个数就能被4整除。
5的倍数:若一个整数的末位是0或5,则这个数就能被5整除。
6的倍数:若一个整数能被2和3整除,则这个数能被6整除。
7的倍数:若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。
如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。
8的倍数:若一个整数的未尾三位数能被8整除,则这个数能被8整除。
9的倍数:若一个整数的数字和能被9整除,则这个整数能被9整除。
11的倍数:两种方法:①若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。
②若一个整数的个位数字截去,再从余下的数中,减去个位数,如果差是11的倍数,则原数能被11整除。
如果差太大或心算不易看出是否11的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
例如,判断165是否11的倍数的过程如下:16-5=11,所以165是11的倍数;又例如判断2112是否11的倍数的过程如下:211-2=209 , 20-9=11,所以2112是11的倍数,余类推。
13的倍数:若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。
如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。
4、6、7、8、9、 11、13、17、19、23、29的倍数特征ppt课件

▪ (三)11的倍数检验法也可用上述检查7
的(割尾法)处理!过程唯一不同的是:
倍数不是2而是1。
7
▪ 例如:
▪ 判断165是否11的倍数的过程如下: ▪ 16-5=11,所以165是11的倍数;
▪ 又例如判断2112是否11的倍数的过程如下: 211-2=209 , 20-9=11,所以2112 是11的倍数,依次类推。
15
23的倍数的特征:
▪ 若一个整数的末四位与前面5倍的隔出数 的差能被23整除,则这个数能被23整除。 (注:这里的隔出数,是一个数扣除末四 位后剩下的数字。)
▪ 例如:判断2271595是否23的倍数的过程 如下:
▪ 1595-227×5=460,460是23的倍数, 所以2271595是23的倍数。
4、6、7、8、9、 11、13、17、 19、23、29的 倍数特征
1
4的倍数的特征:
▪ 若一个整数的末尾两位数能被4整除,则 这个数能被4整除,即是4的倍数 。
2
6的倍数的特征:
▪ 各个数位上的数字之和可以被3整除的偶 数。
3
7的倍数的特征:
▪ 若一个整数的个位数字截去,再从余下的数中, 减去个位数的2倍,如果差是7的倍数,则原数 能被7整除。如果差太大或心算不易看出是否7 的倍数,就需要继续上述(截尾、倍大、相减、 验差)的过程,直到能清楚判断为止。
14
▪ ②若一个整数的末三位与7倍的前面的隔 出数的差能被19整除,则这个数能被19整 除。(注:隔出数,就是一个数扣除末三 位后剩下的数字。例如5012的隔出数就是 5;12590的隔出数就是12。)
▪ 例如:判断21128是否19的倍数的过程如 下:
▪ 21×7-128=19,所以21128是19的倍数。
2、5、4、8、125的倍数特征奥数题

对于数字2、5、4、8、125,以下是它们的倍数特征:
1. 数字2的倍数特征:数字2的倍数以偶数结尾,即个位数字为0、2、4、6或8。
例如,4、10、
16、22等都是2的倍数。
2. 数字5的倍数特征:数字5的倍数以5或0结尾,即个位数字为5或0。
例如,5、10、15、
20等都是5的倍数。
3. 数字4的倍数特征:数字4的倍数要求整数的最后两位能够被4整除。
例如,12、24、36等
都是4的倍数。
4. 数字8的倍数特征:数字8的倍数要求整数的最后三位能够被8整除。
例如,16、24、32等
都是8的倍数。
5. 数字125的倍数特征:数字125的倍数要求整数的最后三位数能够被125整除。
这意味着整数
的最后三位数是0、125、250、375、500、625、750或875。
例如,1000、1125、2250等
都是125的倍数。
这些倍数特征在奥数题中可以帮助确定给定数字是否是某个特定数字的倍数,或者找到满足某个数字的
倍数条件的整数。
23457891113的倍数的特征

2、3、4、5、7、8、9、11、13、25、125
的倍数的特征
2的倍数特征:
整数末尾就是0、2、4、6、8、……的数。
3的倍数特征:
整数各个位数字与就是3的倍数。
例如:3、6、9、12、15、18……、156……
4的倍数特征:
整数末两位被4整除。
例如:124、764、1148……
5的倍数特征:
整数的末尾就是0或5的数。
7的倍数特征:
整数末三位与前几位的差就是7的倍数。
8的倍数特征:
整数末三位就是8的倍数。
9的倍数特征:
整数各个位数字与就是9的倍数。
11的倍数特征:
1、整数末三位与前几位的差就是11的倍数。
2、整数奇数位数字之与与偶数位数字之与的差就是11的倍数。
13的倍数特征:
整数末三位与前几位的差就是13的倍数。
25的倍数特征:
整数末两位就是25的倍数。
125的倍数特征:
整数末三位就是125的倍数。
《4的倍数特征》

4是2的倍数,那么4乘任意一个不 是0的整数所得的积都是2的倍数。 所以,4的倍数都是2的倍数。
同你学能们圈仔出细4的观倍察数这吗些? 圈出来的数,它们是 2的倍数?
二、探究新知
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
三、知识运用
做一做:圈出4的倍数
424
368
194
502
736
500
那么怎么判断一个数是不是4的倍数呢? 只看个位能不能判断出来呢?
只看个位无法判断,那么个位和 十位一起看能不能判断出来呢?
二、探究新知
试一试:864,,1543是不是4的倍数?
864=800+64 =8×100+64 =8×(25×4)+64
1543=1500+43 =15×100+43 =15×(25×4)+43
64÷4=16,64 是 4 的 倍 数 , 所 以 864 也 是4的倍数。检验: 864÷4=216
43÷4=10……3,43 不 是 4 的 倍 数 , 所 以 1543 也 不 是 4 的 倍 数 检验:1543÷4=385……3。
①整百整千数都是4的倍数 ②一个数末两位组成的数是4的倍数,那么这个数就是4的倍数。
只看个位无法判断那么个位和十位一起看能不能判断出来呢
因数与倍数
4的倍9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
2、3、4、5、6、7、8、9、11、12、13、15、17、25、125的倍数特征

2、3、4、5、6、7、8、9、11、12、13、15、17、25、125的倍数特征2的倍数特征:个位是0、2、4、6、8的数。
3的倍数特征:各数位上数的和是3的倍数。
4的倍数特征:一个数的末两位数是4的倍数,那么这个数就是4的倍数.5的倍数特征:个位是0或5的数6的倍数特征:个位是偶数,且各数位之和是3的倍数。
7的倍数特征:1、一个数的末三位数与末三位数之前的数字组成的数之差(用大数减小数)是7的倍数,这个数就是7的倍数。
2、若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。
如果差太大不易看出是否7的倍数,就需要继续上述过程,直到能清楚判断为止。
举例:判断133是否7的倍数的过下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程下:613-9×2=595,59-5×2=49,所以6139是7的倍数,其余类推。
8的倍数的特征:一个数的末三位数是8的倍数,那么这个数就是8的倍数。
9的倍数特征:各个数位上数的和是9的倍数。
11的倍数特征:把一个数从右往左数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原数就一定能被11整除。
12的倍数特征:各数位上数的和是3的倍数,且这个数的末两位数是4的倍数。
13的倍数特征:1、一个数末三位数与末三位以前的数字所组成的数之差,如果是13的倍数,那么这个多位数就一定是13的倍数。
2、若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。
如果和太大不易看出是否13的倍数,就需要继续上述过程,直到能清楚判断为止。
15的倍数特征:个位是0或5的数,且各数位上数的和是3的倍数。
17的倍数特征:若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。
4倍数特征简单概括

4倍数特征简单概括首先,我们来研究个位数对4倍数特征的影响。
个位数是0、4、8中的一种,这意味着数字必须以0、4、8这三个数字结尾。
这是因为一个数字的个位数代表了它除以10的余数,而一个数字能被4整除的充分必要条件就是这个数字的个位数加上十位数的两倍能被4整除。
由于4个数字循环出现一次就能被4整除,所以个位数必须是0、4、8这三个数字。
其次,我们来研究个位数和十位数之间的关系。
一个数字的十位数代表了它除以100的余数。
根据数学知识,我们可以将一个数字分解为个位数和十位数两部分。
对于一个4倍数来说,它的十位数和个位数之间存在以下关系:个位数加上十位数的两倍必须能被4整除。
这是因为十位数和个位数的和代表了去掉了个位数的数字除以10后的余数,而一个数字能被4整除的充分必要条件是它的最后两位数字能被4整除。
根据这个条件,我们可以列举出所有满足4倍数特征的数字:04、08、12、16、20、24、28、32、36、40、44、48、52、56、60、64、68、72、76、80、84、88、92、96、100、104、108、112、116、120、124、128、132、136、140、144、148、152、156、160、164、168、172、176、180、184、188、192、196、200、204、208、212、216、220、224、228、232、236、240、244、248、252、256、260、264、268、272、276、280、284、288、292、296、300……以此类推。
通过以上分析,我们可以得出结论,满足4倍数特征的数字,个位数只能是0、4、8,并且个位数加上十位数的两倍必须能被4整除。
这是4倍数特征最基本的特点。
当然,我们还可以进一步研究4倍数特征的其他特殊性质,例如4倍数特征数字的倍数也是4倍数特征数字,以及两个4倍数特征数字的和、差、积等仍然是4倍数特征数字等等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4的倍数的特征
一、末尾只能是0、2、4、6、8
4的倍数有:8、64、128、256、512、2000……观察这些数,如果只看末尾,发现0、2、4、6、8都出现过,
二、最后两位组成的数都是4的n(n=0、1、2、3、4.........)倍
那么4的倍数是不是就是末尾是0、2、4、6、8的数呢?显然是不正确的,如34,就不是4的倍数,所以只看末尾是不够的。
但4的倍数与2的倍数之间有一定的关系,4=2×2,4的倍数的特征,一定满足2的倍数所具备的特征。
把4的倍数的最后两位划出来。
的数与4有什么关系呢?
64÷4=16 28÷4=7、56÷4=14、12÷4=3 00÷4=0……
发现,4的倍数最后两位组成的数都是4的倍数。
利用这个规律,我们在判断一个数是不是4的倍数,可以直接看这个数的末两位组成的数,如果是 4的倍数,这个数就是4的倍数。