统计学计算题例题及计算分析报告

合集下载

《统计学》计算题型与参考答案

《统计学》计算题型与参考答案

《统计学》计算题型(第二章)1.某车间40名工人完成生产计划百分数(%)资料如下:90 65 100 102 100 104 112 120 124 98110 110 120 120 114 100 109 119 123 107110 99 132 135 107 107 109 102 102 101110 109 107 103 103 102 102 102 104 104要求:(1)编制分配数列;(4分)(2)指出分组标志及其类型;(4分)(3)对该车间工人的生产情况进行分析。

(2分)解答:(1)(2类型:数量标志(3)从分配数列可以看出,该计划未能完成计划的有4人,占10%,超额完成计划在10%以内的有22人,占55%,超额20%完成的有7人,占17.5%。

反映该车间,该计划完成较好。

(第三章)2.2005年9份甲、乙两农贸市场某农产品价格和成交量、成交额资料如下:解答:(1)x 甲=∑∑m x m 1=248.416.36.314.24.21246.34.2⨯+⨯+⨯++=30/7=4.29(元)x 乙=∑∑fxf =12418.426.344.2++⨯+⨯+⨯=21.6/7=3.09(元)(2)原因分析:甲市场在价格最高的C 品种成交量最高,而乙市场是在最低的价格A 品种成交量最高,根据权数越大其对应的变量值对平均数的作用越大的原理,可知甲市场平均价格趋近于C ,而乙市场平均价格却趋近于A ,所以甲市场平均价格高于乙市场平均价格。

(第三章)3.甲、乙两企业产量资料如下表:工人人数比重(%)产量(件)甲企业 乙企业 100以下 2 4 100-110 8 5 110-120 30 28 120-130 35 31 130-140 20 25 140-150 3 4 150以上 2 3 合 计 100 100要求:(1)分别计算甲、乙两企业的平均产量?(5分)(2)计算有关指标比较两企业职工的平均产量的代表性。

统计学例题-指数体系计算

统计学例题-指数体系计算

pq pq pq
1 1 0 1 1 1
pq pq pq
00
00
01
10/31/2019
13
指(相对)数分析:
p1q1 p0q1 p1q1 60 255 65 255 p0q0 p0q0 p0q1 60 250 60 255 1.021.08333 1.105
合计 —
3 200


(1)计算价格总指数、销售量总指数和销售额总指数,并 写出指数体系;
(2)计算并完成填空:企业销售总额增长了 %,商品价格总体上
涨了 %,由于销售量上升使企业销售总额增长了
%
10/31/2019
24
解:
销售额指数=销售量指数×销售价格指数
pq pq pq
1 1
0 1
250 255
20 22
——
价格(元) 销售额(元) 基期 报告期 基期 报告期
p0 150 60 4 000
p1 150 65 4 200
p0q0 30000 15000 80000
p0q1 37 500 15 300 88 000

— 125 000 140 800
10/31/2019
21
计算:综合指数
工资总额(元)
基期
报告期
m0
m1
504 000 1 296 000
580 000 1 566 000
合计


1 800 000 2 146 000
计算:月工资个体指数(多层总体)
x0

m

m x

1800000 504000 1296000

统计学计算题例题(含答案)

统计学计算题例题(含答案)

1、某企业制定了销售额的五年计划, 该计划要求计划期的最后一年的年销售额应达到 1200万元。

实际执行最后两年情况如下表:请根据上表资料,对该企业五年计划的完成情况进行考核。

1、 计划完成相对数 =1410/1200*100%=117.5%该计划完成相对数指标为正指标, 计划完成相对数又大于 100% ,所以表示该计划超额完成。

从第 四年 5 月至第五年 4 月的一年的年销售额之和恰好为 1200 万元,所以该计划在第五年 4 月完成,提 前 8 个月完成。

2、 某地区制定了一个植树造林的五年计划,计划中设定的目标是五年累计植树造林面积为 2000 万 亩。

实际执行情况如下:请对该长期计划的完成情况进行考核。

2、 计划完成程度相对数 =2100/2000*100%=105%计划完成相对数指标大于100%, 且该指标为正指标 , 所以该计划超额完成截止第五年第三季度累计完成 2000 万亩造林面积,所以提前 1 个 季 度 完 成3、某班学生统计学课程考试成绩情况如下表:请根据上述资料计算该班统计学课程的平均成绩、成绩的中位数、众数和成绩的标准差。

3、某企业职工年龄情况如下表:X 二三于=4740/62=76.45 (分)Me=70+ (62/2-18) *10/20=76.5 (分)Mo=70+(20 J5)70/[(2CM5)+(2CM8)]=77 」4 (分)G-7(55-76.45f *3 +⋯⋯+ (95^76.45f *6/62=10.45 (分)4、某学校有5000 名学生,现从中按重复抽样方法抽取250 名同学,调查其每周观看电视的小时数的情况,获得资料如下表:请根据上述资料,以95% 的概率保证程度对全校学生每周平均收看电视时间进行区间估计。

4> 样本平均数X= Sxf/Sf-l250/250-5样 ______________ __________二>/ 刀(好予f/(工f—1 )二V 1136/249 二2. 14抽样平均误差U 二s/ Vn=0.14因为 F (t) =95%, 所以日.96抽样极限误差△ 二t U 二 1. 96*0. 14=0. 27 区间下限=5-0. 27=4. 73 区间上限二5+0. 27-5. 27全校学生每周平均收看电视的吋间在( 4.73,5.27) 小时之间,概率保证程度为95%5 、某企业对全自动生产线上的产品随机抽取1000 件进行检验,发现有45 件是不合格的,设定允许的极限误差为1.32% 。

统计学计算题目解析

统计学计算题目解析

1、下表是某保险公司 160 名推销员月销售额的分组数据。

书 p261 )计算并填写表格中各行对应的向上累计频数;2)计算并填写表格中各行对应的向下累计频数;3)确定该公司月销售额的中位数。

按上限公式计算: Me=U-=18-0.22=17,78 2 、某厂工人按年龄分组资料如下: p41要求:采用简捷法计算标准差。

《简捷法》3、试根据表中的资料计算某旅游胜地 2004 年平均旅游人数。

P50表:某旅游胜地旅游人数4 、某大学 2004 年在册学生人数资料如表 3-6 所示,试计算该大学 2004 年平均在册学生人数时间1月1日3月1日 7月1日 9月1日 12 月 31 日 在册学生人数(人)340835283250359035755 、已知某企业 2004 年非生产人员以及全部职工人数资料如下表所示,求该企业第四季度非生产人员占全部职工 人数的平均比重。

表: 某企业非生产人员占全部职工人数比重时间9 月末 10 月末 11 月末 12 月末 非生产人数(人) 200 206 206 218 全部职工人数(人) 1000105010701108非生产人员占全部职 工人数比重( % )20.0 19.62 19.25 19.686、根据表中资料填写相应的指标值。

表:某地区 1999~2004 年国内生产总值发展速度计算表7 、根据表中资料计算移动平均数,并填入相应的位置。

P618 、根据表中资料计算移动平均数,并填入相应的位置。

P621977 10001978 11601979 13871980 15861981 14871982 14151983 16179、某百货商场某年上半年的零售额、商品库存额如下:(单位:百万元)日期1月2月3月4月5月6月零售额42.30 43.64 40.71 40.93 42.11 44.54月初库存额20.82 21.35 23.98 22.47 23.16 23.76试计算该商城该年上半年商品平均流转次数(注:商品流通次数 = 商品销售额 / 库存额; 6 月末商品库存额为24.73 百万元)。

统计学相关案例解析

统计学相关案例解析
说法? 已知Z0.05 1.645,Z0.025 1.96,t0.05 (39) 1.684, t0.025 (39) 2.021。
解: H0: 480000, H1: 480000。
统计检验量z x 0 450000 480000 1.581
S
120000
n
40
由 0.05,查表得临界值z z0.05 1.645
n
10
置信上限:x t0.025
S 791.1 2.262 17.136 803.3(6 克)
n
10
∴ 有95%的把握这批食品的平均每袋重 量在778.84克到803.36克之间。
例4.某制造厂质量管理部门的负责人希望估计移交给
接收部门的5500包原材料的平均重量。一个由250包
原材料组成的随机样本所给出的平均值 x 65千克 。
35
50
环比发展速 — 110 度(%)
105 95
要求:(1)利用指标间的关系将表中所缺数字补齐; (结果保留1位小数)
(2)按水平法计算该地区第八个五年计划期间 化肥产量年平均增长速度。
解:(1)、
时间 1990年
化肥产量 (万吨)
300
定基增长 量(万吨)

环比发展 速度(%)

第八个五年计划期间 1991年 1992年 1993年 1994年 1995年
总体标准差 15千克。试构造总体平均值 的置
信区间,已知置信概率为95%,总体为正态分布。
已知Z0.05 1.645,Z0.025 1.96,t0.05 (249) 1.645, t0.025 (249) 1.96。
解:已知总体服从正态分布,所以样本均值也服从

【统计学期末考试题库】经典必考计算分析题

【统计学期末考试题库】经典必考计算分析题

计算分析题(要求写出公式和计算过程,结果保留两位小数)1、按照某市城市社会发展十年规划,该市人均绿化面积要在2010年的人均4平方米的基础上十年后翻一番。

试问:(1)若在2020年达到翻一番的目标,每年的平均发展速度是多少?(2)若在2018年就达到翻一番的目标,每年的平均增长速度是多少?(3)若2011年和2012年的平均发展速度都为110%,那么后8年应该以怎样的平均发展速度才能实现这一目标?(4)假定2017年的人均绿化面积为人均6.6平方米,以2010年为基期,那么其平均年增长量是多少?2、某地区市场销售额报告期为40万元,比上年增加了5万元,销售量与上年相比上升了3%,试计算:(1)市场销售量总指数;(2)市场销售价格指数;(3)由于销售量变动对销售额的影响。

3、某乡有5000农户,按随机原则重复抽取100户调查,得平均每户年纯收入12000元,标准差2000元。

要求:(1)以95%的概率(Z=1.96)估计全乡平均每户纯收入的区间。

(2)以同样概率估计全乡农户年纯收入总额的区间范围。

4、某企业工人的日产量情况如下表所示:试计算该企业工人平均日产量。

(10分)1、某乡2012-2013年三种鲜果产品收购资料如下:试计算三种鲜果产品收购价格指数,说明该地区2013年较之2012年鲜果收购价格的提高程度,以及由于收购价格提高使当地农民增加的收入。

2、某企业2013年上半年进货计划执行情况如下表:试计算:(1)各季度进货计划完成程度。

(2)上半年进货计划完成情况。

(3)上半年累计计划进度执行情况。

3、按照某市城市社会发展十年规划,该市人均绿化面积要在2010年的人均4平方米的基础上十年后翻一番。

试问:(1)若在2020年达到翻一番的目标,每年的平均发展速度是多少?(2)若在2018年就达到翻一番的目标,每年的平均增长速度是多少?(3)若2011年和2012年的平均发展速度都为110%,那么后8年应该以怎样的平均发展速度才能实现这一目标?(4)假定2017年的人均绿化面积为人均6.6平方米,以2010年为基期,那么其平均年增长量是多少?4、设某总体服从正态分布,其标准差为12,现抽取了一个样本容量为400的子样,计算得平均值=21,试以显著性水平确定总体的平均值是否不超过20?(10分)1又知乙车间工人日产量的标准差为12件,日产量为40件,试根据资料说明:(1)哪一个车间的平均产量高。

统计学分析计算题

统计学分析计算题

1、某地区2013—2017 年的水泥产量如表:根据资料特征,试用最小二乘法拟合合适的方程,并据以预测2018 年的水泥平均产量。

(答案:直线,469.5 万吨)2、某地区2013—2017 年的小麦产量如表:计算:(1)2016年的逐期增长量、累计增长量、环比发展速度、定基发展速度、环比增长速度、定基增长速度、增长1%的绝对值;(2)2014—2017 年平均发展速度和平均增长速度。

(答案:105.85%,5.85%)3、某企业2018 年上半年资料如下:求:(1)该企业上半年的平均人数;111人(110.67人)(2)该企业上半年的月平均总产值;486 万元(3)该企业 3 月份的劳动生产率; 4.33万元/人(4)该企业上半年的月平均劳动生产率。

4.39 万元/人=486/110.67万元/人4、某地区2017 年生猪存栏头数资料如表:要求:计算一季度(答案:15.75万头)、上半年(答案:16.38万头)、下半年(答案:20万头)及全年的生猪平均存栏头数(答案:18.19万头)。

5、某地区2013—2017年GDP的有关速度指标如表:要求:(1)填空;(红字原来是空格,现为答案)(2)计算2013—2017年GDP 年平均增长速度;(答案:7.99%)(3)若2012年GDP为110亿元,试按此平均增长速度推算2019 年的国民生产总值。

(答案:188.40 亿元)6、某市 A 商品零售量资料如下:(单位:万件)要求:(1)用按季平均法计算 A 商品零售量的季节比率;30.40%,45.87%,130.13%,193.60%(2)用趋势剔除法计算 A 商品零售量的季节比率;33.00%, 46.64%, 129.32%, 191.04%(3)若2018年 A 商品零售量若为240 万件,分别用两种方法预测各个季度商品零售量分别为多少?按季平均法18.24 ,27.52 ,78.08 ,116.16趋势剔除法19.80, 27.98, 77.59, 114.637、某企业2018 年6 月份职工人数变动情况如下: 6.1 有职工2600 人,其中非直接生产人员300 人; 6.13 调离企业24 人,其中企业管理人员8 人; 6.23 招进生产工人20 人。

统计学计算题例题(含答案)

统计学计算题例题(含答案)

1、某企业制定了销售额的五年计划,该计划要求计划期的最后一年的年销售额应达到1200万元。

实际执行最后两年情况如下表:请根据上表资料,对该企业五年计划的完成情况进行考核。

1、计划完成相对数=1410/1200*100%=117.5%该计划完成相对数指标为正指标,计划完成相对数又大于100%,所以表示该计划超额完成。

从第四年5月至第五年4月的一年的年销售额之和恰好为1200万元,所以该计划在第五年4月完成,提前8个月完成。

2、某地区制定了一个植树造林的五年计划,计划中设定的目标是五年累计植树造林面积为2000万亩。

实际执行情况如下:请对该长期计划的完成情况进行考核。

2、计划完成程度相对数=2100/2000*100%=105%计划完成相对数指标大于100%,且该指标为正指标,所以该计划超额完成截止第五年第三季度累计完成2000万亩造林面积,所以提前1个季度完成3、某班学生统计学课程考试成绩情况如下表:请根据上述资料计算该班统计学课程的平均成绩、成绩的中位数、众数和成绩的标准差。

4、某学校有5000名学生,现从中按重复抽样方法抽取250名同学,调查其每周观看电视的小时数的情4> 样本平均数X= Sxf/Sf-l250/250-5样 ________ __________二>/刀(好予f/(工f—1)二V 1136/249二2. 14抽样平均误差U二s/ Vn=0.14因为F (t) =95%,所以日.96抽样极限误差△二t U 二 1. 96*0. 14=0. 27 区间下限=5-0. 27=4. 73 区间上限二5+0. 27-5. 27全校学生每周平均收看电视的吋间在(4.73,5.27)小时之间,概率保证程度为95%5、某企业对全自动生产线上的产品随机抽取1000件进行检验,发现有45件是不合格的,设定允许的极限误差为 1.32%。

请对全部产品的合格率进行区间估计。

5、样本合格率p=955/1000=95.5% 抽样平均误差u二V pChp)/n= 0.66%因为△=1.32%,所以t= A/ u =2所以F.(.t)-95. 45%区间下限二95. 5%-l. 32%=94. 18%区间上限二95. 5%+l. 32%二96. 82%所以我们以95. 45%的概率估计全部产品和合格率是在(94.18%, 96. 82%)之间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算分析题解答参考1.1.某厂三个车间一季度生产情况如下:计算一季度三个车间产量平均计划完成百分比和平均单位产品成本。

解:平均计划完成百分比=实际产量/计划产量=733/(198/0.9+315/1.05+220/1.1)=101.81%平均单位产量成本 X=∑xf/∑f=(15*198+10*315+8*220)/733=10.75(元/件)1.2.某企业产品的有关资料如下:试分别计算该企业产品98年、99年的平均单位产品成本。

解:该企业98年平均单位产品成本 x=∑xf/∑f=(25*1500+28*1020+32*980)/3500=27.83(元/件)该企业99年平均单位产品成本x=∑xf /∑(m/x)=101060/(24500/25+28560/28+48000/32)=28.87(元/件)年某月甲、乙两市场三种商品价格、销售量和销售额资料如下:1.3.1999解:三种商品在甲市场上的平均价格x=∑xf/∑f=(105*700+120*900+137*1100)/2700=123.04(元/件)三种商品在乙市场上的平均价格x=∑m/∑(m/x)=317900/(126000/105+96000/120+95900/137)=117.74(元/件)2.1.某车间有甲、乙两个生产小组,甲组平均每个工人的日产量为22件,标准差为3.5件;乙组工人日产量资料:试比较甲、乙两生产小组中的哪个组的日产量更有代表性? 解:∵X 甲=22件 σ甲=3.5件∴V 甲=σ甲/ X 甲=3.5/22=15.91% 列表计算乙组的数据资料如下:∵x 乙=∑xf/∑f=(11*10+14*20+17*30+20*40)/100 =17(件)σ乙=√[∑(x-x)2f]/∑f =√900/100 =3(件) ∴V 乙=σ乙/ x 乙=3/17=17.65%由于V 甲<V 乙,故甲生产小组的日产量更有代表性。

2.2.有甲、乙两个品种的粮食作物,经播种实验后得知甲品种的平均产量为998斤,标准差为162.7斤;乙品种实验的资料如下:试研究两个品种的平均亩产量,确定哪一个品种具有较大稳定性,更有推广价值? 解:∵x 甲=998斤 σ甲=162.7斤∴V 甲=σ甲/ x 甲=162.7/998=16.30% 列表计算乙品种的数据资料如下:∵x乙=∑xf/∑f=5005/5=1001(斤/亩)σ乙=√[∑(x-x)2f]/∑f =√26245/5 =72.45(斤/亩)∴V乙=σ乙/ x乙=72.45/1001=7.24%由于V乙<V甲,故乙品种具有较大稳定性,更有推广价值。

3.1.某乡有10000户农户,按随机原则从中抽取100户,测得户均月收入3000元,标准差为400元,其中有20户的户均月收入在6000元以上。

若以95.45%的概率保证程度,用不重复抽样分别估计该乡:(1)全部农户户均月收入的围和全部农户月总收入的围;(2)全部农户中,户均月收入在6000元以上的户数所占比重的围;(3)全部农户中,户均月收入在6000元以上的户数围。

解:已知N=10000户 n=100户 x=3000户σ=400元 p=20% z=2(1)μx=√σ2/n(1-n/N) =√4002/100*(1-100/10000) =39.8(元)△x=zμx=2*39.8=79.6(元)户均月收入下限= x-△x=3000-79.6=2920.4(元)户均月收入上限= x+△x=3000+79.6=3079.6(元)月总收入下限=10000*2920.4=2920.4(万元)月总收入上限=10000*3079.6=3079.6(万元)即全部农户户均收入的围为2920.4~3079.6元,全部农户月总收入的围为2920.4~3079.6万元。

(2) σp2=p(1-p)=0.2*(1-0.2)=0.16μp=√σp2/n(1-n/N) =√0.16/100*(1-100/10000) =3.98%△p=zμp=2*3.98%=7.96%户数所占比重的下限=p-△p=20%-7.96%=12.04%户数所占比重的上限=p+△p=20%+7.96%=27.96%即全部农户中,户均月收入在6000元以上的户数所占比重的围为12.04%~27.96%。

(3)户数下限=10000*12.04%=1204(户)户数上限=10000*27.96%=2796(户)即全部农户中,户均月收入在6000元以上的户数围为1204~2796户。

3.2.某企业生产一种新的电子元件10000只,用简单随机不重复抽样方法抽取100只作耐用时间试验,试验得到的结果:平均寿命1192小时,标准差101.17小时,合格率88%;试在95%概率保证度下估计:(1)这种新的电子元件平均寿命的区间围;(2)这种新的电子元件合格率的区间围。

解:已知N=10000只 n=100只 x=1192小时σ=101.17小时 p=88% z=1.96(1)μx=√σ2/n(1-n/N) =√101.172/100*(1-100/10000) =10.07(小时)△x=zμx=1.96*10.07=19.74(小时)平均寿命下限= x-△x=1192-19.74=1172.26(小时)平均寿命上限= x+△x=1192+19.74=1211.74(小时)即新的电子元件平均寿命的区间围为1172.26~1211.74小时。

(2) σp2=p(1-p)=0.88*(1-0.88)=0.1056μp=√σp2/n(1-n/N) =√0.1056/100*(1-100/10000) =3.23%△p=zμp=1.96*3.23%=6.33%合格率下限=p-△p=88%-6.33%=81.67%合格率上限=p+△p=88%+6.33%=94.33%即新的电子元件合格率的区间围为81.67%~94.33%。

3.3.从一批零件5000件中,按简单随机重复抽取200件进行测验,其中合格品数量为188件。

要求:(1)计算该批零件合格率和抽样平均误差;(2)按95.45%的可靠程度估计该批零件的合格率区间围;(3)按95.45%的可靠程度估计该批零件的合格品数量区间围。

解:已知N=5000件 n=200件 n1=188件 z=2(1)该批零件合格率从:p= n1/n=188/200=94%∵σp2=p(1-p)=0.94*(1-0.94)=0.0564∴该批零件合格率抽样平均误差μp=√σp2/n =√0.0564/200 =1.68%(2)△p=zμp=2*1.68%=3.36%合格率下限=p-△p=94%-3.36%=90.64%合格率上限=p+△p=94%+3.36%=97.36%即按95.45%的可靠程度,该批零件的合格率区间围为90.64%~97.36%。

(3)合格品数量下限=5000*90.64%=4532(件)合格品数量上限=5000*97.36%=4868(件)即按95.45%的可靠程度,该批零件的合格品数量区间围为4532~4868件。

3.4.某厂生产一种新型灯泡10000只,随机重复抽取1%作耐用时间试验,试验结果:平均寿命为4800小时,标准差为300小时,合格品数量为92只。

(1)在95%概率保证下,估计该新型灯泡平均寿命的区间围;(2)在95%概率保证下,估计该新型灯泡合格率和合格品数量的区间围。

解:已知N=10000只 n=10000*1%=100只 x=4800小时σ=300小时 p=92% z=1.96(1) ∵μx=√σ2/n =√3002/100 =30(小时)△x=zμx=1.96*30=58.8(小时)∴平均寿命下限= x-△x=4800-58.8=4741.2(小时)平均寿命上限= x+△x=4800+58.8=4858.8(小时)即在95%概率保证下,该新型灯泡平均寿命的区间围为4741.2~4858.8小时。

(2) ∵σp2=p(1-p)=0.92*(1-0.92)=0.0736∴μp=√σp2/n =√0.0736/100 =2.71%△p=zμp=1.96*2.71%=5.31%合格率下限=p-△p=92%-5.31%=86.69%合格率上限=p+△p=92%+5.31%=97.31%合格品数量下限=10000*86.69%=8669(只)合格品数量上限=10000*97.31%=9731(只)即在95%概率保证下,该新型灯泡合格率区间围为86.69%~97.31%,合格品数量的区间围为8669~9731只。

4.1.某企业各月产品销售额和销售利润资料如下:要求:(1)编制产品销售额与销售利润之间的直线回归方程;(2)若6月份产品销售额为30万元时,试估计企业产品销售利润。

(列表计算所需数据资料,写出公式和计算过程,结果保留四位小数)解:列表计算所需数据资料如下:(1)设产品销售额与销售利润之间的直线回归方程为y c=a+bx则b=(n∑xy-∑x∑y)/[ n∑x2-(∑x)2]=(5*253.9-103*12)/(5*2259-1032)=0.0488a=y-bx=∑y/n-b(∑x/n)=12/5-0.0488*(103/5)=1.3947即直线回归方程为y c=1.3947+0.0488x(2)把x=30万元代入直线回归方程,得y c=1.3947+0.0488*30=2.8587(万元)即该企业6月份销售额为30万元时,其产品销售利润为2.8587万元。

4.2.某地区2002年-2005年个人消费支出和收入资料如下:要求:(1)试利用所给资料建立以收入为自变量的直线回归方程;(2)若个人收入为300亿元时,试估计个人消费支出额。

(列表计算所需数据资料,写出公式和计算过程,结果保留四位小数)解:列表计算所需数据资料如下:(1)设个人收入与消费支出之间的直线回归方程为y c=a+bx则b=(n∑xy-∑x∑y)/[ n∑x2-(∑x)2]=(4*234659-1022*911)/(4*263420-10222)=0.8258a=∑y/n-b(∑x/n)=911/4-0.8258*(1022/4)=16.7581即直线回归方程为y c=16.7581+0.8258x(2)把x=300亿元代入直线回归方程,得y c=16.7581+0.8258*300=264.4981(亿元)即个人收入为300亿元时,个人消费支出为264.4981亿元。

4.3.某班学生,按某课程学习时数每8人为一组进行分组,其对应的学习成绩如下表:试根据上述资料建立学习成绩(y )倚学习时间(x )的直线回归方程。

(列表计算所需数据资料,写出公式和计算过程,结果保留两位小数。

相关文档
最新文档