极坐标及极坐标方程的应用精编版

合集下载

极坐标系和极坐标方程

极坐标系和极坐标方程

极坐标系和极坐标方程一、基础知识归纳总结:1.伸缩变换:设点P(x,y)是平面直角坐标系中的任意一点,在变换⎩⎨⎧>⋅='>⋅=').0(,y y 0),(x,x :μμλλϕ的作用下,点P(x,y)对应到点)y ,x (P ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。

2.极坐标系的概念:在平面内取一个定点O,叫做极点;自极点O引一条 射线Ox叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其 正方向(通常取逆时针方向),这样就建立了一个极坐标系。

3.点M 的极坐标:设M 是平面内一点,极点O与点M 的距离OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的∠XOM 叫做点M 的极角,记为θ。

有序数对),(θρ叫做点M 的极坐标,记为M ),(θρ. 极坐标),(θρ与)Z k )(2k ,(∈+πθρ表示同一个点。

极点O 的坐标为)R )(,0(∈θθ.4.若0<ρ,则0>-ρ,规定点),(θρ-与点),(θρ关于极点对称,即),(θρ-与),(θπρ+表示同一点。

如果规定πθρ20,0≤≤>,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是唯一确定的。

5.极坐标与直角坐标的互化:6.直线的极坐标方程:极坐标系中,)0(≥=ραθ表示以极点为起点的一条射线;)R (∈=ραθ表示过极点的一条直线. 在极坐标系中,过点A(,0)(0)a a >,且垂直于极轴的直线l 的极坐标方程是cos a ρθ=.在极坐标系中,过点0A(,)(0)a a θ>,且垂直于直线OA 的直线l 的极坐标方程是0cos()a ρθθ-=. 在极坐标系中,过点00A(,)ρθ,且与极轴成α角的直线的极坐标方程是00sin()cos()ραθραθ-=-.7.圆的极坐标方程:在极坐标系中,以极点为圆心,r 为半径的圆的极坐标方程是 r =ρ; 在极坐标系中,以 C(,0)(0)r r >为圆心, r 为半径的圆的极坐标方程是 2cos r ρθ=;在极坐标系中,以 C(,)(0)2r r π>为圆心,r 为半径的圆的极坐标方程是 2rsin ρθ=;在极坐标系中,以 00C(,)ρθ 为圆心,r 为半径的圆的极坐标方程是2220002cos()r ρρρρθθ+--=;8.圆锥曲线方程:(1)1cos epe ρθ=-表示离心率为e ,焦点到相应准线距离为p 的圆锥曲线方程。

参数方程与极坐标方程及应用(学生版)

参数方程与极坐标方程及应用(学生版)

参数方程与极坐标方程及应用简单曲线的极坐标方程题型一:平面直角坐标系中的伸缩变换 1.求椭圆x 24+y 2=1经过伸缩变换x ′=12x ,y ′=y后的曲线方程.2.将圆x 2+y 2=1变换为椭圆x 29+y 24=1的一个伸缩变换公式为φ:X =ax (a >0),Y =by (b >0),求a ,b 的值.题型二:极坐标系与直角坐标系的互化【例1】 在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系.曲线C 的极坐标方程为ρcos θ-π3=1(0≤θ<2π),M ,N 分别为曲线C 与x 轴,y 轴的交点.(1)写出曲线C 的直角坐标方程,并求M ,N 的极坐标; (2)设MN 的中点为P ,求直线OP 的极坐标方程.[题型训练]已知圆O 1和圆O 2的极坐标方程分别为ρ=2,ρ2-22ρ·cosθ-π4=2. (1)把圆O 1和圆O 2的极坐标方程化为直角坐标方程; (2)求经过两圆交点的直线的极坐标方程.题型三:极坐标方程的应用【例2】 在直角坐标系xOy 中,直线C 1:x =-2,圆C 2:(x -1)2+(y -2)2=1,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求C 1,C 2的极坐标方程;(2)若直线C 3的极坐标方程为θ=π4(ρ∈R ),设C 2与C 3的交点为M ,N ,求△C 2MN 的面积.[题型训练] 在极坐标系中,求直线ρsinθ+π4=2被圆ρ=4截得的弦长.课后练习1.(2018·全国卷Ⅰ)在直角坐标系xOy 中,曲线C 1的方程为y =k |x |+2.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ2+2ρcos θ-3=0.(1)求C 2的直角坐标方程;(2)若C 1与C 2有且仅有三个公共点,求C 1的方程.2.(2017·全国卷Ⅱ)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 1的极坐标方程为ρcos θ=4.(1)M 为曲线C 1上的动点,点P 在线段OM 上,且满足|OM |·|OP |=16,求点P 的轨迹C 2的直角坐标方程; (2)设点A 的极坐标为2,π3,点B 在曲线C 2上,求△OAB 面积的最大值.3.(2016·全国卷Ⅰ)在直角坐标系xOy 中,曲线C 1的参数方程为x =a cos t ,y =1+a sin t ,(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(1)说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(2)直线C 3的极坐标方程为θ=α0,其中α0满足tan α0=2,若曲线C 1与C 2的公共点都在C 3上,求a .二:参数方程 [常用结论]根据直线的参数方程的标准式中t 的几何意义,有如下常用结论:过定点M 0的直线与圆锥曲线相交,交点为M 1,M 2,所对应的参数分别为t 1,t 2. (1)弦长l =|t 1-t 2|;(2)弦M 1M 2的中点⇒t 1+t 2=0;(3)|M 0M 1||M 0M 2|=|t 1t 2|. 题型一:参数方程与普通方程的互化 1.将下列参数方程化为普通方程.(1)x =1t,y =1tt 2-1(t 为参数);(2)x =2+sin 2θ,y =-1+cos 2θ(θ为参数).2.如图所示,以过原点的直线的倾斜角θ为参数,求圆x 2+y 2-x =0的参数方程.题型二:参数方程的应用【例1】在平面直角坐标系xOy 中,圆C 的参数方程为x =4cos θ,y =4sin θ(θ为参数),直线l 经过点P (1,2),倾斜角α=π6.(1)写出圆C 的普通方程和直线l 的参数方程;(2)设直线l 与圆C 相交于A ,B 两点,求|P A |·|PB |的值.[题型训练] 在直角坐标系xOy 中,设倾斜角为α的直线l 的参数方程为x =3+t cos α,y =t sin α(t 为参数),直线l 与曲线C :x =1cos θ,y =tan θ(θ为参数)相交于不同的两点A ,B .(1)若α=π3,求线段AB 的中点的直角坐标;(2)若直线l 的斜率为2,且过已知点P (3,0),求|P A |·|PB |的值.题型三:极坐标、参数方程的综合应用【例2】 在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25.(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是x =t cos α,y =t sin α(t 为参数),l 与C 交于A ,B 两点,|AB |=10,求l 的斜率.[题型训练] (2017·全国卷Ⅲ)在直角坐标系xOy 中,直线l 1的参数方程为x =2+t ,y =kt (t 为参数),直线l 2的参数方程为x =-2+m ,y =mk(m 为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C . (1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ)-2=0,M为l 3与C 的交点,求M 的极径.课后练习1.(2018·全国卷Ⅱ)在直角坐标系xOy 中,曲线C 的参数方程为x =2cos θ,y =4sin θ(θ为参数),直线l 的参数方程为x =1+t cos α,y =2+t sin α(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率.2.(2018·全国卷Ⅲ)在平面直角坐标系xOy 中,⊙O 的参数方程为x =cos θ,y =sin θ(θ为参数),过点(0,-2)且倾斜角为α的直线l 与⊙O 交于A ,B 两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.最新两年高考题选做1.(2021年高考全国甲卷理科)在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρθ=. (1)将C 的极坐标方程化为直角坐标方程;(2)设点A 的直角坐标为()1,0,M 为C 上的动点,点P 满足AP =,写出Р的轨迹1C 的参数方程,并判断C 与1C 是否有公共点.2.(2021年高考全国乙卷理科)在直角坐标系xOy 中,C 的圆心为()2,1C ,半径为1.(1)写出C 的一个参数方程;(2)过点()4,1F 作C 的两条切线.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求这两条切线的极坐标方程.3.(2020年高考数学课标Ⅰ卷理科)在直角坐标系xOy 中,曲线1C 的参数方程为cos ,sin k kx t y t= = (t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为4cos 16sin 30ρθρθ−+=. (1)当1k =时,1C 是什么曲线?(2)当4k =时,求1C 与2C 的公共点的直角坐标.4.(2020年高考数学课标Ⅱ卷理科)已知曲线C 1,C 2的参数方程分别为C 1:224cos 4sin x y θθ = = ,(θ为参数),C 2:1,1x t ty t t=+ =−(t 为参数).(1)将C 1,C 2的参数方程化为普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系.设C 1,C 2的交点为P ,求圆心在极轴上,且经过极点和P 的圆的极坐标方程.5.(2020年高考数学课标Ⅲ卷理科)在直角坐标系xOy 中,曲线C 的参数方程为22223x t t y t t=−− =−+ (t 为参数且t ≠1),C 与坐标轴交于A 、B 两点.(1)求||AB ;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求直线AB 的极坐标方程.。

极坐标系与极坐标方程

极坐标系与极坐标方程

极坐标系及极坐标方程一、基础知识归纳总结:1.伸缩变换:设点P(x,y)是平面直角坐标系中的任意一点,在变换⎩⎨⎧>⋅='>⋅=').0(,y y 0),(x,x :μμλλϕ的作用下,点P(x,y)对应到点)y ,x (P ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。

2.极坐标系的概念:在平面内取一个定点O,叫做极点;自极点O引一条 射线Ox叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其 正方向(通常取逆时针方向),这样就建立了一个极坐标系。

3.点M 的极坐标:设M 是平面内一点,极点O与点M 的距离OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的∠XOM 叫做点M 的极角,记为θ。

有序数对),(θρ叫做点M 的极坐标,记为M ),(θρ. 极坐标),(θρ与)Z k )(2k ,(∈+πθρ表示同一个点。

极点O 的坐标为)R )(,0(∈θθ.4.若0<ρ,则0>-ρ,规定点),(θρ-与点),(θρ关于极点对称,即),(θρ-与),(θπρ+表示同一点。

如果规定πθρ20,0≤≤>,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是唯一确定的。

5.极坐标与直角坐标的互化:6.直线的极坐标方程:极坐标系中,)0(≥=ραθ表示以极点为起点的一条射线;)R (∈=ραθ表示过极点的一条直线.在极坐标系中,过点A(,0)(0)a a >,且垂直于极轴的直线l 的极坐标方程是cos a ρθ=.在极坐标系中,过点0A(,)(0)a a θ>,且垂直于直线OA 的直线l 的极坐标方程是0cos()a ρθθ-=. 在极坐标系中,过点00A(,)ρθ,且与极轴成α角的直线的极坐标方程是00sin()cos()ραθραθ-=-.7.圆的极坐标方程:在极坐标系中,以极点为圆心,r 为半径的圆的极坐标方程是 r =ρ; 在极坐标系中,以 C(,0)(0)r r >为圆心, r 为半径的圆的极坐标方程是 2cos r ρθ=;在极坐标系中,以 C(,)(0)2r r π>为圆心,r 为半径的圆的极坐标方程是 2rsin ρθ=;在极坐标系中,以 00C(,)ρθ 为圆心,r 为半径的圆的极坐标方程是 2220002cos()r ρρρρθθ+--=;8.圆锥曲线方程:(1)1cos epe ρθ=-表示离心率为e ,焦点到相应准线距离为p 的圆锥曲线方程。

极坐标系的性质与极坐标方程的应用

极坐标系的性质与极坐标方程的应用

极坐标系的性质与极坐标方程的应用极坐标系是一种描述平面上点位置的坐标系统,它使用极径和极角来唯一确定一个点的位置。

极坐标系具有一些与直角坐标系不同的性质,同时,极坐标方程也有着广泛的应用。

本文将探讨极坐标系的性质以及极坐标方程在不同领域的应用。

一、极坐标系的性质在极坐标系中,一个点的位置可以由极径和极角来确定。

极径表示该点到原点的距离,而极角表示该点与极轴的夹角。

极坐标系的性质如下:1. 原点:极坐标系的原点即为极坐标的起点,表示为O。

2. 极轴:极轴是极坐标系中的一条直线,通过原点O,并与x轴方向相同。

极轴的角度为0或360度。

3. 极径:极径表示一个点到原点O的距离,通常用r表示。

极径的取值范围可以是非负实数,即r≥0。

4. 极角:极角表示一个点与极轴的夹角,通常用θ(读作西塔)表示。

极角的取值范围可以是[0, 2π) 或[0, 360°)。

5. 制正:在极坐标系中,负极径和负极角并不常见。

一般来说,极径为负表示该点位于极轴的反方向,而极径为正表示该点位于极轴方向。

极角为负表示该点位于极轴的逆时针方向,而极角为正表示该点位于极轴的顺时针方向。

二、极坐标方程的应用极坐标方程是一种通过极坐标表示点的坐标的方程形式。

极坐标方程在各个领域有着广泛的应用,以下将介绍几种常见的应用。

1. 极坐标方程与图形绘制:极坐标方程可以描述各种图形的形状,例如圆、椭圆、双曲线等。

通过调整极坐标方程中的参数,可以绘制出不同形态的图形,实现对图形的变换和调整。

2. 极坐标方程与物体运动:在物体运动的描述中,极坐标方程可以提供更直观的表达方式。

例如,在天文学中,行星绕太阳运动的轨迹可以使用极坐标方程来描述。

3. 极坐标方程与工程设计:在工程设计中,极坐标方程可以用来描述物体的形状和运动规律。

例如,在风力发电机的设计中,可以使用极坐标方程来描述风轮的叶片形状,以实现最大的能量转化效率。

4. 极坐标方程与电磁场分布:在电磁学和电路设计中,极坐标方程可以用来描述电场和磁场的分布情况。

极坐标与参数方程极坐标与参数方程的转化与应用

极坐标与参数方程极坐标与参数方程的转化与应用

极坐标与参数方程极坐标与参数方程的转化与应用极坐标与参数方程的转化与应用极坐标与参数方程是数学中常见的两种描述曲线的方式。

它们分别以极坐标形式和参数方程形式表达了曲线上的点的位置。

本文将探讨极坐标与参数方程之间的转化方法以及它们在不同领域的应用。

一、极坐标与参数方程的转化1. 极坐标转参数方程极坐标中,一个点的坐标由极径(r)和极角(θ)表示。

为了将极坐标转化为参数方程,我们可以使用三角函数来表示坐标中的sinθ和cosθ。

考虑一个圆的极坐标方程:r = a,其中a为常数。

我们可以将其转化为参数方程:x = a * cosθy = a * sinθ类似地,对于其他曲线的极坐标方程,可以使用类似的方法进行转化。

2. 参数方程转极坐标要将参数方程转化为极坐标方程,我们可以使用以下方法。

考虑参数方程:x = f(t),y = g(t),其中t为参数。

我们可以计算出r和θ的值:r = sqrt(x^2 + y^2)θ = arctan(y/x)根据具体的参数方程形式,可以采用类似的方法进行转化。

二、极坐标与参数方程的应用1. 极坐标的应用极坐标常用于描述圆形和对称曲线。

其在物理、工程和计算机图形学等领域有广泛的应用。

例如,在物理领域中,极坐标常常用于描述旋转和循环运动。

在天文学中,极坐标可以描述行星轨道的形状。

此外,在计算机图形学中,极坐标可以用于绘制对称图形,如花瓣、螺旋等。

它可以帮助我们更好地理解和模拟自然界中的曲线形状。

2. 参数方程的应用参数方程能够描述复杂的曲线和曲面。

它在物理学、工程学和计算机图形学等领域有广泛的应用。

在物理学中,参数方程常用于描述粒子运动轨迹。

例如,可以通过参数方程来描述自由落体运动中物体的位置随时间的变化。

在工程学中,参数方程可以用于描述曲线或曲面的形状。

例如,在建筑设计中,可以使用参数方程来描述曲线形状的建筑物外观。

在计算机图形学中,参数方程常用于绘制复杂的曲线和曲面。

极坐标系与极坐标方程的应用

极坐标系与极坐标方程的应用

极坐标系与极坐标方程的应用极坐标系和极坐标方程是数学中一种常用的坐标系和数学表达方法。

它们在许多领域中具有广泛的应用。

本文将介绍极坐标系和极坐标方程的基本概念,并探讨它们在物理学、工程学和计算机图形学等领域中的具体应用。

一、极坐标系的基本概念极坐标系是一种二维坐标系,它由一个原点O和一个极轴构成。

极轴是从原点O出发的射线,表示角度的方向。

任意一点P可以用极径r 和极角θ来表示。

极径r是从原点O到点P的距离,极角θ是极轴与射线OP之间的夹角。

二、极坐标方程的基本形式极坐标方程是一种用极径和极角来表示的方程。

一般来说,极坐标方程可以表示为r = f(θ),其中f(θ)是θ的函数。

三、极坐标系与物理学的应用极坐标系在物理学中有广泛的应用。

例如,在天文学中,极坐标系可以用来描述天体的位置和运动。

天体的轨迹可以由极坐标方程来表示,通过观测其极径和极角的变化来研究天体的运动规律。

此外,在力学中,我们也可以使用极坐标系来描述刚体的运动。

通过将刚体的运动分解为径向和切向两个方向的运动,可以简化力学问题的求解过程,更加方便地分析刚体受力和受力矩的情况。

四、极坐标方程与工程学的应用在工程学中,极坐标方程有很多应用。

例如,在电磁场分析中,可以使用极坐标方程来描述电荷或电流的分布情况。

通过求解极坐标方程,可以计算出电磁场的分布情况,并用于指导电子器件的设计和优化。

此外,在建筑工程中,极坐标方程也有一些应用。

例如,可以用极坐标方程来描述圆形的建筑物或结构的形状和尺寸。

极坐标方程提供了一种简洁的方式来描述复杂的建筑物形状,有助于工程师进行结构设计和施工规划。

五、极坐标系与计算机图形学的应用在计算机图形学中,极坐标系也有重要的应用。

通过极坐标系,可以方便地描述和生成曲线和图像。

例如,通过调整极径和极角的变化,可以绘制出各种形状的图案和曲线,包括圆、螺旋线、心形线等。

此外,在图像处理中,也可以使用极坐标系来实现图像的旋转和变形等操作。

极坐标方程及其应用(精)

极坐标方程及其应用(精)

θ1ρ O(,)P ρθx极坐标方程及其应用一、基础知识 1. 极坐标系:平面内的一条规定有单位长度的射线Ox ,O 为极点,Ox 为极轴,选定一个长度单位和角的正方向(通常取逆时针方向),这就构成了极坐标系. 2.极坐标系内一点P 的极坐标:平面上一点P 到极点O 的距离||OP 称为极径ρ,OP 与Ox 轴的夹角θ称为极角,有序实数对(,)P ρθ,就叫做点P 的极坐标.(1)一般情况下,不特别加以说明时ρ表示非负数. 当0ρ=时表示极点;当0ρ<时,点(,)P ρθ的位置这样确定:作射线OP ,使xOP θ∠=,在OP 的反向延长线上取一点'P ,使得'||OP ρ=,点'P 即为所求的点.(2)点(,)P ρθ与点(,2)()k k Z ρπθ+∈所表示的是同一个点.综上所述,在极坐标系中,点与其点的极坐标之间不是一一对应而是一对多的对应,即(,)ρθ,(,2)k ρπθ+,(,(21))k ρπθ-++均表示同一个点.(3)若0ρ<,则0ρ->,规定点(,)ρθ-与点(,)ρθ关于极点对称,即(,)ρθ-与(,)ρπθ+表示同一点.如果规定0,02ρθπ>≤≤,那么除极点外,平面内的点可用唯一的极坐标(,)ρθ表示;同时,极坐标(,)ρθ表示的点也是唯一确定的.3.极坐标与直角坐标的互化:极坐标与直角坐标的不同是,直角坐标系中,点与坐标是一一对应的,而极坐标系中,点与坐标是一多对应的.即一个点的极坐标是不唯一的. 4.直线的极坐标方程:若直线l 经过点00(,)M ρθ,且极轴到此直线的角为α ,求直线l 的极坐标方程. 设直线l 上任意一点的坐标为P (ρ,θ),由正弦定理,得:)0(n t ,sin ,cos ,222≠===+=x x y a y x y x θθρθρρsin sin OP OMOMP OPM=∠∠, 整理得直线l 的极坐标方程为00sin()sin()ρθαρθα-=-.一些特殊位置的直线方程如下:经过极点 经过定点M (a ,0),且与极轴垂直 经过定点M (b ,π2),且与极轴平行 θ = αρcos θ = aρsin θ = b5.圆的极坐标方程:若圆的圆心为00(,)M ρθ,半径为r ,求圆的极坐标方程. 设P (ρ,θ)为圆上任意一点,由余弦定理,得2222cos PM OM OP OM OP POM =+-∠,则圆的极坐标方程是:2220002cos()0r ρρρθθρ--+-=.一些特殊位置的圆的方程如下(设圆的半径为r): 圆心在极点 圆心在极点右侧 圆心在极点上方 圆心在极点左侧 圆心在极点下方 ρ = r ρ = 2r cos θ ρ = 2r sin θ ρ = −2r cos θ ρ = −2r sin θ二、典型例题例1.(2003北京)极坐标方程1cos 22cos 2=-θρθρ表示的曲线是( )D(A)圆(B)椭圆 (C)抛物线 (D)双曲线例2.(2001年全国)极坐标方程ρ=2sin(θ+π)的图形是()CxOl M (b ,π2)a(A) (B) (C) (D) 例3.(2000年京皖春)直线θ=α和直线ρsin(θ-α)=1的位置关系( )B(A) 垂直 (B) 平行 (C) 相交但不垂直 (D) 重合例4.(2002北京春)在极坐标系中,如果一个圆的方程是ρ=4cos θ+6sin θ,那么过圆心且与极轴平行的直线方程是( )A(A) ρsin θ=3 (B) ρsin θ = –3 (C) ρcos θ =2 (D) ρcos θ = –2 例5.(2003上海)在极坐标系中,定点A(1,2π),点B 在直线0sin cos =+θρθρ上运动,当线段AB 最短时,点B 的极坐标是_________.解析:在直角坐标系中,A 点坐标为(0,1),B 点在直线x +y =0上, AB 最短,则B 为)21,21(-,化为极坐标为)43,22(π. 例6.(2007广东)在极坐标系中,直线l 的方程为ρsin θ=3,则点(2,6π)到直线l 的距离为_________.2例7.(1999年全国)在极坐标系中,曲线ρ= 4sin(θ-3π)关于( )B (A) 直线θ=3π轴对称 (B)直线θ=65π轴对称(C) 点(2, 3π)中心对称 (D)极点中心对称例8.(2006上海)在极坐标系中,O 是极点,设点A(4,3π),B(5,65π-),则△OAB 的面积是 . 5例9.(2009辽宁卷)在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos()13πρθ-=,M 、N 分别为曲线C 与x 轴,y 轴的交点.(1)写出曲线C 的直角坐标方程,并求M 、N 的极坐标; (2)设M N 的中点为P ,求直线OP 的极坐标方程. 解析:(1)当0θ=时,2ρ=,∴M 的极坐标(2,0);当2πθ=时,3ρ=,∴N 的极坐标()32π. (2)直线OP 的极坐标方程为,(,)6πθρ=∈-∞+∞.三、巩固练习1.(2013安徽理5)在极坐标系中,点 (,)π23到圆2cos ρθ=的圆心的距离为( )D(A )2 (B)249π+(C)219π+(D)32.(2013北京理3)在极坐标系中,圆ρ=-2sinθ的圆心的极坐标系是( ) (A) (1,)2π(B) (1,)2π- (C) (1,0) (D)(1,π)解析:将极坐标方程化为普通方程得:0222=++y y x ,圆心的坐标为)1,0(-,其极坐标为)23,1(π,选B . 3.(2010北京卷理5)极坐标方程(1)()0(0)ρθπρ--=≥表示的图形是( ) (A )两个圆 (B )两条直线(C )一个圆和一条射线 (D )一条直线和一条射线4.(2000年京皖春)直线θα=和直线sin()1ρθα-=的位置关系( ) (A) 垂直 (B) 平行 (C) 相交但不垂直 (D) 重合 5.(2012年上海理)在极坐标系中,过点)0,2(M 的直线l 与极轴的夹角6πα=.若将l 的极坐标方程写成)(θρf =的形式,则=)(θf _________.6.(2012陕西理)直线2cos 1ρθ=与圆2cos ρθ=相交的弦长为________.3 7.(2012年湖南)在极坐标系中,曲线1C :(2cos sin )1ρθθ+=与曲线2C :a ρ=(0)a >的一个交点在极轴上,则a =_______.8.(2008广东卷)已知曲线12C C ,的极坐标方程分别为cos 3ρθ=,π4cos 002ρθρθ⎛⎫=< ⎪⎝⎭,≥≤,则曲线1C 与2C 交点的极坐标为 .(23,)6π9.(2012年江苏)在极坐标中,已知圆C 经过点()24P π,,圆心为直线3sin 32ρθπ⎛⎫-=-⎪⎝⎭与极轴的交点,求圆C 的极坐标方程.10.在极坐标系Ox 中,已知点A ⎝⎛⎭⎫1,α2,B ⎝⎛⎭⎫1,-α2 02πα⎛⎫<< ⎪⎝⎭,求过AB 的中点,且与OA 垂直的直线的极坐标方程.解:设AB 的中点为C , 则|OC |=cos α2,过C 作CD ⊥OA于D .则|OD |=|OC |·cos α2=cos 2 α2.设M (ρ,θ)是直线CD 上的任意一点,则∠MOD =θ-α2,在△MOD 中,|OD |=|OM |cos ⎝⎛⎭⎫θ-α2,即cos 2 α2=ρcos ⎝⎛⎭⎫θ-α2,所以直线CD 的极坐标方程为cos 2 α2=ρcos ⎝⎛⎭⎫θ-α2.。

高考数学二轮复习-专题30 极坐标与参数方程的应用(解析版)

高考数学二轮复习-专题30 极坐标与参数方程的应用(解析版)
所以 PQ 2 1 d 2 1,所以 △PCQ 是等边三角形,所以 PCQ π , 3
又因为 O是圆 C 上的点,所以 POQ PCQ π 。
26
【三】最值、几何意义的综合问题
1.距离最值(点到点、曲线点到线、) 距离的最值: ---用“参数法” (1)曲线上的点到直线距离的最值问题 (2)点与点的最值问题 “参数法”:设点---套公式--三角辅助角 ①设点: 设点的坐标,点的坐标用该点在所在曲线的的参数方程来设 ②套公式:利用点到线的距离公式 ③辅助角:利用三角函数辅助角公式进行化一 2.面积的最值问题 面积最值问题一般转化成弦长问题+点到线的最值问题 3.几何意义及其综合应用:
P(2,
)
在曲线
cos(
)
2
上.
3
3
所以,l的极坐标方程为
cos(
)
2

3
(2)设 P(, ) ,在 Rt△OAP 中, | OP || OA | cos 4 cos , 即 4 cos .
因为P在线段OM上,且
AP
OM
,故
的取值范围是 [
,
]

42
所以P点轨迹的极坐标方程为
4 cos ,
(1)分别写出 M1 , M 2 , M 3 的极坐标方程;
(2)曲线 M 由 M1 , M 2 , M 3 构成,若点 P 在 M 上,且 | OP | 3 ,求 P 的极坐标.
【解析】(1)由题设可得,弧 AB, BC,CD 所在圆的极坐标方程分别为
2 cos , 2sin , 2 cos .
[ ,
] .[来源:学*科*网]
42
【练习 2】在极坐标系中,已知圆 C 经过点 P (2 2, ) ,圆心为直线ρsin(θ-π)=- 3与极轴的交点,求
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

极坐标及极坐标方程的
应用
公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]
极坐标及极坐标方程的应用1.极坐标系的建立在平面内取一个定点O,叫作极点,引一条射线OX,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向)。

对于平面内任意一点M,用表示线段OM的长度,表示从OX到OM的角度,叫点M的极径,叫点M的极角,有序数对,就叫点M的极坐标。

这样建立的坐标系叫极坐标系,记作M,.若点M在极点,则其极坐标为=0,可以取任意值。

如图1-2,此时点M的极坐标可以有两种表示方法:(1)
(2)同理,与,也是同一个点的坐标。

又由于一个角加后都是和原角终边相同的角,所以一个点的极坐标不唯一。

但若限定或,那么除极点外,平面内的点和极坐标就可以一一对应了。

2.在极坐标系中,曲线可以用含有,这两个变数的方程来表示,这种方程叫曲线的极坐标方程。

求曲线的极坐标方程的方法与步骤: 1°建立适当的极坐标系,并设动点M的坐标为, 2°写出适合条件的点M的集合; 3°列方程, 4°化简所得方程; 5°证明得到的方程就是所求曲线的方程。


种圆锥曲线统一的极坐标方程:
3.极坐标和直角坐标的互化
4.极坐标在平面解析几何中的应用
4.1极坐标法求到定点的线段长度
解析几何中涉及到某定点的线段长度时,可以考虑利用极坐标法求解。

但是绝大多数解析几何问题中题设条件是以直角坐标方程形式给出的,在求解过程中运算繁琐复杂,将此类问题转化为用极坐标方程求解,十分简洁,收到良好的效果。

巧设极点,建立极坐标系是解决问题的关键。

4.2以定点为极点
如果题设条件与结论中,涉及到过某定点M的线段长度问题,应该取该点为极点,先将直角坐标原点移动到M点,施行平移公式、直角坐标与极坐标互化公式,化普通方程为极坐标方程求解。

4.3以原点为极点
如果题设条件或结论中涉及到直角坐标系原点的线段长度时,应选取原点为极点,应用互化公式,将直角坐标方程转化极坐标方程求解。

4.4以焦点为极点
凡涉及圆锥曲线的焦半径或焦点弦长度的问题,应选取焦点为极点(椭圆左焦点,双曲线右焦点),应用圆锥曲线统一的极坐标方程求解。

相关文档
最新文档