最新平行线经典练习题(整理版)

合集下载

题目:《平行线》单元测试题(含答案)

题目:《平行线》单元测试题(含答案)

题目:《平行线》单元测试题(含答案)平行线单元测试题(含答案)第一部分:选择题(每小题2分,共20分)1. 下列选项中,哪个是平行线的性质?- A. 两条平行线之间的距离恒定- B. 两条平行线不会相交- C. 两条平行线的斜率相等- D. 两条平行线的夹角为90度2. 已知两条直线L和M是平行线,且L与M之间的距离为5cm。

如果将直线L向上平移2cm,那么L和M之间的距离将变为多少?- A. 3cm- B. 5cm- C. 7cm- D. 10cm3. 在平面直角坐标系中,过点(2,3)和(5,7)的直线与x轴的交点为:- A. (2,0)- B. (3,0)- C. (5,0)- D. (7,0)4. 两条平行线的斜率分别为2和-3,那么这两条直线的夹角为:- A. 30度- B. 45度- C. 60度- D. 90度5. 在平面直角坐标系中,过点(-3,4)和(5,-2)的直线的斜率为:- A. -2- B. -1/2- C. -1- D. 26. 在某个平面上,直线L的斜率为3,直线M的斜率为1/3。

如果L与M相互垂直,那么L和M的斜率乘积为多少?- A. -1- B. 0- C. 1- D. 37. 已知直线L的斜率为2,且它在平面上与y轴相交于点(0,4),那么直线L的方程式为:- A. y = 2x + 4- B. y = 2x - 4- C. y = 4x + 2- D. y = -4x + 28. 两条平行线L和M的斜率分别为1/2和2/3,它们之间的夹角为:- A. 20度- B. 30度- C. 40度- D. 50度9. 已知直线L和M是平行线,且直线L的斜率为2。

如果直线L过点(3,5),那么直线M的方程式为:- A. y = 2x - 7- B. y = 2x + 7- C. y = -2x - 1- D. y = -2x + 110. 若两条平行线的斜率分别为a和2a,且a不等于0,那么这两条直线的夹角为:- A. 30度- B. 45度- C. 60度- D. 90度第二部分:简答题(每小题5分,共20分)1. 简述平行线的性质。

(完整版)平行线及其判定与性质练习题

(完整版)平行线及其判定与性质练习题

平行线及其判定1、基础知识(1)在同一平面内,______的两条直线叫做平行线.若直线a与直线b 平行,则记作______.(2)在同一平面内,两条直线的位置关系只有______、______.(3)平行公理是:.(4)平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a、b、c,若a∥b,b∥c,则______.(5)两条直线平行的条件(除平行线定义和平行公理推论外):①两条直线被第三条直线所截,如果______,那么这两条直线平行,这个判定方法1可简述为:______,两直线平行.②两条直线被第三条直线所截,如果__ _,那么,这个判定方法2可简述为: ______,______.③两条直线被第三条直线所截,如果_ _____那么______,这个判定方法3可简述为:2、已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么_____.(_______,_______)(2)如果∠2=∠5,那么________。

(______,________)(3)如果∠2+∠1=180°,那么_____。

(________,______)(4)如果∠5=∠3,那么_______。

(_______,________)(5)如果∠4+∠6=180°,那么______.(_______,_____)(6)如果∠6=∠3,那么________。

(________,_________)3、已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______。

(______,______)(2)∵∠1=∠D(已知),∴______∥______.(______,______)(3)∵∠2=∠A(已知),∴______∥______.(______,______)(4)∵∠B+∠BCE=180°(已知),∴______∥______。

平行线判定大题30道

平行线判定大题30道

平行线判定大题1. 什么是平行线?平行线是在同一个平面上,永远不会相交的直线。

如果两条直线在平面上没有任何交点,那么它们就是平行线。

2. 平行线的判定方法判定两条直线是否平行有多种方法,下面介绍常用的几种方法:2.1 利用角度关系判定如果两条直线的斜率相等,并且它们不重合,则这两条直线是平行的。

步骤:1.计算两条直线的斜率。

2.如果斜率相等,则这两条直线是平行的;否则,它们不是平行的。

2.2 利用向量关系判定如果两条直线上的向量方向相同,则这两条直线是平行的。

步骤:1.将两条直线表示为一般式方程。

2.提取出方程中的系数作为向量。

3.如果两个向量方向相同或反向,则这两条直线是平行的;否则,它们不是平行的。

2.3 利用距离关系判定如果一条直线与另一条直线上任意一点之间的距离都相等,则这两条直线是平行的。

步骤:1.计算两条直线上任意一点到另一条直线的距离。

2.如果距离相等,则这两条直线是平行的;否则,它们不是平行的。

3. 平行线判定大题练习下面是30道平行线判定大题,供你练习和巩固所学知识。

1.判断直线y = 2x + 3和y = -3x + 5是否平行。

2.判断直线3x - 4y = 6和6x - 8y = 12是否平行。

3.判断直线2x + y - 3 = 0和4x + 2y - 6 = 0是否平行。

4.判断直线2x - y + 1 = 0和4x - 2y + 2 = 0是否平行。

5.判断直线y = x + 1和y = x - 1是否平行。

6.判断直线2x + y + 5 = 0和4x + y + k = 0是否平行,k为常数。

7.判断直线3x - ky - k^2 = k和6x - ky - k^2 = k是否平行,k为常数。

8.判断过点A(1,2)且斜率为-3的直线和过点B(5,8)且斜率为-3的直线是否平行。

9.判断过点A(2,3)且斜率为2的直线和过点B(4,7)且斜率为-0.5的直线是否平行。

平行线的证明100道经典习题练习(含答案)

平行线的证明100道经典习题练习(含答案)

平行线的证明100道经典习题练习(含答案在卷尾)一、选择题(本大题共64小题,共192.0分)1.一个三角形三个内角的度数之比是1:2:3,则这个三角形一定是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰直角三角形2.如图,能判断直线AB//CD的条件是()A. ∠1=∠2B. ∠3=∠4C. ∠1+∠3=180∘D. ∠3+∠4=180∘3.如图,点F,E分别在线段AB和CD上,下列条件能判定AB//CD的是()A. ∠1=∠2B. ∠1=∠4C. ∠4=∠2D. ∠3=∠44.如图,直线a//b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有()A. 4个B. 3个C. 2个D. 1个5.如图,∠BDC=98°,∠C=38°,∠A=37°,∠B的度数是()A. 33°B. 23°C. 27°D. 37°6.命题“垂直于同一条直线的两条直线互相平行”的条件是().A. 垂直B. 两条直线C. 同一条直线D. 两条直线垂直于同一条直线7.如图,BC//DE,若∠A=35°,∠C=24°,则∠E等于()A. 24°B. 59°C. 60°D. 69°8.在如图所示的四种沿AB进行折叠的方法中,不一定能判断纸带两条边a,b互相平行的是()A. 如图1,展开后测得∠1=∠2B. 如图2,展开后测得∠1=∠2且∠3=∠4C. 如图3,测得∠1=∠2D. 在图④中,展开后测得∠1+∠2=180°9.一次数学活动中,检验两条纸带 ①、 ②的边线是否平行,小明和小丽采用两种不同的方法:如图,小明对纸带 ①沿AB折叠,量得∠1=∠2=50∘;小丽对纸带 ②沿GH折叠,发现GD与GC重合,HF与HE重合.则下列判断正确的是()A. 纸带 ①的边线平行,纸带 ②的边线不平行B. 纸带 ①的边线不平行,纸带 ②的边线平行C. 纸带 ① ②的边线都平行D. 纸带 ① ②的边线都不平行10.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A. a=3,b=2B. a=−3,b=2C. a=3,b=−1D. a=−1,b=311.将一个长方形纸片按如图所示折叠,若∠1=40°,则∠2的度数是()A. 40°B. 50°C. 60°D. 70°12.通过观察你能肯定的是()A. 图形中线段是否相等B. 图形中线段是否平行C. 图形中线段是否相交D. 图形中线段是否垂直13.学习了平行线后,小敏想出了过已知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的,如图:从图中可知,小敏画平行线的依据有①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行。

平行线判定大题30道

平行线判定大题30道

平行线判定大题30道
(原创版)
目录
1.平行线的基本概念
2.平行线判定的方法
3.30 道平行线判定大题的解析
正文
一、平行线的基本概念
平行线是指在同一平面内,永不相交的两条直线。

平行线具有以下性质:
1.平行线上的任意一对内角互补。

2.平行线上的任意一对同位角相等。

3.平行线上的任意一对内错角相等。

4.平行线上的任意一对同旁内角互补。

二、平行线判定的方法
判定两条直线是否平行,通常有以下几种方法:
1.同位角相等法:如果两条直线被一条横穿线切割,使得同侧的对应角相等,则这两条直线平行。

2.内错角相等法:如果两条直线被一条横穿线切割,使得内侧的对错角相等,则这两条直线平行。

3.平行线夹角法:如果两条直线分别与第三条直线平行,且它们之间的夹角相等,则这两条直线平行。

4.反证法:假设两条直线不平行,通过推理证明它们必然相交,从而
得出矛盾,因此假设不成立,两条直线平行。

三、30 道平行线判定大题的解析
(此处省略 30 道题目的详细解析,根据实际题目进行解答)
在解决平行线判定的问题时,关键是熟练掌握各种判定方法,灵活运用性质和定理。

在实际解题过程中,要注重逻辑性和条理性,步骤清晰,严谨论证。

平行线判定大题30道

平行线判定大题30道

平行线判定大题30道摘要:一、引言1.问题背景及重要性2.文章目的与结构二、平行线判定方法1.同位角相等2.内错角相等3.同侧角相等4.两直线平行,同位角相等5.两直线平行,内错角相等6.两直线平行,同侧角相等三、平行线判定大题解析1.例题1:同位角相等判定2.例题2:内错角相等判定3.例题3:同侧角相等判定4.例题4:两直线平行,同位角相等判定5.例题5:两直线平行,内错角相等判定6.例题6:两直线平行,同侧角相等判定四、平行线判定大题练习1.练习1:同位角相等判定2.练习2:内错角相等判定3.练习3:同侧角相等判定4.练习4:两直线平行,同位角相等判定5.练习5:两直线平行,内错角相等判定6.练习6:两直线平行,同侧角相等判定五、总结与展望1.平行线判定方法总结2.平行线判定大题技巧概述3.后续学习建议正文:一、引言1.问题背景及重要性在初中数学几何部分,平行线的判定与性质是重点内容。

掌握平行线的判定方法,对于解决各类几何问题具有重要意义。

本文将为大家详细解析平行线判定大题30道,帮助大家更好地理解和应用平行线判定方法。

2.文章目的与结构本文旨在通过解析平行线判定大题,使大家对平行线的判定方法有更深刻的理解。

文章共分为五个部分,分别为:引言、平行线判定方法、平行线判定大题解析、平行线判定大题练习和总结与展望。

二、平行线判定方法1.同位角相等若两条直线被第三条直线所截,且有同位角相等,则这两条直线平行。

2.内错角相等若两条直线被第三条直线所截,且有内错角相等,则这两条直线平行。

3.同侧角相等若两条直线被第三条直线所截,且有同侧角相等,则这两条直线平行。

4.两直线平行,同位角相等若两条直线平行,则它们被第三条直线所截时的同位角相等。

5.两直线平行,内错角相等若两条直线平行,则它们被第三条直线所截时的内错角相等。

6.两直线平行,同侧角相等若两条直线平行,则它们被第三条直线所截时的同侧角相等。

三、平行线判定大题解析1.例题1:同位角相等判定已知直线AB与CD被直线EF所截,若∠AEF = ∠CED,证明AB平行于CD。

平行线练习题及答案

平行线练习题及答案

平行线练习题及答案平行线练习题及答案在数学中,平行线是指在同一个平面上永远不会相交的两条直线。

平行线在几何学和代数学中有着重要的应用,因此对于学生来说,掌握平行线的性质和判断方法是至关重要的。

本文将为大家提供一些平行线的练习题及答案,帮助大家加深对平行线的理解和运用。

练习题一:判断下列直线是否平行。

1. 直线AB:y = 2x + 3直线CD:y = 2x - 12. 直线EF:2x - 3y = 6直线GH:4x - 6y = 123. 直线IJ:3x + 4y = 8直线KL:6x + 8y = 16答案一:1. 直线AB和直线CD的斜率都为2,且截距不相等,因此直线AB和直线CD不平行。

2. 直线EF和直线GH的斜率都为2,且截距相等,因此直线EF和直线GH平行。

3. 直线IJ和直线KL的斜率都为2,且截距相等,因此直线IJ和直线KL平行。

练习题二:已知直线AB和直线CD平行,点E、F、G分别位于直线AB上,且AE = EF = FG。

若AE = 4,求FG的值。

答案二:由于直线AB和直线CD平行,因此直线AB和直线CD的斜率相等。

设直线AB的斜率为k,点E的坐标为(x1, y1),点F的坐标为(x2, y2),点G的坐标为(x3, y3)。

根据题意可得:y1 = kx1y2 = kx2y3 = kx3又因为AE = EF = FG,所以有:EF = FGy2 - y1 = y3 - y2kx2 - kx1 = kx3 - kx22kx2 = k(x1 + x3)x2 = (x1 + x3) / 2由于AE = 4,可得:y1 = kx1 = 4将x2 = (x1 + x3) / 2和y1 = 4代入直线AB的方程中,可得:4 = k(x1 + x3) / 28 = k(x1 + x3)8 = 4kx2x2 = 2将x2 = 2代入直线AB的方程中,可得:y2 = kx2 = 2k由于EF = FG,可得:y2 - y1 = y3 - y22k - 4 = y3 - 2k4k = y3 + 4y3 = 4k - 4将y3 = 4k - 4代入直线AB的方程中,可得:y3 = kx3 = 4k - 4综上所述,当AE = 4时,FG的值为4k - 4。

平行线的判定与性质练习题

平行线的判定与性质练习题

平行线的判定与性质练习题平行线的判定与性质练习题平行线是几何学中的基本概念之一,它在我们的日常生活中无处不在。

从道路上的交叉口到建筑物的设计,平行线都扮演着重要的角色。

在几何学中,我们需要学会判定平行线,并掌握它们的性质。

下面,我将给大家提供一些平行线的判定与性质练习题,希望能帮助大家更好地理解和应用平行线的知识。

练习题一:判定平行线1. 在下图中,判断线段AB和线段CD是否平行。

A-----B| |C-----D2. 在下图中,判断线段AB和线段EF是否平行。

A-----B| || |E-----F3. 在下图中,判断线段AB和线段CD是否平行。

A-----B\ /\ /C-----D练习题二:平行线的性质1. 若两条平行线被一条横线所截,那么对应的内角互补。

2. 若两条平行线被一条横线所截,那么对应的外角相等。

3. 若两条直线分别与一条平行线相交,那么对应的内角相等。

4. 若两条直线分别与一条平行线相交,那么同旁内角互补。

练习题三:平行线的应用1. 若两条平行线被一条横线所截,且已知其中一个内角的度数为60°,求对应的内角和外角的度数。

2. 若两条平行线被一条横线所截,且已知其中一个外角的度数为120°,求对应的内角和另一个外角的度数。

3. 若两条直线分别与一条平行线相交,且已知其中一个内角的度数为70°,求对应的内角和同旁内角的度数。

4. 若两条直线分别与一条平行线相交,且已知其中一个同旁内角的度数为45°,求对应的内角和另一个同旁内角的度数。

通过以上练习题,我们可以加深对平行线的判定与性质的理解。

判定平行线需要观察线段的走向,若两条线段的走向相同,即不相交且不重合,则可以判定它们为平行线。

而平行线的性质则是通过观察线段之间的关系得出的。

掌握这些性质可以帮助我们解决更复杂的几何问题。

在应用平行线的过程中,我们可以根据已知条件利用平行线的性质进行推导。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品文档平行线经典练习题(整理版)
一.判断题:
1.两条直线被第三条直线所截,只要同旁内角相等,则两条直线一定平行。

()2.如图①,如果直线1l⊥OB,直线2l⊥OA,那么1l与2l一定相交。

()3.如图②,∵∠GMB=∠HND(已知)∴AB∥CD(同位角相等,两直线平行)()
二.填空题:
1.如图③∵∠1=∠2,∴_______∥________()。

∵∠2=∠3,∴_______∥________()。

2.如图④∵∠1=∠2,∴_______∥________()。

∵∠3=∠4,∴_______∥________()。

3.如图⑤∠B=∠D=∠E,那么图形中的平行线有________________________________。

4.如图⑥∵AB⊥BD,CD⊥BD(已知)
∴AB∥CD ( )
又∵∠1+∠2 =
180(已知)
∴AB∥EF ( )
∴CD∥EF ( )
三.选择题:
1.如图⑦,∠D=∠EFC,那么()
A.AD∥BC B.AB∥CD
C.EF∥BC D.AD∥EF 2.如图⑧,判定AB∥CE的理由是()
A.∠B=∠ACE B.∠A=∠ECD C.∠B=∠ACB D.∠A=∠ACE
3.如图⑨,下列推理错误的是()
A.∵∠1=∠3,∴a∥b B.∵∠1=∠2,∴a∥b
C.∵∠1=∠2,∴c∥d D.∵∠1=∠2,∴c∥d
4.如图,直线a、b被直线c所截,给出下列条件,①∠1=∠2,②∠3=∠6,
③∠4+∠7=180°,④∠5+∠8=180°其中能判断a∥b的是()
A.①③B.②④C.①③④D.①②③④
四.完成推理,填写推理依据:
1.如图⑩∵∠B=∠_______,∴AB∥CD()∵∠BGC=∠_______,∴CD∥EF()
∵AB∥CD ,CD∥EF,
∴AB∥_______()
2.如图⑾填空:
(1)∵∠2=∠B(已知)
∴AB__________()
(2)∵∠1=∠A(已知)
∴__________()
(3)∵∠1=∠D(已知)
∴__________()
(4)∵_______=∠F(已知)
∴AC∥DF()
3.填空。

如图,∵AC⊥AB,BD⊥AB(已知)
∴∠CAB=90°,∠______=90°()
∴∠CAB=∠______()
∵∠CAE=∠DBF(已知)
∴∠BAE=∠______
∴_____∥_____()
精品文档
1 3
2 A E C
D B
F 图10
4.已知,如图∠1+∠2=180°,填空。

∵∠1+∠2=180°( )又∠2=∠3( )
∴∠1+∠3=180°
∴_________( )
五.证明题
1.已知:如图⑿,CE 平分∠ACD ,∠1=∠B ,
求证:AB ∥CE
2.如图:∠1=︒53,∠2=︒127,∠3=︒53,试说明直线AB 与CD ,BC 与DE 的位置关系。

3.如图:已知∠A=∠D ,∠B=∠FCB ,能否确定ED 与CF 的位置关系,请说明理由。

4
.已知:如图,,
,且
.
求证:EC ∥DF.
5.如图10,∠1∶∠2∶∠3 = 2∶3∶4, ∠AFE = 60°, ∠BDE =120°,写出图中平行的直线,并说明理由. 6.如图11,直线AB 、CD 被EF 所截,∠1 =∠2,∠CNF =∠BME。

求证:AB∥CD,MP∥NQ.
7.已知:如图:∠AHF +∠FMD =180°,GH 平分∠AHM ,MN 平分∠DMH 。

求证:GH ∥MN 。

8.
9.如图,已知:∠AOE +∠BEF =180°,∠AOE +∠CDE =180°,
求证:CD ∥BE 。

F
2
A B C
D
Q E 1
P
M
N 图
11
10.
11.如图,已知:∠A=∠1,∠C=∠2。

求证:求证:AB∥CD。

精品文档。

相关文档
最新文档