数据的离散程度(第2课时) 学案

合集下载

数据的离散程度(2)

数据的离散程度(2)

《20.2.2 数据的离散程度》教案教学目标:1、会利用样本方差公式估算算简单数据的总体方差.2、能充分体会理解方差是刻画一组数据离散程度的重要的量.教学重点、难点:重点:方差公式及运算.难点:方差能刻画一组数据的离散程度.教学过程:一.新课引入乒乓球的标准直径为40mm,质检部门从A、B两厂生产的乒乓球中各抽取了10只,对这些乒乓球的直径了进行检测.结果如下(单位:mm):A厂:40.0,39.9,40.0,40.1,40.2,39.8,40.0,39.9,40.0,40.1;B厂:39.8,40.2,39.8,40.2,39.9,40.1,39.8,40.2,39.8,40.2.你认为哪厂生产的乒乓球的直径与标准的误差更小呢?(1)请你算一算它们的平均数.(2)是否由此就断定两厂生产的乒乓球直径同样标准?今天我们一起来探索这个问题.二、合作交流(一)样本方差1.描述一组数据的离散程度可采取许多方法,在统计中常先求这组数据的平均数,再求这组数据与平均数的差的平方和的平均数,用这个平均数来衡量这组数据的波动大小:设在一组数据中,各数据与它们的平均数的差的平方分别是,那么我们求它们的平均数,即用2.请你回顾一下方差概念,并说说公式中每一个元素的意义.3.谈谈样本方差的作用?4.说说你的疑问:(1)为什么要这样定义样本方差?(2)为什么对各数据与其平均数的差不取其绝对值,而要将它们平方?(3)为什么要除以数据个数n?(是为了消除数据个数的影响).5.初步运用在学生理解了方差概念之后,再回到了引例中,通过计算两组数据的方差,再根据理论说明.三、巩固练习1. 从甲、乙两种农作物中各抽取1株苗,分别测得它的苗高如下:(单位:cm)甲:9、10、11、12、7、13、10、8、12、8;乙:8、13、12、11、10、12、7、7、9、11;问:(1)哪种农作物的苗长的比较高?(2)哪种农作物的苗长得比较整齐?2. 段巍和金志强两人参加体育项目训练,近期的5次测试成绩如下表所示,谁的成绩比较稳定?为什么?测得它们的直径(单位:毫米)甲加工的零件:15.05 15.02 14.97 14.96 15.00乙加工的零件:15.00 15.01 15.02 14.97 15.001.分别求两个样本的平均数与方差2.你应该推荐谁去比赛?四、课堂小结(同学自己总结)方差是衡量一组数据波动大小的特征数.s2=[++…+].本课是用样本方差比较两组数据的波动大小,值得注意的是,只有当两组数据的平均数相等或接近时,才能采用这种方法.使学生明确利用方差计算的步骤,以及方差反映数据波动大小的规律,同时使学生深刻体会到数学来源于实践,又反过来作用于实践,不仅使学生对学习数学产生浓厚的兴趣,而且培养了学生应用数学的意识.五、当堂达标测试1.已知一组数据为2、0、-1、3、-4,则这组数据的方差为 .2.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:甲:7、8、6、8、6、5、9、10、7、4乙:9、5、7、8、7、6、8、6、7、7经过计算,两人射击环数的平均数相同,但S S,所以确定去参加比赛.3. 甲、乙两台机床生产同种零件,10天出的次品分别是()甲:0、1、0、2、2、0、3、1、2、4乙:2、3、1、2、0、2、1、1、2、1分别计算出两个样本的平均数和方差,根据你的计算判断哪台机床的性能较好?4.若1,2,3,a的平均数是3,又4,5,a,b的平均数是5,则0,1,2,3,4,a,b的方差是多少?。

数学北师大八年级上册(2013年新编)《数据的离散程度(2)》教案3

数学北师大八年级上册(2013年新编)《数据的离散程度(2)》教案3

《数据的离散程度2》教案教学目标:1、通过实例,知道描述一组数据的分布时,除关心它的集中趋势外,还需分析数据的波动大小。

2、知道数据离散程度的意义。

教学重难点:对数据的离散程度的意义的理解。

教学难点:对数据的收集、整理、描述和分析教学过程:一、课前预习:课前预习:预习课本P92—P93,完成下列题目。

1.甲、乙两名运动员的训练成绩的平均数,众数中位数2.观察图10-1,你发现那名运动员的成绩波动范围较大?谁的成绩比较稳定?3.对于一组数据,仅仅了解数据的是不够的,还需要了解这些数据的和的差异程度。

4.在实际生活中,我们除了关心数据的集中趋势(即)外,还要关注数据的,即一组数据的。

2、预习检测:①阅读课本P92交流与发现,完成P93练习第1题。

二、课中实施1、甲、乙两支仪仗队队员的身高(cm)如下:甲队:178、177、179、179、178、178、177、178、177、179乙队:178、177、179、176、178、180、180、178、176、178a、甲、乙两队队员的平均身高分别是多少?b、作出折线统计图,你发现哪个队队员身高波动幅度较小?2、甲、乙两位同学参加奥赛班的11次测验成绩如下:甲:90、93、93、90、98、100、95、100、99、100、98乙:99、92、98、92、99、96、94、96、95、98、97(1)它们的平均成绩分别是多少?(2)它们测验成绩最高成绩与最低成绩分别相差多少?(3)要从中选择一人参加奥赛,成绩达到98分以上才可以进入决赛,你认谁参赛合适,为什么?(4)分析两位同学成绩各有何特点?并对两位同学各提一条建议。

2、系统总结:三、限时作业:(1、2题每空2分,3题每题2分)1、一组数据的集中趋势的数据有。

2、离散程度来描述一组数据的和。

3、甲、乙两班投篮比赛,每班各派10名同学,每人投10次,投中次数如下:甲班:7、8、6、8、6、5、4、9、10、7乙班:7、7、6、8、6、7、8、5、9、7a、有人说这两个班投篮水平相当,为什么?b、请依据数据制成折线统计图来说明结论。

北师大版数学 八年级上册 数据的离散程度(第2课时)

北师大版数学 八年级上册   数据的离散程度(第2课时)
6.4 数据的离散程度 (第2课时)
导入新知
某工厂研制甲、乙两种电灯泡,从两种电灯泡中各抽取 了20只进行寿命试验,得到如下数据(单位:小时): 灯泡甲:1610 1590 1540 1650 1450 1650 1570 1630 1690 1720 1580 1620 1500 1700 1530 1670 1520 1690 1600 1590 灯泡乙:1670 1610 1550 1490 1430 1610 1530 1430 1410 1580 1520 1440 1500 1510 1540 1400 1420 1530 1520 1510 根据上述两个样本,你准备选哪种灯泡?请说明理由!
的变化情况,并且B餐饮店相邻两天的日营业额的变化情况比较小.
课堂检测 基础巩固题
3.某篮球队对运动员进行3分球投篮成绩测试,每人每天投3分 球10次,对甲、乙两名队员在五天中进球的个数统计结果如下:
队员 甲 10 乙7
每人每天进球数 6 10 6 8 9789
经过计算,甲进球的平均数为 x甲 =8,方差为 s甲2 3.2 .
因为甲乙的平均成绩一样,s
2 甲
=3.2,s
2 乙
=0.8,
所以
s
2 甲
s
2乙,
说明乙队员1.甲、乙两班各有8名学生参加数学竞赛,成绩如下表:
甲 65 74 70 80 65 66 69 71 乙 60 75 78 61 80 62 65 79
请比较两班学生成绩的优劣.
A. 甲
B. 乙
C.丙
D.丁
队员 平均成绩 方差

9.7
2.12

9.6
0.56

9.8

北师大版八年级数学上册《数据的离散程度》第2课时示范课教学设计

北师大版八年级数学上册《数据的离散程度》第2课时示范课教学设计

第六章数据的分析
6.4数据的离散程度
第2课时
一、教学目标
1.进一步熟练极差、方差、标准差的计算方法;能用方差对数据的离散程度作出判断,进一步培养学生的估计能力.
2. 根据描述一组数据极差、方差、标准差的大小,对实际问题做出解释,培养学生解决问题的能力.
3. 经历对统计图中数据的读取与处理的过程,进一步发展学生的统计意识和数据处理能力.
4. 通过解决现实情境中的问题,提高学生数学统计的素养,用数学的眼光看世界.通过小组活动,培养学生的合作意识和能力.
二、教学重难点
重点:用方差解决实际问题.
难点:在具体情况下,具体分析方差对实际问题的影响.
三、教学用具
电脑、多媒体、课件
四、教学过程设计
【情境引入】
教师活动:
多媒体展示,如图所示的是某一天A,B两地的气
温变化图.
教师提出问题
不计算,你能说说A,B两地这一天气温的特点
吗?
分别计算A,B两地这一天气温的平均数和方差,
【随堂练习】
1.从下面两幅图中,你能分别“读”出甲、乙两队员射击成绩的平均数吗?
以思维导图的形式呈现本节课所讲解的内容:教科书155页习题6.6第1、2、3题.。

八年级数学北师大版上册 第6章《数据的离散程度》02教学设计 教案

八年级数学北师大版上册 第6章《数据的离散程度》02教学设计 教案

教学设计数据的离散程度教学目标1.了解刻画数据离散程度的三个量——极差、方差和标准差,能借助计算器求出一组数据的标准差.2.经历探索表示数据离散程度的过程,体会刻画数据离散程度的意义.3.经历用方差刻画数据离散程度的过程,发展数据分析观念.教学重难点重点:经历用方差刻画数据离散程度的过程,了解刻画数据离散程度的三个量——极差、方差和标准差.难点:抽象出刻画数据离散程度的统计量——方差.教学过程导入新课多媒体展示章首折线统计图,如图.图中反映的甲、乙、丙三个选手的射击成绩,这三人谁的成绩较好?你是怎么判断的?让学生独立思考,教师巡视,了解学生的解答情况,然后找学生代表回答.生:从图中可以看出甲、乙两人的射击成绩整体水平比丙的好,所以只需要计算出甲、乙两位选手射击成绩的平均数.师:下面我们具体来算一算甲、乙两位选手射击成绩的平均数.生:通过计算,可知甲、乙两位选手射击成绩的平均数都是7.9环.师:甲、乙的平均成绩相同,你认为哪个选手更稳定?你是怎么看出来的?生:由图可知甲的最好成绩是10环,最差成绩是4环,而乙的最好成绩是9环,最差成绩是7环,所以甲的成绩差较大,故乙选手更稳定.师:由此可知刻画一组数据的稳定性,用数据的集中趋势来解决是不适合的,我们这节课就来探究解决这个问题的方法.设计意图:从学生熟悉的现实生活出发,容易激发学生的学习兴趣,同时也让学生体会到数学来源于生活,服务于生活的道理.探究新知一、预习新知请同学们自主预习课本149~151页,解决本节开头的问题.展示问题为了提高农副产品的国际竞争力,一些行业协会对农副产品的规格进行了划分.某外贸公司要出口一批规格为75g的鸡腿,现有2个厂家提供货源,它们的价格相同,鸡腿的品质也相近.质检员分别从甲、乙两厂的产品中抽样调查了20只鸡腿,它们的质量(单位:g)如下:甲厂:757474767376757777747475757673 7673787772乙厂:757872777475737972758071767773 7871767375把这些数据表示成下图:师:你能否根据所给的数据做出应该购买哪个厂的鸡腿的决定?生:甲、乙两厂抽取的鸡腿规格为75g的产品比例都是20%,所以不能做出决定.师:你能从图中估计出甲、乙两厂抽取的鸡腿的平均质量吗?生:(思考)估计鸡腿的平均质量为75g.师:那么,你能求出甲、乙两厂抽取的鸡腿的平均质量吗?看看你的估计是否准确,并在图中画出纵坐标等于平均质量的直线.生:根据给出的数据,计算得x甲=75g,x乙=75g.师:同学们完成得很好.从甲厂抽取的这20只鸡腿质量的最大值是多少?最小值又是多少?它们相差几克?从乙厂抽取的这20只鸡腿质量的最大值又是多少?最小值呢?它们相差几克?生:甲厂抽取的这20只鸡腿质量的最大值是78g,最小值是72g,它们相差78-72=6(g);而从乙厂抽取的这20只鸡腿质量的最大值是80g,最小值是71g,它们相差80-71=9(g).师:如果现在考虑鸡腿的规格,你认为外贸公司应该购买哪个厂的鸡腿?生:因为甲厂鸡腿的数据相对于平均数的偏差较小,所以我认为应购买甲厂的鸡腿.学生总结,教师指导:实际生活中,人们往往还关注数据的离散程度,即它们相对于集中趋势的偏离情况.因此,我们引入一个新的统计量——极差,它是刻画数据离散程度的一个统计量.极差是指一组数据中最大数据与最小数据的差.师:从这个问题中我们发现:极差越大,偏离平均数越大,产品的质量(性能)越不稳定.设计意图:通过实际问题创设教学情境,让学生感受仅由平均水平是很难对所有事物进行分析的,从而顺利地引入极差.这样,既吸引了学生的注意力,又激发了学生的求知欲,也能让学生感受到数学知识就在生活之中.巩固练习在某次数学测验中,某一小组五位同学成绩分别为60,70,80,90,100,那么这一小组同学成绩的极差为_____.答案:40二、合作探究随着市场的激烈竞争,丙厂也参与了竞争,从该厂抽样调查了20只鸡腿,数据如下图所示.对于甲、丙两厂,又该如何选择呢?教师先引导学生通过计算对比两厂抽取鸡腿质量的平均数和极差.丙厂这20只鸡腿质量的平均数为x 丙,计算得x 丙=75.1 g,极差为79-72=7(g).师:从得到的数据来看应该选哪个厂的鸡腿?生:甲厂.师:甲厂的数据是不是明显优于丙厂呢?生:不是,两厂的平均数差不多,极差也相差不大.再引导学生如何刻画甲、丙两厂这20只鸡腿的质量与其平均数的差距? 这时应提出探讨74 g 和76 g 的鸡腿的偏离程度是否一样,由此提出用鸡腿质量和平均数的差的绝对值来刻画.最后教师提出问题在甲、丙两厂中,你认为哪个厂的鸡腿质量更符合要求?为什么?师:我们探讨了用极差和平均数来表示数据的离散程度,数据的离散程度还可以用方差或者标准差来刻画.请同学们阅读教材,并思考计算一组数据的方差的步骤.阅读两分钟,学生独立完成阅读后总结计算方差的步骤,教师强调:方差是各个数据与平均数差的平方的平均数,即s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 是1x ,2x ,…,n x 的平均数,s 2是方差,而标准差s 就是方差的算术平方根.让学生独立计算两厂的方差并比较,等待学生完成后教师强调:(1)极差和标准差的单位和原单位一致;(2)方差的单位应该为原单位的平方,但是不具有什么实际意义,一般都省略不写.(3)计算器不具有求方差的功能,可以先求出标准差,再平方即可求出方差.教师强调:一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定.典型例题例求数据7,6,8,8,5,9,7,7,6,7的方差和标准差.【问题探索】怎样求一组数据的方差和标准差?【解法一】因为这组数据的平均数为110(7×4+6×2+8×2+5+9)=7,所以s2=110[(7-7)2+(6-7)2+(8-7)2+(8-7)2+(5-7)2+(9-7)2+(7-7)2+(7-7)2+ (6-7)2+(7-7)2]=1.2,[来源:学+科+网Z+X+X+K]所以标准差s=30 5.【解法二】将各数据减7,得新数据:0,-1,1,1,-2,2,0,0,-1,0.由题易知,新数据的平均数为0,所以s2=110[02+(-1)2+12+12+(-2)2+22+02+02+(-1)2+02-10×02]=1.2,所以标准差s=30 5.【总结】计算一组数据的方差和标准差的步骤:先计算该组数据的平均数(或需加减的数值),然后按方差(或标准差)的计算公式计算.课堂练习1.人数相同的八年级(1)(2)两班学生在同一次数学单元测试成绩中班级平均分和方差如下:x甲=x乙=80,2甲s=200,2乙s=65,成绩较为稳定的班级是()A.甲班B.乙班C.两班成绩一样稳定D.无法确定2.已知一组数据:15,13,15,16,17,16,14,15,则这组数据的极差与众数分别是()A.4,15B.3,15C.4,16D.3,163.将一组数据中的每个数据都减去同一个数,那么下列结论成立的是( )A.方差改变,平均数不变B.方差和平均数都不变C.方差改变,平均数改变D.方差不变,平均数改变4.(1)已知一组数据1,2,3,4,5的方差为2,则另一组数据11,12,13,14,15的方差为________.(2)已知一组数据1x ,2x ,…,n x 的方差是2s ,则新的一组数据a 1x +1,a 2x +1,…,a n x +1(a 为常数,a ≠0)的方差为________.(用含a ,s 的代数式表示)参考答案1.B2.A3.D4.(1)2 (2)22s a课堂小结(学生总结,老师点评)1.极差:极差是指一组数据中最大数据与最小数据的差.2.方差:即s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 是1x ,2x ,…,n x 的平均数,s 2是方差,而标准差s 就是方差的算术平方根.布置作业习题6.5第1,2题板书设计第六章 数据的分析4 数据的离散程度第1课时 极差、方差和标准差[(x1-x)2+(x2-x)2+…+(x n-x)2].方差的计算公式:s2=1n一般而言,一组数据的极差、方差或标准差越小,这组数据就越稳定.。

《数据的离散程度(2)》(完整版)精品导学案

《数据的离散程度(2)》(完整版)精品导学案

精品“正版”资料系列,由本公司独创。

旨在将“人教版”、”苏教版“、”北师 大版“、”华师大版“等涵盖几乎所有版本的教材教案、课件、导学案及同步练习和 检测题分享给需要的朋友。

本资源创作于2020年8月,是当前最新版本的教材资源。

包含本课对应 内容,是您备课、上课、课后练习以及寒暑假预习的最佳选择。

4.数据的离散程度(第2课时)【学习目标】1.进一步加深理解平均数、方差、标准差的概念;2.会结合实际,运用相应的知识解决问题,体会样本估计总体的思想。

【学习准备】课前,从事下列活动:(1)两人一组,在安静的环境中,一人估计1min 的时间,另一人记下实际时间,将结果记录下来。

(2)在吵闹的环境中,再做一次这样的实验。

【学习过程】活动1:根据图表感受数据的稳定性 1.射箭时,通常新手成绩会比老手差一些,而且成绩通常不太稳定。

小明和小华练习射箭,第一局12支箭射完后,两人的成绩如下图所示。

请根据图中信息估计小明和小华谁是新手,并说明你这样估计的理由。

运用•巩固2.(1)从下面两幅图中,你能分别读出甲、乙两队员射击成绩的平均数吗?02468100123456789101112成绩箭序(2)通过估计比较甲、乙两队员射击成绩的方差的大小?说说你的估计过程。

(3)分别计算甲、乙两队员射击成绩的方差,看看刚才自己的估计是否正确。

(4)丙队员的射击成绩如右图,判断三人射击成绩的方差的大小。

反思•小结3.从图形中比较两组数据的稳定性,你有哪些经验,与同伴交流。

活动2:感受生活中的稳定性1.将全班课前收集的数据汇总起来,分别计算安静状态和吵闹环境下估计结果的平均值和方差。

2.两种情况下的结果是否一致,说说你的理由。

活动3:利用数据的稳定性做出抉择1.某校拟派一名跳高运动员参加一项校际比赛,对甲、乙两名跳高运动员进行了8次选拔比赛,他们的成绩(单位:米)分别如下: 甲:1.70,1.65,1.68,1.69,1.72,1.73,1.68,1.67。

数据的离散程度2教案

数据的离散程度2教案
交代目标
1. 知识与技能:进一步了解极差、方差、标准差的求法;会用极差、方
差、标准差对实际问题做出判断。
2. 过程与方法:经历对统计图中数据的读取与处理,发展学生初步的统
计意识和数据处理能力。根据极差、方差、标准差的大小对实际问题作出解
释,培养学生解决问题能力。
第一环节:情境引入
内容:(1)回顾:什么是极差、方差、标准差?方差的计算公式是什么?
赛.该校预先对这两名选手测试了 8 次,测试成绩如下表:
选手甲的 成绩/秒 选手乙的 成绩/秒
1 12.1
12
2 12.2 12.4
3 13 12.8
4 12.5
13
5 13.1 12.2
6 12.5 12.8
7 12.4 12.3
8 12.2 12.5
检测预习 交代目标
根据测试成绩,请你运用所学过的统计知识做出判断,派哪一位选手参加比 赛更好?为什么?
12345678 选手甲的成绩(秒) 12.1 12.4 12.8 12.5 13 12.6 12.4 12.2 选手乙的成绩(秒) 12 11.9 12.8 13 13.2 12.8 11.8 12.5 根据测试成绩,请你运用所学过的统计知识做出判断,派哪一位选手参 加比赛更好?为什么?
目的:通过学生的反馈练习,使教师及时了解学生对刻画数据离散程度
(2)在吵闹的环境中,再做一次这样的试验。
(3)将全班的结果汇总起来,并分别计算安静状态和吵闹环境中估计结
果的平均值和方差。
(4)两种情况下的结果是否一致?说明理由。
目的:实验的两种结果不一致,差别较大。力图让学生再次经历数据的
收集和处理的过程,体会环境对个人心理状态的影响,同时培养学生的统计

数据的离散程度复习教学案教案

数据的离散程度复习教学案教案

数据的离散程度复习教学案一、教学目标1. 知识与技能:(1)理解离散程度的含义,掌握极差、方差、标准差等统计量度方法。

(2)能够运用离散程度指标分析数据,对数据集的离散程度进行合理判断。

2. 过程与方法:(1)通过实例分析,培养学生的数据处理和分析能力。

(2)利用计算器或软件工具,提高学生计算离散程度指标的技能。

3. 情感态度价值观:培养学生对数据的敏感性,增强数据分析的观念,认识数据在现实生活中的重要作用。

二、教学重难点1. 教学重点:(1)离散程度的概念及各种统计量度的计算方法。

(2)运用离散程度指标分析数据的能力。

2. 教学难点:(1)极差、方差、标准差等统计量度的推导和计算。

(2)对数据集离散程度的合理判断。

三、教学过程1. 导入新课:通过一个实际问题,引入离散程度的概念,激发学生的学习兴趣。

2. 知识讲解:(1)讲解离散程度的意义和作用。

(2)讲解极差、方差、标准差等统计量度的计算方法和步骤。

3. 实例分析:给出几个实例,让学生运用离散程度指标进行分析,巩固所学知识。

4. 练习与讨论:布置一些练习题,让学生独立完成,进行讨论和解答。

四、课后作业布置一些有关离散程度的练习题,让学生巩固所学知识,提高计算和分析能力。

五、教学反思在课后对教学效果进行反思,了解学生在学习过程中的困难和问题,为下一步教学提供参考。

六、教学评价1. 评价内容:(1)学生对离散程度概念的理解程度。

(2)学生掌握极差、方差、标准差等统计量度的计算方法。

(3)学生运用离散程度指标分析数据的能力。

2. 评价方法:(1)课堂问答:通过提问,了解学生对离散程度概念的理解程度。

(2)练习题:通过布置练习题,检验学生掌握统计量度的计算方法。

(3)实例分析:让学生运用离散程度指标分析实际数据,评价其分析能力。

七、教学拓展1. 离散程度的延伸:(1)介绍其他衡量数据离散程度的统计量度,如离散系数、四分位差等。

(2)探讨这些统计量度的应用场景和计算方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 数据的分析
4.数据的离散水准(第2课时)
【学习目标】
1.进一步加深理解平均数、方差、标准差的概念;
2.会结合实际,使用相对应的知识解决问题,体会样本估计总体的思想。

【学习准备】
课前,从事下列活动:
(1)两人一组,在安静的环境中,一人估计1min 的时间,另一人记下实际时间,将结果记录下来。

(2)在吵闹的环境中,再做一次这样的实验。

【学习过程】
活动1:根据图表感受数据的稳定性
1.射箭时,通常新手成绩会比老手差一些,而且成绩通常不太稳定。

小明和小华练习射箭,第一局12支箭射完后,两人的成绩如下图所示。

请根据图中信息估计小明和小华
谁是新手,并说明你这样估计的理由。

使用•巩固
2.(1)从下面两幅图中,你能分别读出甲、乙两队员射击成绩的平均数吗?
(2)通过估计比较甲、乙两队员射击成绩的方差的大小?说说你的估计过程。

(3)分别计算甲、乙两队员射击成绩的方差,看看刚才自己的估计是否准确。

(4)丙队员的射击成绩如右图,判断三人射击成绩的方差的大小。

反思•小结
3.从图形中比较两组数据的稳定性,你有哪些经验,与同伴交流。

02
4
6810
0123456789101112箭序
成绩
活动2:感受生活中的稳定性
1.将全班课前收集的数据汇总起来,分别计算安静状态和吵闹环境下估计结果的平均值和方差。

2.两种情况下的结果是否一致,说说你的理由。

活动3:利用数据的稳定性做出抉择
1.某校拟派一名跳高运动员参加一项校际比赛,对甲、乙两名跳高运动员实行了8次选拔比赛,他们的成绩(单位:米)分别如下:
甲:1.70,1.65,1.68,1.69,1.72,1.73,1.68,1.67。

乙:1.60,1.73,1.72,1.61,1.62,1.71,1.70,1.75。

(1)甲、乙两名运动员的跳高的平均成绩分别是多少?
(2)他们哪个的成绩更为稳定?
(3)经预测,跳高1.65米就很可能获得冠军,该校为了获取跳高比赛冠军,可能选哪位运动员参赛?若预测1.70方可夺得冠军呢?
活动4:自主反馈
1.为选派一名学生参加全市实践活动技能竞赛,A 、B 两位同学在校实习基地现场实行加工直径为20mm 的零件测试,他俩各加工的10个零件的相关数据依次如下图表所示(单位:mm )。

根据测试得到的相关数据,试解答下列问题:
(1)考虑平均数与完全符合要求的个数,你认为__________的成绩好些。

(2)计算出S 2
B 的大小,考虑平均数与方差,说明谁的成绩好些。

*2.姚明在2005-2006赛季NBA 常规赛中表现优异。

下面是他在这个赛季中,分别与“超音速”和“快船”队各四场比赛中的技术统计。

场次 对阵超音速
对阵快船
得分 篮板 失误 得分 篮板 失误 第一场 22 10 2 25 17 2 第二场 29 10 2 29 15 0 第三场 24 14 2 17 12 4 第四场
26
10
5
22
7
2
(1)请分别计算姚明在对阵“超音速”和“快船”两队各四场比赛中,平均每场得分是多少?
平均数 方差 完全符合要求个数
A 20 0.026 2
B 20 S 2
B 5
(2)请你从得分的角度分析,姚明在与“超音速”和“快船”的比赛中,对阵哪一个队的发挥比较稳定?
(3)如果规定“综合得分”为:平均每场得分×1 + 平均每场篮板×1.2+平均每场失误×(-1),且综合得分越高表现越好,那么请你利用这种评价方法,来比较姚明在与“超音速”和“快船”的比赛中,对阵哪一个队表现更好?。

相关文档
最新文档