2007年天津市数学中考真题(word版含答案)
天津中考数学第24题(几何压轴题)思路分析及真题练习

天津中考数学第24题(几何压轴题)思路分析及真题练习思路分析:观察近几年的中考真题可以发现,每年倒数第二题的出题形式,都是将几何图形放在平面直角坐标系中。
但是,由于解析几何要到高中才学,所以坐标系在这里其实只能起到一个确定点的坐标的作用。
当然,如果把直线看成一次函数图像,一次函数解析式就是直线方程,也就可以将直线交点问题,转化为方程组求解问题,但在这道题中通常都不需要这样做。
题目每年都会对几何图形进行变换,近六年的变换规律是:旋转、对称、旋转、对称、旋转、平移,明年应该大概率是旋转。
因为无论是对称变换、旋转变换还是平移变换,图形的大小和形状都不会发生改变,所以每年的题目都会涉及到全等。
由于在图形变换的过程中,全等的判定通常都是比较容易的,所以本题对全等的考察又主要在全等性质的应用上。
题目设问无论是点的坐标、线段的长还是图形的面积,其核心都是求距离。
所有的距离又都可以转化为求两点间的距离或求点到直线间的距离。
任意两点之间的距离公式虽然要高中才学,但我们可以将两点之间的距离转化为求一个直角三角形的斜边长,用勾股定理求解。
因此,我们会发现每年的题目中几乎都会涉及到勾股定理。
任意点到任意直线的距离公式也要到高中才会学习,但对于一些特殊情况,我们现在就可以做了。
每年的第一问,都是送分问,用一次勾股定理基本都可以解决。
第二问和第三问,解题的关键是要抓住全等的性质和特殊三角形。
第三问通常也会和其它知识点结合,但涉及的都是一些基础知识点,基本功扎实的同学,问题都不大。
最后提醒一下,当对图形进行旋转变换时,尤其需要注意其与圆的结合。
在研究点、直线、圆和圆的位置关系时,只需要研究它们和圆心的位置关系即可。
而在旋转变换时,旋转中心自然就是圆心。
真题练习参考答案。
天津市汉沽区2007—2008学年度第一学期七年级数学期末试卷 人教版七年级上册

汉沽区2007 - 2008 学年度第一学期七年级数学期末试卷题号一二三总分1-10 11-18 19 20 21 22 23 24得分说明:1. 本试卷共8页,共有24题,满分共100分,考试时间为90分钟.2. 答题前请将密封线内的项目填写清.一、选择题:(本大题共10小题,每小题3分,共30分,在每小题给出的四个选择项中,只有一项是符合题目要求的. 请将选择题答案填入下答题栏内)题号 1 2 3 4 5 6 7 8 9 10答案1、如图所示几何体的左面看的平面图为()A B C D2、如图所示的平面图形绕图中虚线旋转一周,能得到右边的几何体的是( )A B C D3、过直线AB上一点O作射线OC,∠BOC和∠AOC之比为3:2,则∠AOC的补角为()度.A.120B.54C.108D.364、七年级某学生本学期五次考试成绩的折线统计图如下,则该同学的五次平均成绩为()A.75A BC EDBACD1234B .85 C .84 D .815、下列命题中不是真命题.....的为( ) A .钝角大于锐角 B .等角的余角相等C .若AB ∥CDAB ∥ED,则ED ∥CD D .如果x=3,则点(x,-5)在第三象限6、P(3x -2,2-x)在第四象限,则x 的取值X 围是( )A.32<x<2B .x>32C .x>2D .x<327、下列调查中,①全国人口普查时,逐户填写各种相关资料;②为了了解某电视剧的收视率,向100位观众打询问;③为了了解某小区各户居民一年内丢弃的塑料袋数目,向50户家庭各发出一份调查统计表;④某校为了了解学生对每位任课教师的意见,向每位同学发了一份调查表。
属于全面调查的是( )A .①④B .①③C .①②D .②③8、如图已知∠3=∠4 ,若要使∠1=∠2,需加条件( )A.∠3=∠1B .∠3=∠2 C .∠1=∠4D .AB ∥CD9、在一条直线上截取线段AB =6cm ,再从A起向AB 方向截取线段AC=10cm,则AB 中点与AC 中点的距离是( )A.8cmB .4cm C .3cmD .2cm10、在平面直角坐标系中,线段A ′B ′是由线段AB 经过平移得到的,已知点A(-2,1)的对应点为A ′(3,4),点B 的对应点为B ′(4,0),则点B 的坐标为( ).A .(9,3)B .(-1,-3)C .(3,-3)D .(-3,-1) 二、填空题(每题3分,共24分)11、要把木条固定在墙上至少需要钉______颗钉子,根据是______ . 12、点M (a+2,2a-7)在y 轴上,则a 的值为. 13、如图,AB ∥CD,∠B=230, ∠D=420,则∠E=.14、点P (3,—5)到x 轴、y 轴的距离分别为a 、b ,则ba=. 15、某校初中三个年级学生总人数为2000人, 三个年级学生 人数所占比例如图所示,则九年级学生人数为。
2007年高考.天津卷.理科数学试题及解答

2007年普通高等学校招生全国统一考试(天津卷)数学(理工类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试用时120分钟.第Ⅰ卷1至2页,第Ⅱ卷3至10页.考试结束后,将本试卷和答题卡一并交回.祝各位考生考试顺利!第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考号、科目涂写在答题卡上,并在规定位置粘贴考试用条形码.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.答在试卷上的无效. 3.本卷共10小题,每小题5分,共50分.参考公式:·如果事件A B ,互斥,那么球的表面积公式()()()P A B P A P B +=+24πS R =·如果事件A B ,相互独立,那么其中R 表示球的半径()()()P A B P A P B =··一、选择题:在每小题列出的四个选项中,只有一项是符合题目要求的.1.i 是虚数单位,32i 1i=-( ) A.1i + B. 1i -+ C.1i - D.1i --2.设变量x y ,满足约束条件1133x y x y x y ⎧--⎪+⎨⎪-<⎩,,.≥≥则目标函数4z x y =+的最大值为( ) A.4B.11C.12D.143.“2π3θ=”是“πtan 2cos 2θθ⎛⎫=+ ⎪⎝⎭”的( ) A.充分而不必要条件 B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.设双曲线22221(00)x y a b a b-=>>,24y x =的准线重合,则此双曲线的方程为( )A.2211224x y -= B.2214896x y -= C.22213x y -= D.22136x y -= 5.函数2log 2)(0)y x =>的反函数是( )A.142(2)xx y x +=->B.142(1)x x y x +=->C.242(2)x x y x +=-> D.242(1)x x y x +=->6.设a b ,为两条直线,αβ,为两个平面,下列四个命题中,正确的命题是( )A.若a b ,与α所成的角相等,则a b ∥B.若a b αβ,∥∥,αβ∥,则a b ∥ C.若a b a b αβ⊂⊂,,∥,则αβ∥ D.若a b αβ⊥⊥,,αβ⊥,则a b ⊥7.在R 上定义的函数()f x 是偶函数,且()(2)f x f x =-,若()f x 在区间[12],上是减函数,则()f x ( )A.在区间[21]--,上是增函数,在区间[34],上是增函数B.在区间[21]--,上是增函数,在区间[34],上是减函数 C.在区间[21]--,上是减函数,在区间[34],上是增函数 D.在区间[21]--,上是减函数,在区间[34],上是减函数8.设等差数列{}n a 的公差d 不为0,19a d =.若k a 是1a 与2k a 的等比中项,则k =( )A.2B.4C.6 D.89.设a b c ,,均为正数,且122log aa =,121log 2bb ⎛⎫= ⎪⎝⎭,21log 2cc ⎛⎫= ⎪⎝⎭.则( )A.a b c << B.c b a << C.c a b << D.b a c <<10.设两个向量22(2cos )λλα=+-,a 和sin 2m m α⎛⎫=+ ⎪⎝⎭,b ,其中m λα,,为实数.若2=a b ,中央电视台mλ的取值范围是( ) A.[-6,1] B.[48],C.(-6,1] D.[-1,6]2007年普通高等学校招生全国统一考试(天津卷)数学(理工类)第Ⅱ卷注意事项:1.答案前将密封线内的项目填写清楚. 2.用钢笔或圆珠笔直接答在试卷上. 3.本卷共12小题,共100分.二、填空题:本大题共6小题,每小题4分,共24分,把答案填在题中横线上.11.若621x ax ⎛⎫+ ⎪⎝⎭的二项展开式中2x 的系数为52,则a = (用数字作答). 12.一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为 .13.设等差数列{}n a 的公差d 是2,前n 项的和为n S ,则22lim n n na n S →∞-= . 14.已知两圆2210x y +=和22(1)(3)20x y -+-=相交于A B ,两点,则直线AB 的方程是 .15.如图,在ABC △中,12021BAC AB AC ∠===,,°,D 是边BC 上一点,2DC BD =,则ADBC =· . 16.如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有 种(用数字作答).ABDC三、解答题:本大题共6小题,共76分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)已知函数()2cos (sin cos )1f x x x x x =-+∈R ,. (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,上的最小值和最大值.18.(本小题满分12分)已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现从甲、乙两个盒内各任取2个球. (Ⅰ)求取出的4个球均为黑球的概率;(Ⅱ)求取出的4个球中恰有1个红球的概率;(Ⅲ)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望. 19.(本小题满分12分)如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,60AB AD AC CD ABC ⊥⊥∠=,,°,PA AB BC ==,E 是PC的中点.(Ⅰ)证明CD AE ⊥;(Ⅱ)证明PD ⊥平面ABE ;(Ⅲ)求二面角A PD C --的大小.20.(本小题满分12分)已知函数2221()()1ax a f x x x -+=∈+R ,其中a ∈R . (Ⅰ)当1a =时,求曲线()y f x =在点(2(2))f ,处的切线方程; (Ⅱ)当0a ≠时,求函数()f x 的单调区间与极值.21.(本小题满分14分)在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)求数列{}n a 的前n 项和n S ; (Ⅲ)证明存在k *∈N ,使得11n k n ka aa a ++≤对任意n *∈N 均成立.22.(本小题满分14分)设椭圆22221(0)x y a b a b+=>>的左、右焦点分别为12F F A ,,是椭圆上的一点,212AF F F ⊥,原点O 到直线1AF 的距离为113OF .(Ⅰ)证明a =;(Ⅱ)设12Q Q ,为椭圆上的两个动点,12OQ OQ ⊥,过原点O 作直线12Q Q 的垂线OD ,垂足为D ,求点D 的轨迹方程.A BC D P E2007年普通高等学校招生全国统一考试(天津卷)数学(理工类)参考解答一、选择题:本题考查基本知识和基本运算.每小题5分,满分50分. 1.C 2.B 3.A 4.D 5.C 6.D 7.B 8.B 9.A 10.A二、填空题:本题考查基本知识和基本运算.每小题4分,满分24分. 11.2 12.14π 13.3 14.30x y +=15.83-16.390三、解答题17.本小题考查三角函数中的诱导公式、特殊角三角函数值、两角差公式、倍角公式、函数sin()y A x ωϕ=+的性质等基础知识,考查基本运算能力.满分12分.(Ⅰ)解:π()2cos (sin cos )1sin 2cos 224f x x x x x x x ⎛⎫=-+=-=- ⎪⎝⎭.因此,函数()f x 的最小正周期为π.(Ⅱ)解法一:因为π()24f x x ⎛⎫=- ⎪⎝⎭在区间π3π88⎡⎤⎢⎥⎣⎦,上为增函数,在区间3π3π84⎡⎤⎢⎥⎣⎦,上为减函数,又π08f ⎛⎫= ⎪⎝⎭,3π8f ⎛⎫= ⎪⎝⎭3π3πππ14244f ⎛⎫⎛⎫=-==- ⎪ ⎪⎝⎭⎝⎭, 故函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,,最小值为1-.解法二:作函数π()24f x x ⎛⎫=- ⎪⎝⎭在长度为一个周期的区间π9π84⎡⎤⎢⎥⎣⎦,上的图象如下:由图象得函数()f x 在区间π3π84⎡⎤⎢⎥⎣⎦,上的最大3π14f ⎛⎫=- ⎪⎝⎭.18.本小题主要考查互斥事件、相互独立事件、离散型随机变量的分布列和数学期望等基础知识,考查运用概率知识解决实际问题的能力.满分12分.(Ⅰ)解:设“从甲盒内取出的2个球均为黑球”为事件A ,“从乙盒内取出的2个球均为黑球”为事件B .由于事件AB ,相互独立,且23241()2C P A C ==,24262()5C P B C ==. 故取出的4个球均为黑球的概率为121()()()255P AB P A P B ==⨯=··. (Ⅱ)解:设“从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红球,1个是黑球”为事件C ,“从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个球均为黑x球”为事件D .由于事件C D ,互斥,且21132422464()15C C C P C C C ==··,123422461()5C C PD C C ==·. 故取出的4个球中恰有1个红球的概率为417()()()15515P C D P C P D +=+=+=. (Ⅲ)解:ξ可能的取值为0123,,,.由(Ⅰ),(Ⅱ)得1(0)5P ξ==,7(1)15P ξ==, 13224611(3)30C P C C ξ===·.从而3(2)1(0)(1)(3)10P P P P ξξξξ==-=-=-==.ξ的分布列为ξ 0 1 2 3P15 715 310130ξ的数学期望17317012351510306E ξ=⨯+⨯+⨯+⨯=.19.本小题考查直线与直线垂直、直线与平面垂直、二面角等基础知识,考查空间想象能力、运算能力和推理论证能力.满分12分.(Ⅰ)证明:在四棱锥P ABCD -中,因PA ⊥底面ABCD ,CD ⊂平面ABCD ,故PA CD ⊥. AC CD PA AC A ⊥=,∵,CD ⊥∴平面PAC . 而AE ⊂平面PAC ,CD AE ⊥∴.(Ⅱ)证明:由PA AB BC ==,60ABC ∠=°,可得AC PA =. E ∵是PC 的中点,AE PC ⊥∴.由(Ⅰ)知,AE CD ⊥,且PC CD C =,所以AE ⊥平面PCD . 而PD ⊂平面PCD ,AE PD ⊥∴.PA ⊥∵底面ABCD PD ,在底面ABCD 内的射影是AD ,AB AD ⊥,AB PD ⊥∴. 又AB AE A =∵,综上得PD ⊥平面ABE .(Ⅲ)解法一:过点A 作AM PD ⊥,垂足为M ,连结EM .则(Ⅱ)知,AE ⊥平面PCD ,AM 在平面PCD 内的射影是EM ,则EM PD ⊥. 因此AME ∠是二面角A PD C --的平面角. 由已知,得30CAD ∠=°.设AC a =,可得332PA a AD a PD a AE a ====,,,. 在ADP Rt △中,AM PD ⊥∵,AM PD PA AD =∴··,则7a PA AD AM a PD ===··. 在AEM Rt △中,sin 4AE AME AM ==. 所以二面角A PD C --的大小是arcsin 4.解法二:由题设PA ⊥底面ABCD ,PA ⊂平面PAD ,则平面PAD ⊥平面ACD ,交线为AD . 过点C 作CF AD ⊥,垂足为F ,故CF ⊥平面PAD .过点F 作FM PD ⊥,垂足为M ,连结CM ,A BC DP EM故CM PD ⊥.因此CMP ∠是二面角A PD C --的平面角. 由已知,可得30CAD ∠=°,设AC a =,可得132PA a AD PD a CF a FD =====,,,,. FMD PAD ∵△∽△,FM FDPA PD =∴.于是,14a a FD PA FM a PD ===··. 在CMF Rt △中,1tanaCF CMF FM === 所以二面角A PD C --的大小是.20.本小题考查导数的几何意义,两个函数的和、差、积、商的导数,利用导数研究函数的单调性和极值等基础知识,考查运算能力及分类讨论的思想方法.满分12分.(Ⅰ)解:当1a =时,22()1x f x x =+,4(2)5f =, 又2222222(1)2222()(1)(1)x x x x f x x x +--'==++·,6(2)25f '=-. 所以,曲线()y f x =在点(2(2))f ,处的切线方程为46(2)525y x -=--,即62320x y +-=.(Ⅱ)解:2222222(1)2(21)2()(1)()(1)(1)a x x ax a x a ax f x x x +--+--+'==++. 由于0a ≠,以下分两种情况讨论.(1)当0a >时,令()0f x '=,得到11x a=-,2x a =.当x 变化时,()()f x f x ',的变化情况如下表:x1a ⎛⎫-- ⎪⎝⎭,∞1a1a a ⎛⎫- ⎪⎝⎭, a ()a +,∞()f x '- 0+-()f x+ 极小值 极大值所以()f x 在区间1a ⎛⎫-- ⎪⎝⎭,∞,()a +,∞内为减函数,在区间1a a ⎛⎫- ⎪⎝⎭,内为增函数. 函数()f x 在11x a =-处取得极小值1f a ⎛⎫- ⎪⎝⎭,且21f a a ⎛⎫-=- ⎪⎝⎭,函数()f x 在21x a=处取得极大值()f a ,且()1f a =.(2)当0a <时,令()0f x '=,得到121x a x a==-,,当x 变化时,()()f x f x ',的变化情况如下A B C DP E F M表:x()a -,∞a1a a ⎛⎫- ⎪⎝⎭, 1a - 1a ⎛⎫- ⎪⎝⎭,+∞()f x '+0 -0 +()f x极大值极小值所以()f x 在区间()a -,∞,1a ⎛⎫- ⎪⎝⎭,+∞内为增函数,在区间1a a ⎛⎫- ⎪⎝⎭,内为减函数. 函数()f x 在1x a =处取得极大值()f a ,且()1f a =.函数()f x 在21x a=-处取得极小值1f a ⎛⎫- ⎪⎝⎭,且21f a a ⎛⎫-=- ⎪⎝⎭. 21.本小题以数列的递推关系式为载体,主要考查等比数列的前n 项和公式、数列求和、不等式的证明等基础知识与基本方法,考查归纳、推理、运算及灵活运用数学知识分析问题和解决问题的能力.满分14分.(Ⅰ)解法一:22222(2)22a λλλλ=++-=+,2232333(2)(2)222a λλλλλ=+++-=+, 3343444(22)(2)232a λλλλλ=+++-=+.由此可猜想出数列{}n a 的通项公式为(1)2n nn a n λ=-+.以下用数学归纳法证明.(1)当1n =时,12a =,等式成立.(2)假设当n k =时等式成立,即(1)2k kk a k λ=-+,那么111(2)2k k k a a λλλ++=++-11(1)222k k k k kk λλλλλ++=-+++-11[(1)1]2k k k λ++=+-+.这就是说,当1n k =+时等式也成立.根据(1)和(2)可知,等式(1)2n n n a n λ=-+对任何n *∈N都成立.解法二:由11(2)2()n n n n a a n λλλ+*+=++-∈N ,0λ>,可得111221n nn n n na a λλλλ+++⎛⎫⎛⎫-=-+ ⎪ ⎪⎝⎭⎝⎭, 所以2nn n a λλ⎧⎫⎪⎪⎛⎫-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭为等差数列,其公差为1,首项为0,故21n n n a n λλ⎛⎫-=- ⎪⎝⎭,所以数列{}n a 的通项公式为(1)2n nn a n λ=-+.(Ⅱ)解:设234123(2)(1)n n n T n n λλλλλ-=++++-+-, ①345123(2)(1)n n n T n n λλλλλλ+=++++-+- ② 当1λ≠时,①式减去②式,得212311(1)(1)(1)1n n n n n T n n λλλλλλλλλ+++--=+++--=---, 21121222(1)(1)(1)1(1)n n n n n n n n T λλλλλλλλλ++++----+=-=---. 这时数列{}n a 的前n 项和21212(1)22(1)n n n n n n S λλλλ+++--+=+--.当1λ=时,(1)2n n n T -=.这时数列{}n a 的前n 项和1(1)222n n n n S +-=+-. (Ⅲ)证明:通过分析,推测数列1n n a a +⎧⎫⎨⎬⎩⎭的第一项21aa 最大,下面证明:21214,22n n a a n a a λ++<=≥. ③ 由0λ>知0n a >,要使③式成立,只要212(4)(2)n n a a n λ+<+≥,因为222(4)(4)(1)(1)2n nn a n λλλλ+=+-++124(1)424(1)2n n n n n n λλλ++>-+⨯=-+·1212222n n n n a n λ++++=,≥≥.所以③式成立. 因此,存在1k =,使得1121n k n k a a aa a a ++=≤对任意n *∈N 均成立. 22.本小题主要考查椭圆的标准方程和几何性质、直线方程、求曲线的方程等基础知识,考查曲线和方程的关系等解析几何的基本思想方法及推理、运算能力.满分14分.(Ⅰ)证法一:由题设212AF F F ⊥及1(0)F c -,,2(0)F c ,,不妨设点()A c y ,,其中0y >.由于点A 在椭圆上,有22221c y a b +=,即222221a b y a b-+=. 解得2b y a =,从而得到2b Ac a ⎛⎫ ⎪⎝⎭,.直线1AF 的方程为2()2b y x c ac=+,整理得2220b x acy b c -+=. 由题设,原点O 到直线1AF 的距离为113OF,即23c =将222c a b =-代入上式并化简得222a b =,即a =.证法二:同证法一,得到点A 的坐标为2b c a ⎛⎫⎪⎝⎭,.过点O 作1OB AF ⊥,垂足为B ,易知1F BO △∽12F F A △,故211BO F A OF F A=.由椭圆定义得122AF AF a +=,又113BO OF =, 所以2212132F AF A F A a F A==-, 解得22aF A =,而22b F A a =,得22b a a =,即a =.(Ⅱ)解法一:设点D 的坐标为00()x y ,.当00y ≠时,由12OD Q Q ⊥知,直线12Q Q 的斜率为00xy -0000()x y x x y y =--+,或y kx m =+,其中00x k y =-,200x m y y =+.点111222()()Q x y Q x y ,,,的坐标满足方程组22222y kx m x y b =+⎧⎨+=⎩,.将①式代入②式,得2222()2x kx m b ++=, 整理得2222(12)4220k x kmx m b +++-=,于是122412kmx x k +=-+,21222212m b x x k -=+.由①式得2212121212()()()y y kx m kx m k x x km x x k =++=+++ 2222222222242121212m b km m b k k km m k k k---=++=+++··. 由12OQ OQ ⊥知12120x x y y +=.将③式和④式代入得22222322012m b b k k --=+, 22232(1)m b k =+.将200000x x k m y y y =-=+,代入上式,整理得2220023x y b +=.当00y =时,直线12Q Q 的方程为0x x =,111222()()Q x y Q x y ,,,的坐标满足方程组022222x x x y b =⎧⎨+=⎩,.所以120x x x ==,12y =,. 由12OQ OQ ⊥知12120x x y y +=,即2220202b x x --=, 解得22023x b =.这时,点D 的坐标仍满足2220023x y b +=.综上,点D 的轨迹方程为 22223x y b +=.解法二:设点D 的坐标为00()x y ,,直线OD 的方程为000y x x y -=,由12OD Q Q ⊥,垂足为D ,可知直线12Q Q 的方程为220000x x y y x y +=+. 记2200m x y =+(显然0m ≠),点111222()()Q x y Q x y ,,,的坐标满足方程组0022222x x y y m x y b +=⎧⎪⎨+=⎪⎩, ①. ②由①式得00y y m x x =-. ③由②式得22222200022y x y y y b +=. ④ 将③式代入④式得222220002()2y x m x x y b +-=. 整理得2222220000(2)4220x y x mx x m b y +-+-=,于是222122200222m b y x x x y -=+. ⑤ 由①式得00x x m y y =-. ⑥由②式得22222200022x x x y x b +=. ⑦ 将⑥式代入⑦式得22222000()22m y y x y x b -+=, 整理得2222220000(2)220x y y my y m b x +-+-=,于是22212220022m b x y y x y -=+. ⑧ 由12OQ OQ ⊥知12120x x y y +=.将⑤式和⑧式代入得2222220022220000222022m b y m b x x y x y --+=++, 22220032()0m b x y -+=.将2200m x y =+代入上式,得2220023x y b +=.所以,点D 的轨迹方程为22223x y b +=.。
2007年天津市初中毕业生学业考试

2007年天津市初中毕业生学业考试化学试卷参考答案一、(20分)每题2分1.A 2. C 3. C 4. C 5. D 6. B 7. D 8. D 9. D 10. B二、(10分)每题2分。
11.BC 12.C 13. C 14.AD 15.CD三、(15分)16.(3分)混合物;SO 2;碱液(其他合理答案也给分) 每空1分共3分 17.(3分)(1)> (2)不能 (3)C 每空1分共3分 18.(3分)铜丝表面覆盖一层银白色的汞 1分===+23)(NO Hg Cu 23)(NO Cu Hg + 2分19.(2分)(1)HCl (2)H 2 每空1分共2分 20.(4分)(1)53 (2)C 每空1分共2分 (3)===+KOH HI O H KI 2+ 2分四、(15分) 21.(8分)(1)点燃====+22O Mg MgO 2 2分 (2)通电====O H 22↑+↑222O H 2分(3)∆===+CuO CO 2CO Cu + 2分 (4)===+NaOH HCl O H NaCl 2+ 2分22.(2分)3;2 2分23.(5分)(1)23)(NO Fe (2)Ag(3)23)(NO Fe 、23)(NO Cu 、3AgNO 共5分五、(15分) 24.(6分)(1)高锰酸钾 AC 或AD 锌和稀硫酸 BD 每空1分共4分 (2)碳酸钠和稀硫酸 ③ 每空1分共2分25.(3分)黑色的氧化铜逐渐变为光亮的红色铜,试管口有水滴生成 1分 通入氢气 1分 防止生成的铜再被氧化为氧化铜 1分26.(6分)(1)①② 1分 (2)③ 1分 (3)⑤⑥⑧⑨⑩ 2分 (4)①⑦⑧⑨ 2分六、(15分) 27.(6分)C CuO 每空1分共2分===+42SO H CuO O H CuSO 24+ 2分∆====232MnOKClO ↑+232O KCl 2分28.(5分)NaOH NaNO 3 23)(NO Ba 3H N O 4M g S O 每空1分共5分29.(4分)高温加热(煅烧) 1分 加水 1分 加热后过滤得到滤液 1分 通入适量二氧化碳后过滤(其他合理答案也给分) 1分七、(10分) 30.(3分)解:(1)设需用盐酸的体积为x%36/18.1%6.1410003⨯⨯=⨯cm g x g37.343cm x = 1分(2)设生成的氢气的质量为y===+HCl Zn 2↑+22H ZnCl65 2 13g yy g :132:65= g y 4.0= 2分31.(7分)解:H 2SO 4的质量:g g 6.19%2098=⨯;NaOH 的质量:g g 8%1080=⨯ 设与NaOH 反应的H 2SO 4的质量为x ,生成的Na 2SO 4的质量为1y===+422SO H NaOH O H SO Na 2422+402⨯ 98 1428g x 1yx g :898:80= g x 8.9= 1分 1:8142:80y g = g y 2.141= 1分与32CO Na 反应的H 2SO 4的质量:g g g 8.98.96.19=-设与H 2SO 4反应的Na 2CO 3的质量为m ,生成的Na 2SO 4的质量为2y ,生成的CO 2的质量为z===+4232SO H CO Na O H CO SO Na 2242+↑+106 98 142 44m g 8.9 2y zg m 8.9:98:106= g m 6.10= 1分 2:8.9142:98y g = g y 2.142= 1分z g :8.944:98= g z 4.4= 1分反应后溶液中Na 2SO 4的质量分数:%1.16%1004.41280986.10122.142.14=⨯-++-++gg g g gg g g 2分。
2007年天津市高考数学试卷(理科)及解析

2007年天津市高考数学试卷(理科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)i是虚数单位=()A.1+i B.﹣1+i C.1﹣i D.﹣1﹣i2.(5分)设变量x,y满足约束条件,则目标函数z=4x+y的最大值为()A.4 B.11 C.12 D.143.(5分)“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.(5分)已知双曲线的一条渐近线方程是,它的一个焦点在抛物线y2=24x的准线上,则双曲线的方程为()A.B.C.D.5.(5分)函数的反函数是()A.y=4x﹣2x+1(x>2)B.y=4x﹣2x+1(x>1)C.y=4x﹣2x+2(x>2)D.y=4x ﹣2x+2(x>1)6.(5分)设a,b为两条直线,α,β为两个平面,下列四个命题中,正确的命题是()A.若a,b与α所成的角相等,则α∥bB.若a∥α,b∥β,α∥β,则a∥bC.若a⊂α,b⊂β,α∥b,则α∥βD.若a⊥α,b⊥β,α⊥β,是a⊥b7.(5分)在R上定义的函数f(x)是偶函数,且f(x)=f(2﹣x).若f(x)在区间[1,2]上是减函数,则f(x)()A.在区间[﹣2,﹣1]上是增函数,在区间[3,4]上是增函数B.在区间[﹣2,﹣1]上是增函数,在区间[3,4]上是减函数C.在区间[﹣2,﹣1]上是减函数,在区间[3,4]上是增函数D.在区间[﹣2,﹣1]上是减函数,在区间[3,4]上是减函数8.(5分)设等差数列{a n}的公差d不为0,a1=9d.若a k是a1与a2k的等比中项,则k=()A.2 B.4 C.6 D.89.(5分)已知a、b、c均为正数,且满足,,,则()A.a<b<c B.c<a<b C.c<b<a D.b<a<c10.(5分)设两个向量和,其中λ,m,α为实数.若,则的取值范围是()A.[﹣6,1]B.[4,8]C.(﹣∞,1]D.[﹣1,6]二、填空题(共6小题,每小题4分,满分26分)11.(4分)若(x2+)6的二项展开式中x3的系数为,则a=(用数字作答).12.(4分)一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为.13.(4分)设等差数列{a n}的公差d是2,前n项的和为S n,则=.14.(4分)已知两圆x2+y2=10和(x﹣1)2+(y﹣3)2=20相交于A,B两点,则直线AB的方程是.15.(4分)如图,在△ABC中,∠BAC=120°,AB=2,AC=1,D是边BC上一点,DC=2BD,则•=.16.(4分)如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色.要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有种(用数字作答).三、解答题(共6小题,满分76分)17.(12分)已知函数f(x)=2cosx(sinx﹣cosx)+1,x∈R.(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)求函数f(x)在区间上的最小值和最大值.18.(12分)已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现在从甲、乙两个盒内各任取2个球.(Ⅰ)求取出的4个球均为黑色球的概率;(Ⅱ)求取出的4个球中恰有1个红球的概率;(Ⅲ)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望.19.(12分)如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.(Ⅰ)证明:CD⊥AE;(Ⅱ)证明:PD⊥平面ABE;(Ⅲ)求二面角A﹣PD﹣C的大小.20.(12分)已知函数f(x)=(x∈R),其中a∈R.(Ⅰ)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)当a≠0时,求函数f(x)的单调区间与极值.21.(14分)在数列{a n}中,a1=2,a n+1=λa n+λn+1+(2﹣λ)2n(n∈N*),其中λ>0.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{a n}的前n项和S n;(Ⅲ)证明存在k∈N*,使得对任意n∈N*均成立.22.(14分)设椭圆=1(a>b>0)的左、右焦点分别为F1,F2,A是椭圆上的一点,AF2⊥F1F2,原点O到直线AF1的距离为.(I)证明:;(II)设Q1,Q2为椭圆上的两个动点,OQ1⊥OQ2,过原点O作直线Q1Q2的垂线OD,垂足为D,求点D的轨迹方程.2007年天津市高考数学试卷(理科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2007•天津)i是虚数单位=()A.1+i B.﹣1+i C.1﹣i D.﹣1﹣i【分析】化简复数的分子,同时对复数的分子、分母同乘分母的共轭复数,化简即可.【解答】解:故选C.2.(5分)(2007•天津)设变量x,y满足约束条件,则目标函数z=4x+y的最大值为()A.4 B.11 C.12 D.14【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=4x+y表示直线在y轴上的截距,只需求出可行域直线在y轴上的截距最大值即可.【解答】解:易判断公共区域为三角形区域,如图所示:三个顶点坐标为(0,1)、(2,3)、(1,0),将(2,3)代入z=4x+y得到最大值为11.故选B.3.(5分)(2007•天津)“”是“”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【分析】根据当时成立判断是成立的充分条件,当tanθ=0时不成立,进而可判断是成立的不必要条件.【解答】可知充分,当θ=0°时可知不必要.故选A4.(5分)(2010•天津)已知双曲线的一条渐近线方程是,它的一个焦点在抛物线y2=24x的准线上,则双曲线的方程为()A.B.C.D.【分析】由抛物线标准方程易得其准线方程为x=﹣6,而通过双曲线的标准方程可见其焦点在x轴上,则双曲线的左焦点为(﹣6,0),此时由双曲线的性质a2+b2=c2可得a、b的一个方程;再根据焦点在x轴上的双曲线的渐近线方程为y=±x,可得=,则得a、b的另一个方程.那么只需解a、b的方程组,问题即可解决.【解答】解:因为抛物线y2=24x的准线方程为x=﹣6,则由题意知,点F(﹣6,0)是双曲线的左焦点,所以a2+b2=c2=36,又双曲线的一条渐近线方程是y=x,所以,解得a2=9,b2=27,所以双曲线的方程为.故选B.5.(5分)(2007•天津)函数的反函数是()A.y=4x﹣2x+1(x>2)B.y=4x﹣2x+1(x>1)C.y=4x﹣2x+2(x>2)D.y=4x ﹣2x+2(x>1)【分析】本题考查指数式与对数式的互化、反函数的求法、函数的值域的求法等相关的知识和方法;可以有两种方法:一种是常规方法,即将看做方程解出x,然后由原函数的值域确定反函数的定义域;另一种方法是针对选择题的特点,利用其图象关于y=x对称的特征,通过选取特殊点代入的方法进行验证获得.【解答】解:法一:由得:由此解得:x=4y﹣2y+2,即:y=4x﹣2x+2又原函数的定义域为:x>0∴原函数的值域为:y>2∴函数的反函数是y=4x﹣2x+2(x>2)故选C法二:特值排除法,∵原函数过(﹣4,1)∴其反函数过(1,﹣4)从而排除A、B、D,故选C6.(5分)(2007•天津)设a,b为两条直线,α,β为两个平面,下列四个命题中,正确的命题是()A.若a,b与α所成的角相等,则α∥bB.若a∥α,b∥β,α∥β,则a∥bC.若a⊂α,b⊂β,α∥b,则α∥βD.若a⊥α,b⊥β,α⊥β,是a⊥b【分析】根据题意,依次分析选项,A、用直线的位置关系判断.B、用长方体中的线线,线面,面面关系验证.C、用长方体中的线线,线面,面面关系验证.D、由a⊥α,α⊥β,可得到a⊂β或a∥β,再由b⊥β得到结论.【解答】解:A、直线a,b的方向相同时才平行,不正确;B、用长方体验证.如图,设A1B1为a,平面AC为α,BC为b,平面A1C1为β,显然有a∥α,b∥β,α∥β,但得不到a∥b,不正确;C、可设A1B1为a,平面AB1为α,CD为b,平面AC为β,满足选项C的条件却得不到α∥β,不正确;D、∵a⊥α,α⊥β,∴a⊂β或a∥β又∵b⊥β∴a⊥b故选D7.(5分)(2007•天津)在R上定义的函数f(x)是偶函数,且f(x)=f(2﹣x).若f(x)在区间[1,2]上是减函数,则f(x)()A.在区间[﹣2,﹣1]上是增函数,在区间[3,4]上是增函数B.在区间[﹣2,﹣1]上是增函数,在区间[3,4]上是减函数C.在区间[﹣2,﹣1]上是减函数,在区间[3,4]上是增函数D.在区间[﹣2,﹣1]上是减函数,在区间[3,4]上是减函数【分析】根据函数的性质,作出函数的草图,观察图象即可得答案.【解答】解:由f(x)=f(2﹣x)可知f(x)图象关于x=1对称,又∵f(x)为偶函数,∴f(x)=f(x﹣2)∴f(x)为周期函数且周期为2,结合f(x)在区间[1,2]上是减函数,可得f(x)草图.故选B.8.(5分)(2007•天津)设等差数列{a n}的公差d不为0,a1=9d.若a k是a1与a2k的等比中项,则k=()A.2 B.4 C.6 D.8【分析】由a k是a1与a2k的等比中项,知a k2=a1a2k,由此可知k2﹣2k﹣8=0,从而得到k=4或k=﹣2.【解答】解:因为a k是a1与a2k的等比中项,则a k2=a1a2k,[9d+(k﹣1)d]2=9d•[9d+(2k﹣1)d],又d≠0,则k2﹣2k﹣8=0,k=4或k=﹣2(舍去).故选B.9.(5分)(2007•天津)已知a、b、c均为正数,且满足,,,则()A.a<b<c B.c<a<b C.c<b<a D.b<a<c【分析】由对数函数的真数一定大于0确定a、b、c的范围,再由,,对其范围再缩小即可.【解答】解:∵a>0∴1<∴0<a<∵b>0∴0<<1∴<b<1∵0<∴c>1∴a<b<c故选A.10.(5分)(2007•天津)设两个向量和,其中λ,m,α为实数.若,则的取值范围是()A.[﹣6,1]B.[4,8]C.(﹣∞,1]D.[﹣1,6]【分析】利用,得到λ,m的关系,然后用三角函数的有界性求解的比值,为了简化,把换元.【解答】解:由,,,可得,设代入方程组可得消去m化简得,再化简得再令代入上式得(sinα﹣1)2+(16t2+18t+2)=0可得﹣(16t2+18t+2)∈[0,4]解不等式得因而解得﹣6≤k≤1.故选A.二、填空题(共6小题,每小题4分,满分26分)11.(4分)(2007•天津)若(x2+)6的二项展开式中x3的系数为,则a=2(用数字作答).【分析】利用二项展开式的通项公式求出展开式的第r+1项,令x的指数为3,求出展开式中x3的系数,列出方程求出a.=C6r•a﹣r x12﹣3r,【解答】解:通项T r+1当12﹣3r=3时,r=3,所以系数为C63•a﹣3=,得a=2.故答案为212.(4分)(2007•天津)一个长方体的各顶点均在同一球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为14π.【分析】由题意可知,长方体外接球直径长等于长方体体对角线长,求出长方体的对角线长,就是求出球的直径,然后求出球的表面积.【解答】解:长方体外接球直径长等于长方体体对角线长,即,由S=4πR2=14π.故答案为:14π13.(4分)(2007•天津)设等差数列{a n}的公差d是2,前n项的和为S n,则=3.【分析】由首项a1和公差d等于2,利用等差数列的通项公式及前n项和的公式表示出a n和S n,然后把表示的式子代入到极限中,求出极限的值即可.【解答】解:由公差d=2,得到a n=a1+2(n﹣1)=2n+a1﹣2,S n=na1+×2=n2+n(a1﹣1)则===3故答案为3.14.(4分)(2007•天津)已知两圆x2+y2=10和(x﹣1)2+(y﹣3)2=20相交于A,B两点,则直线AB的方程是x+3y=0.【分析】当判断出两圆相交时,直接将两个圆方程作差,即得两圆的公共弦所在的直线方程.【解答】解:因为两圆相交于A,B两点,则A,B两点的坐标坐标既满足第一个圆的方程,又满足第二个圆的方程将两个圆方程作差,得直线AB的方程是:x+3y=0,故答案为x+3y=0.15.(4分)(2007•天津)如图,在△ABC中,∠BAC=120°,AB=2,AC=1,D是边BC上一点,DC=2BD,则•=.【分析】法一:选定基向量,将两向量,用基向量表示出来,再进行数量积运算,求出的值.法二:由余弦定理得可得分别求得,又夹角大小为∠ADB,,所以=.【解答】解:法一:选定基向量,,由图及题意得,=∴=()()=+==法二:由题意可得BC2=AB2+AC2﹣2AB•ACcosA=4+1+2=7,∴BC=,∴cosB===AD==,∵,∴=.故答案为:﹣.16.(4分)(2007•天津)如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色.要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有390种(用数字作答).【分析】由题意选出的颜色只能是2种或3种,然后分别求出涂色方法数即可.【解答】解:用2色涂格子有C62×2=30种方法,用3色涂格子,第一步选色有C63,第二步涂色,从左至右,第一空3种,第二空2种,第三空分两张情况,一是与第一空相同,一是不相同,共有3×2(1×1+1×2)=18种,所以涂色方法18×C63=360种方法,故总共有390种方法.故答案为:390三、解答题(共6小题,满分76分)17.(12分)(2007•天津)已知函数f(x)=2cosx(sinx﹣cosx)+1,x∈R.(Ⅰ)求函数f(x)的最小正周期;(Ⅱ)求函数f(x)在区间上的最小值和最大值.【分析】(I)先利用二倍角公式和两角和公式对函数解析式化简整理,然后利用正弦函数的性质求得函数的最小正周期.(II)根据正弦函数的单调性和x的范围,进而求得函数的最大和最小值.【解答】解:(I)f(x)=2cosx(sinx﹣cosx)+1=sin2x﹣cos2x=.因此,函数f(x)的最小正周期为π.(II)因为在区间上为增函数,在区间上为减函数,又,故函数f(x)在区间上的最大值为,最小值为﹣1.18.(12分)(2007•天津)已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现在从甲、乙两个盒内各任取2个球.(Ⅰ)求取出的4个球均为黑色球的概率;(Ⅱ)求取出的4个球中恰有1个红球的概率;(Ⅲ)设ξ为取出的4个球中红球的个数,求ξ的分布列和数学期望.【分析】(1)取出的4个球均为黑色球包括从甲盒内取出的2个球均黑球且从乙盒内取出的2个球为黑球,这两个事件是相互独立的,根据相互独立事件同时发生的概率得到结果.(2)取出的4个球中恰有1个红球表示从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红红,1个是黑球或从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个球均为黑球两种情况,它们是互斥的.(3)ξ为取出的4个球中红球的个数,则ξ可能的取值为0,1,2,3.结合前两问的解法得到结果,写出分布列和期望.【解答】解:(I)设“从甲盒内取出的2个球均为黑球”为事件A,“从乙盒内取出的2个球均为黑球”为事件B.∵事件A,B相互独立,且.∴取出的4个球均为黑球的概率为P(A•B)=P(A)•P(B)=.(II)设“从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红球,1个是黑球”为事件C,“从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个球均为黑球”为事件D.∵事件C,D互斥,且.∴取出的4个球中恰有1个红球的概率为P(C+D)=P(C)+P(D)=.(III)ξ可能的取值为0,1,2,3.由(I),(II)得,又,从而P(ξ=2)=1﹣P(ξ=0)﹣P(ξ=1)﹣P(ξ=3)=.ξ的分布列为ξ0123Pξ的数学期望.19.(12分)(2007•天津)如图,在四棱锥P﹣ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.(Ⅰ)证明:CD⊥AE;(Ⅱ)证明:PD⊥平面ABE;(Ⅲ)求二面角A﹣PD﹣C的大小.【分析】(I)由题意利用线面PA⊥底面ABCD得线线PA⊥CD,进而得线面CD⊥平面PAC,即可得证;(II)由题意可得AE⊥PC,由(I)知,AE⊥CD,进而得到AE⊥平面PCD,在由线线垂直得PD⊥平面ABE;(III)因为AE⊥平面PCD,AM在平面PCD内的射影是EM,则EM⊥PD.因此∠AME是二面角A﹣PD﹣C的平面角,然后再在三角形中求出即可.【解答】解:(I)证明:在四棱锥P﹣ABCD中,因PA⊥底面ABCD,CD⊂平面ABCD,故PA⊥CD.∵AC⊥CD,PA∩AC=A,∴CD⊥平面PAC.而AE⊂平面PAC,∴AE⊥CD.(II)证明:由PA=AB=BC,∠ABC=60°,可得AC=PA.∵E是PC的中点,∴AE⊥PC.由(I)知,AE⊥CD,且PC∩CD=C,所以AE⊥平面PCD.而PD⊂平面PCD,∴AE⊥PD.∵PA⊥底面ABCD,PD在底面ABCD内射影是AD,AB⊥AD,∴AB⊥PD.又AB∩AE=A,综上得PD⊥平面ABE.(III)过点A作AM⊥PD,垂足为M,连接EM.由(II)知,AE⊥平面PCD,AM在平面PCD内的射影是EM,则EM⊥PD.因此∠AME是二面角A﹣PD﹣C的平面角.由已知,得∠CAD=30°.设AC=a,可得.在Rt△ADP中,∵AM⊥PD,∴AM.PD=PA.AD.则.在Rt△AEM中,.所以二面角A﹣PD﹣C的大小是.20.(12分)(2007•天津)已知函数f(x)=(x∈R),其中a∈R.(Ⅰ)当a=1时,求曲线y=f(x)在点(2,f(2))处的切线方程;(Ⅱ)当a≠0时,求函数f(x)的单调区间与极值.【分析】(I)把a=1代入,先对函数求导,然后求f(2),根据导数的几何意义可知,该点切线的斜率k=f′(2),从而求出切线方程.(II)先对函数求导,分别解f′(x)>0,f′(x)<0,解得函数的单调区间,根据函数的单调性求函数的极值.【解答】解:(I)解:当a=1时,.又.所以,曲线y=f(x)在点(2,f(2))处的切线方程为,即6x+25y﹣32=0.(II)解:=.由于a≠0,以下分两种情况讨论.(1)当a>0时,令f'(x)=0,得到.当x变化时,f'(x),f (x)的变化情况如下表:x a(a,+∞)f′(x)﹣0+0﹣f(x)↘极小值↗极大值↘所以f(x)在区间,(a,+∞)内为减函数,在区间内为增函数.函数f(x)在处取得极小值,且.函数f(x)在x2=a处取得极大值f(a),且f(a)=1.(2)当a<0时,令f'(x)=0,得到.当x变化时,f'(x),f (x)的变化情况如下表:x(﹣∞,aa)f′(x)+0﹣0+f(x)增极大值减极小值增所以f(x)在区间(﹣∞,a)内为增函数,在区间内为减函数.函数f(x)在x1=a处取得极大值f(a),且f(a)=1.函数f(x)在处取得极小值,且.21.(14分)(2007•天津)在数列{a n}中,a1=2,a n+1=λa n+λn+1+(2﹣λ)2n(n∈N*),其中λ>0.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)求数列{a n}的前n项和S n;(Ⅲ)证明存在k∈N*,使得对任意n∈N*均成立.【分析】(Ⅰ)解法一:由题设条件可猜想出数列{a n}的通项公式为a n=(n﹣1)λn+2n.然后用数学归纳法证明.解法二:由a n=λa n+λn+1+(2﹣λ)2n(n∈N*),λ>0,可知为+1等数列,其公差为1,首项为0.由此可求出数列{a n}的通项公式.(Ⅱ)设T n=λ2+2λ3+3λ4+…+(n﹣2)λn﹣1+(n﹣1)λn,λT n=λ3+2λ4+3λ5+…+(n﹣2)λn+(n﹣1)λn+1.然后用错位相减法进行求解.(Ⅲ)证明:通过分析,推测数列的第一项最大.然后用分析法进行证明.【解答】解:(Ⅰ)解法一:a2=2λ+λ2+(2﹣λ)×2=λ2+22,a3=λ(λ2+22)+λ3+(2﹣λ)×22=2λ3+23,a4=λ(2λ3+23)+λ4+(2﹣λ)×23=3λ4+24.由此可猜想出数列{a n}的通项公式为a n=(n﹣1)λn+2n.以下用数学归纳法证明.(1)当n=1时,a1=2,等式成立.(2)假设当n=k时等式成立,即a k=(k﹣1)λk+2k,=λa k+λk+1+(2﹣λ)2k=λ(k﹣1)λk+λ2k+λk+1+2k+1﹣λ2k=[(k+1)﹣1]λk+1+2k+1.那么,a k+1这就是说,当n=k+1时等式也成立.根据(1)和(2)可知,等式a n=(n﹣1)λn+2n 对任何n∈N*都成立.解法二:由a n=λa n+λn+1+(2﹣λ)2n(n∈N*),λ>0,可得+1,所以为等差数列,其公差为1,首项为0.故,所以数列{a n}的通项公式为a n=(n﹣1)λn+2n.(Ⅱ)解:设T n=λ2+2λ3+3λ4+…+(n﹣2)λn﹣1+(n﹣1)λn①λT n=λ3+2λ4+3λ5+…+(n﹣2)λn+(n﹣1)λn+1.②当λ≠1时,①式减去②式,得(1﹣λ)T n=λ2+λ3+…+λn﹣(n﹣1)λn+1=,.这时数列{a n}的前n项和.当λ=1时,.这时数列{a n}的前n项和.(Ⅲ)证明:通过分析,推测数列的第一项最大.下面证明:.③由λ>0知a n>0.要使③式成立,只要2a n+1<(λ2+4)a n(n≥2).因为(λ2+4)a n=(λ2+4)(n﹣1)λn+(λ2+4)2n>4λ.(n﹣1)λn+4×2n=4(n﹣1)λn+1+2n+2≥2nλn+1+2n+2=2a n+1,n>2.所以③式成立.因此,存在k=1,使得对任意n∈N*均成立.22.(14分)(2007•天津)设椭圆=1(a>b>0)的左、右焦点分别为F1,F2,A是椭圆上的一点,AF2⊥F1F2,原点O到直线AF1的距离为.(I)证明:;(II)设Q1,Q2为椭圆上的两个动点,OQ1⊥OQ2,过原点O作直线Q1Q2的垂线OD,垂足为D,求点D的轨迹方程.【分析】(1)先求得A点的坐标,再求得直线AF1的方程,利用点到直线的距离结合条件得到一个关于a,b的关系式,化简即得;(2)设点D的坐标为(x0,y0).欲求其轨迹方程,即寻找x,y的关系式,由直线Q1Q2的方程和椭圆的方程组成方程组,结合向量的垂直关系即可找到找x,y 的关系式,从而问题解决.【解答】解:(I)由题设AF2⊥F1F2及F1(﹣c,0),F2(c,0),不妨设点A(c,y),其中y>0.由于点A在椭圆上,有,即.解得,从而得到.直线AF1的方程为,整理得b2x﹣2acy+b2c=0.由题设,原点O到直线AF1的距离为,即,将c2=a2﹣b2代入上式并化简得a2=2b2,即.(II)设点D的坐标为(x0,y0).当y0≠0时,由OD⊥Q1Q2知,直线Q1Q2的斜率为,所以直线Q1Q2的方程为,或y=kx+m,其中.点Q1(x1,y1),Q2(x2,y2)的坐标满足方程组将①式代入②式,得x2+2(kx+m)2=2b2.整理得(1+2k2)x2+4kmx+2m2﹣2b2=0.于是,.③由①式得y1y2=(kx1+m)(kx2+m)=k2x1x2+km(x1+x2)+m2==.④由OQ1⊥OQ2知x1x2+y1y2=0.将③式和④式代入得,3m2=2b2(1+k2).将代入上式,整理得.当y0=0时,直线Q1Q2的方程为x=x0.点Q1(x1,y0),Q2(x2,y2)的坐标满足方程组所以.由OQ1⊥OQ2知x1x2+y1y2=0,即,解得这时,点D的坐标仍满足.综上,点D的轨迹方程为.。
2007年天津市六校联考数学试题

2007年天津市六校联考数 学 试 题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150争,考试时间120分钟。
第Ⅰ卷(选择题,共50分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上。
2.选出答案后,用铅笔把答题卡上对应的题目的答案标号涂黑,如需改动,用橡皮擦 干净后,再填涂其它答案,不能答在试卷上。
参考公式:如果事件A 、B 互斥,那么 P(A+B)=P(A)+P(B) 如果事件A 、B 相互独立,那么 P(A·B)=P(A)·P(B) 如果事件A 在一次试验中发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率kn k k n n P P C k P --=)1()(球的表面积公式 24R S π= 其中R 表示球的半径 球的体积公式 334R V π=球 其中R 表示球的半径一、选择题(本大题共10个小题,每小题5分,共50分。
在每小题给出的四个选项中,有且只有一个是正确的) 1.(理)定义运算bc ad db c a -=,复数z 满足i ii z +=11,则复数z 的模为 ( )A .21+B .3C .5D .-21+(文)已知集合}3|12||{}065|{2>-=≤+-=x x B x x x A ,集合,则集合A ∩B=( )A .}32|{≤<x xB .}32|{<≤x xC .}32|{≤≤x xD .}31|{<<-x x2.若抛物线y 2=2px 的焦点与椭圆12622=+y x 的右焦点重合,则p 的值为 ( )A .-2B .2C .-4D .43.(理)22,2,)21(1x x x -成等比数列,命题乙:)3lg(,10lg(,lg ++x x x 成等差数列,则甲是乙的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既非充分也非必要条件(文)在△ABC 中,“0>⋅AC AB ”是“△ABC 为锐角三角形”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既非充分也非必要条件 4.已知a ,b ,c 为三条不同的直线,且⊂a 平面M ,b ⊂平面N ,M ∩N=c ①若a 与b 是异面直线,则c 至少与a ,b 中的一条相交; ②若a 不垂直于c ,则a 与b 一定不垂直。
07年中考全真试题及答案北师
O CA B D E2007年中考数学复习同步检测(1)(圆的基本性质1)一.填空题:1.有长、宽分别为4 cm 、3 cm 的矩形ABCD ,以A 为圆心作圆,若B 、C 、D 至少与一点且至少只有一点在圆内,则圆的半径R 的取值范围是 ;2.圆的一条弦与直径相交成︒30的角,且把直径分为1 cm 和5 cm ,那么这弦的弦心距为 cm ,弦长为 cm ;3.⊙O 的半径为2 cm ,P 为⊙O 内一点,且PO = 1 cm ,则⊙O 过P 点的弦中,最短的弦长为 cm ,它所对的劣弧为 度;4.内接于圆的特殊四边形是 ; 5.如图2,AB 、AC 为⊙O 的两条弦,延长CA 到D ,使AD = AB ; 如果∠ADB =︒30,那么∠BOC = ; 6.一个半径是5cm 的圆,它的一条弦长是6cm ,则弦心距是 ; 7.已知,等边ΔABC 内接于⊙O ,AB=10cm,则⊙O 的半径是 ; 8.一条弦把圆分成2:3两部分,那么这条弦所对的圆心角的度数是 ; 9.已知圆O 的弦AB 经过弦CD 的中点P ,若AP=2cm,CD=8cm,则PB 的长是 ;10.如图(5),弧AC 的度数是040,则_______=∠B ; 11.如图(6),085=∠A ,则________=∠DCE ;12.如图(7),BC AC =,043=∠CAB ,则_________=∠AOB 。
13.已知某圆的半径是6,请写出它的其中一条弦的长度____________。
14.如图(8),弦CD AB //,O Θ的半径为10,cm AB 12=,cm CD 16=,则AB 、CD 之间的距离是___________cm ; 15.如图(9),PO 是直径所在的直线,且PO 平分BPD ∠,AB OE ⊥,CD OF ⊥,则: ①CD AB =;②弧AC 等于弧CD ;③PE PO =;④弧AB 等于弧CD ;⑤PD PB =;其中结论正确的是________________(填序号) 。
天津市中考数学试题及答案(word版).doc
2014年天津市初中毕业生学业考试试卷数 学本试卷分为第Ⅰ卷(选择题)、第Ⅱ卷(非选择题)两部分。
第Ⅰ卷为第1页至第3页,第Ⅱ卷为第4页至第8页。
试卷满分120分。
考试时间100分钟。
答卷前,考生务必将自己的姓名、考生号、考点校、考场号、座位号填写在“答题卡”上,并在规定位置粘贴考试用条形码。
答题时,务必将答案涂写在“答题卡”上,答案答在试卷上无效。
考试结束后,将本试卷和“答题卡”一并交回。
祝各你考试顺利!第Ⅰ卷注意事项:1.每题选出答案后,用2B 铅笔把“答题卡”上对应题目的答案标号的信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号的信息点。
2.本卷共12题,共36分。
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)(1)计算(-6)×(-1)的结果等于(A )6(B )-6 (C )1 (D )-1 (2)cos60o 的值等于(A )21 (B )33 (C )23 (D )3(3)下列标志中,可以看作是轴对称图形的是(A ) (B ) (C ) (D )(4)为让市民出行更加方便,天津市政府大力发展公共交通.2013年天津市公共交通客运量约为1608 000000人次.将1608 000 000用科学记数法表示应为(A )160.8×107 (B )16.08×108 (C )1.608×109 (D )0.1608×1010(5)如图,从左面观察这个立体图形,能得到的平面图形是(A ) (B )(C ) (D )(6)正六边形的边心距为3,则该正六边形的边长是(A )3 (B )2 (C )3 (D )32 (7)如图,AB 是⊙O 的弦,AC 是⊙O 的切线,A 为切点,BC 经过圆心.若∠B =25o ,则∠C 的大小等于(A )20o(B )25o (C )40o (D )50o (8)如图,□ABCD 中,点E 是边AD 的中点,EC 交对角线BD 于点F ,则EF:FC等于(A )3:2(B )3:1 (C )1:1(D )1:2 (9)已知反比例函数x y 10=,当1<x <2时,y 的取值范围是 (A )0<y <5(B )1<y <2 (C )5<y <10 (D )y>10(10)要组织一次排球邀请赛,参赛的每两个队都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,设比赛组织者应邀请x 个队参赛,则x 满足的关系式为(A )()28121=+x x (B )()28121=-x x (C )()281=+x x (D )()281=-x x(11)某公司招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如下表所示:第(5)题第(7)题第(8)题如果公司认为,作为公关人员面试的成绩应该比笔试的成绩更重要,并分别赋予它们6和4的权.公司将录取(A )甲 (B )乙 (C )丙 (D )丁(12)已知二次函数y =ax 2+b x+c (a ≠0)的图象如下图所示,且关于x 的一元二次方程ax 2+bx +c -m =9没有实数根,有下列结论:①b 2-4ac >0;②abc <0;③m >2.其中,正确结论的个数是(A )0(B )1 (C )2 (D )32014年天津市初中毕业生学业考试试卷数 学第Ⅱ卷注意事项:1.用黑色墨水的钢笔或签字笔将答案写在“答题卡”上。
2007年全国初中数学竞赛天津赛区初赛试卷含答案-
2007年全国初中数学竞赛天津赛区初赛试卷一、选择题:每小题5分 1.计算)7103)(32130(-+-+的值等于( )A .67 B.-67 C.20763+ D.20763- 2.若实数x,y ,使得x+y ,x -y,yx,xy 这四个数中的三个数相等,则x y -的值等于( ) A.-21 B.0 C.21 D.233.若实数a,b,c 满足条件cb ac b a ++=++1111,则a,b,c 中,( )A.必有两个数相等B.必有两个数互为相反的数C.必有两个数互为倒数D.每两个数都不等 4.如图在梯形ABCD 中,AD ∥BC ,AD ⊥CD ,BC=CD=2AD,E 是CD 上一点,∠ABE=450,则tan ∠AEB 的值等于( )A.23B.2C.25D.3 5.使用大小相同,表面均为白色和均为红色的若干个小正方体拼接成一个大正方体ABCD--EFGH 。
如果大正方体的对角线AG,BH,CE,DF 上所用的小正方体是表面均为红色的,并且共用了41个,大正方体其余部分用的都是表面均为白色的小正方体,则所用表面均为白色小正方体的个数为( )A.688个B.959个C.1290个D.1687个 6.八年级二班的同学参加社区公益活动----“收集废旧电池”,其中甲组同学平均每人收集17个,乙组同学平均每人收集20个,丙组同学平均每人收集21个,若三个小组共收集了233个废旧电池,则这三个小组共有学生( )A.12人B.13人C.14人D.15人 二、填空题: 7.若反比例函数y=xk的图像与一次函数y=kx+b 的图像相交于A(-2,m),B (5 ,n) 两点,则3a+b 的值等于 。
8.已知实数a,b,c 满足a -b+c=7 ,ab+bc+b+c 2+16=0,则ab的值等于 。
EDCBA9.如图,在△ABC 中,AD 交BC 边于D 点,∠B=450,∠ADC=600,DC=2BD ,则∠C 等于 度。
2024年天津市中考数学试卷(Word版含解析)
2024年天津市中考数学试卷一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算3﹣(﹣3)的结果等于()A.﹣6B.0C.3D.62.如图是一个由5个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.3.估计的值在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间4.在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.B.C.D.5.据2024年4月18日《天津日报》报道,天津市组织开展了第43届“爱鸟周”大型主题宣传活动.据统计,今春过境我市候鸟总数已超过800000只.将数据800000用科学记数法表示应为()A.0.08×107B.0.8×106C.8×105D.80×1046.的值等于()A.0B.1C.D.7.计算的结果等于()A.3B.x C.D.8.若点A(x1,﹣1),B(x2,1),C(x3,5)都在反比例函数的图象上,则x1,x2,x3的大小关系是()A.x1<x2<x3B.x1<x3<x2C.x3<x2<x1D.x2<x1<x39.《孙子算经》是我国古代著名的数学典籍,其中有一道题:“今有木,不知长短.引绳度之,余绳四尺五寸;屈绳度之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x尺,绳子长y尺,则可以列出的方程组为()A.B.C.D.10.如图,Rt△ABC中,∠C=90°,∠B=40°,以点A为圆心,适当长为半径画弧,交AB于点E,交AC于点F;再分别以点E,F为圆心,大于的长为半径画弧,两弧(所在圆的半径相等)在∠BAC 的内部相交于点P;画射线AP,与BC相交于点D,则∠ADC的大小为()A.60°B.65°C.70°D.75°11.如图,△ABC中,∠B=30°,将△ABC绕点C顺时针旋转60°得到△DEC,点A,B的对应点分别为D,E,延长BA交DE于点F,下列结论一定正确的是()A.∠ACB=∠ACD B.AC∥DE C.AB=EF D.BF⊥CE12.从地面竖直向上抛出一小球,小球的高度h(单位:m)与小球的运动时间t(单位:s)之间的关系式是h=30t﹣5t2(0≤t≤6).有下列结论:①小球从抛出到落地需要6s;②小球运动中的高度可以是30m;③小球运动2s时的高度小于运动5s时的高度.其中,正确结论的个数是()A.0B.1C.2D.3二、填空题(本大题共6小题,每小题3分,共18分)13.不透明袋子中装有10个球,其中有3个绿球、4个黑球、3个红球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率为.14.计算x8÷x6的结果为.15.计算的结果为.16.若正比例函数y=kx(k是常数,k≠0)的图象经过第三、第一象限,则k的值可以是(写出一个即可).17.如图,正方形ABCD的边长为,对角线AC,BD相交于点O,点E在CA的延长线上,OE=5,连接DE.(Ⅰ)线段AE的长为;(Ⅱ)若F为DE的中点,则线段AF的长为.18.如图,在每个小正方形的边长为1的网格中,点A,F,G均在格点上.(I)线段AG的长为;(II)点E在水平网格线上,过点A,E,F作圆,经过圆与水平网格线的交点作切线,分别与AE,AF 的延长线相交于点B,C,△ABC中,点M在边BC上,点N在边AB上,点P在边AC上.请用无刻度的直尺,在如图所示的网格中,画出点M,N,P,使△MNP的周长最短,并简要说明点M,N,P 的位置是如何找到的(不要求证明).三、解答题(本大题共7小题,共66分.解答应写出文字说明,演算步骤或推理过程)19.解不等式组请结合题意填空,完成本题的解答.(Ⅰ)解不等式①,得;(Ⅱ)解不等式②,得;(Ⅲ)把不等式①和②的解集在数轴上表示出来;(Ⅳ)原不等式组的解集为.20.为了解某校八年级学生每周参加科学教育的时间(单位:h),随机调查了该校八年级a名学生,根据统计的结果,绘制出如图的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)填空:a的值为,图①中m的值为,统计的这组学生每周参加科学教育的时间数据的众数和中位数分别为和;(Ⅱ)求统计的这组学生每周参加科学教育的时间数据的平均数;(Ⅲ)根据样本数据,若该校八年级共有学生500人,估计该校八年级学生每周参加科学教育的时间是9h的人数约为多少?21.已知△AOB中,∠ABO=30°,AB为⊙O的弦,直线MN与⊙O相切于点C.(Ⅰ)如图①,若AB∥MN,直径CE与AB相交于点D,求∠AOB和∠BCE的大小;(Ⅱ)如图②,若OB∥MN,CG⊥AB,垂足为G,CG与OB相交于点F,OA=3,求线段OF的长.22.综合与实践活动中,要用测角仪测量天津海河上一座桥的桥塔AB的高度(如图①).某学习小组设计了一个方案:如图②,点C,D,E依次在同一条水平直线上,DE=36m,EC⊥AB,垂足为C.在D 处测得桥塔顶部B的仰角(∠CDB)为45°,测得桥塔底部A的俯角(∠CDA)为6°,又在E处测得桥塔顶部B的仰角(∠CEB)为31°.(I)求线段CD的长(结果取整数);(Ⅱ)求桥塔AB的高度(结果取整数).参考数据:tan31°≈0.6,tan6°≈0.1.23.已知张华的家、画社、文化广场依次在同一条直线上,画社离家0.6km,文化广场离家1.5km.张华从家出发,先匀速骑行了4min到画社,在画社停留了15min,之后匀速骑行了6min到文化广场,在文化广场停留6min后,再匀速步行了20min返回家.如图图中x表示时间,y表示离家的距离.图象反映了这个过程中张华离家的距离与时间之间的对应关系.请根据相关信息,回答下列问题:(I)①填表:141330张华离开家的时间/min张华离家的距离/km0.6②填空:张华从文化广场返回家的速度为km/min;③当0≤x≤25时,请直接写出张华离家的距离y关于时间x的函数解析式;(Ⅱ)当张华离开家8min时,他的爸爸也从家出发匀速步行了20min直接到达了文化广场,那么从画社到文化广场的途中(0.6<y<1.5)两人相遇时离家的距离是多少?(直接写出结果即可)24.将一个平行四边形纸片OABC放置在平面直角坐标系中,点O(0,0),点A(3,0),点B,C在第一象限,且OC=2,∠AOC=60°.(Ⅰ)填空:如图①,点C的坐标为,点B的坐标为;(Ⅱ)若P为x轴的正半轴上一动点,过点P作直线l⊥x轴,沿直线l折叠该纸片,折叠后点O的对应点O′落在x轴的正半轴上,点C的对应点为C′.设OP=t.①如图②,若直线l与边CB相交于点Q,当折叠后四边形PO′C′Q与▱OABC重叠部分为五边形时,O′C′与AB相交于点E.试用含有t的式子表示线段BE的长,并直接写出t的取值范围;②设折叠后重叠部分的面积为S,当时,求S的取值范围(直接写出结果即可).25.已知抛物线y=ax2+bx+c(a,b,c为常数,a>0)的顶点为P,且2a+b=0,对称轴与x轴相交于点D,点M(m,1)在抛物线上,m>1,O为坐标原点.(I)当a=1,c=﹣1时,求该抛物线顶点P的坐标;(Ⅱ)当时,求a的值;(Ⅲ)若N是抛物线上的点,且点N在第四象限,∠MDN=90°,DM=DN,点E在线段MN上,点F在线段DN上,,当DE+MF取得最小值为时,求a的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2007年天津市初中毕业生学业考试数学试卷本试卷分为第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷第1页至第2页,第II 卷第3页至第10页.试卷满分120分.考试时间100分钟.第I 卷(选择题 共30分)注意事项:1.答第I 卷前,考生务必将自己的姓名、准考证号,用蓝、黑色墨水的钢笔或圆珠笔填写在“答题卡”上;用2B 铅笔将考试科目对应的信息点涂黑;在指定位置粘贴考试用条形码. 2.答案答在试卷上无效.每小题选出答案后,用2B 铅笔把“答题卡”上对应题目答案的序号的信息点涂黑.如需改动,用橡皮擦干净后,再选涂其他答案. 3.考试结束后,监考人员将试卷和答题卡一并收回.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.sin 45cos 45+的值等于( ) A .2B .312+ C .3 D .12.下列图形中,为轴对称图形的是( )A . B. C. D. 3.顺次连接对角线互相垂直的四边形各边中点,所得到四边形一定是( ) A .梯形B .菱形C .矩形D .正方形 4.下列判断中错误..的是( ) A .有两角和一边对应相等的两个三角形全等 B .有两边和一角对应相等的两个三角形全等C .有两边和其中一边上的中线对应相等的两个三角形全等D .有一边对应相等的两个等边三角形全等 5.已知2a =,则代数式2a aa a a+--的值等于( )A .3-B .342-C .423-D .426.已知关于x 的一元二次方程22(2)(21)10m x m x -+++=有两个不相等的实数根,则m 的取值范围是( ) A .34m >B .34m ≥C .34m >且2m ≠ D .34m ≥且2m ≠7.在梯形ABCD 中,AD BC ∥,对角线AC BD ⊥,且5cm AC =,12cm BD =,则梯形中位线的长等于( ) A .7.5cm B .7cm C .6.5cm D .6cm8.已知,如图BC 与AD 的度数之差为20,弦AB 与CD 交 于点E ,60CEB ∠=,则CAB ∠等于( )A .50B .45C .40D .359.将边长为3cm 的正三角形的各边三等分,以这六个分点为顶点构成一个正六边形,再顺次连接这个正六边形的各边中点,又形成一个新的正六边形,则这个新的正六边形的面积等于( ) A .233cm 4B .293cm 8C .293cm 4D .2273cm 8 10.已知二次函数2y ax bx c =++(0a ≠)的图象 如图所示,有下列5个结论:①0abc >;②b a c <+;③420a b c ++>; ④23c b <;⑤()a b m am b +>+,(1m ≠的实数). 其中正确的结论有( ) A .2个 B .3个 C .4个D .5个第II 卷(非选择题 共90分)注意事项:1.答第II 卷前,考生务必将密封线内的项目和试卷第3页左上角的“座位号”填写清楚. 2.第II 卷共8页,用蓝、黑色墨水的钢笔或圆珠笔直接答在试卷上.二、填空题:本大题共8小题,每小题3分,共24分.请将答案直接填在题中横线上. 11.若分式||11x x --的值为零,则x 的值等于 . 12.不等式组564159104x x x x +>⎧⎨--⎩,≥的解集是 .13.方程26511x x x x ⎛⎫⎛⎫+= ⎪ ⎪--⎝⎭⎝⎭的整数解...是 . 14.如图,ABC △中,90C ∠=,60ABC ∠=,BD 平分ABC ∠,若6AD =,则CD = .ABDEC (第8题图)xy1x =1-O(第10题图)ABCD(第14题图)15.如图,已知两圆外切于点P ,直线AD 依次与两圆相交于点A B C D ,,,.若42BPC ∠=,则APD ∠= (度).16.已知矩形ABCD ,分别以AD 和CD 为一边向矩形外作正三角形ADE 和正三角形CDF ,连接BE 和BF ,则BEBF的值等于 . 17.已知7x y +=且12xy =,则当x y <时,11x y-的值等于 . 18.如图,直线l 经过O 的圆心O ,且与O 交于A B , 两点,点C 在O 上,且30AOC ∠=,点P 是直线l 上的一个动点(与圆心O 不重合),直线CP 与O 相交于点Q . 问:是否存在点P ,使得QP QO =; (用“存在”或“不存在”填空).若存在,满足上述条件的点有几个?并求出相应的OCP ∠的大小;若不存在,请简要说明理由: .三、解答题:本大题共8小题,共66分.解答应写出文字说明、演算步骤或证明过程. 19.(本小题6分)为调查某校九年级学生右眼的视力情况,从中随机抽取了50名学生进行视力检查,检查结果如下表所示: 视力 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1.0 1.2 1.5 人数113434459106(I )求这50名学生右眼视力的众数与中位数;(II )求这50名学生右眼视力的平均值;据此估计该校九年级学生右眼视力的平均值. 20.(本小题8分) 已知反比例函数ky x=的图象与一次函数3y x m =+的图象相交于点(15),. (I )求这两个函数的解析式;(II )求这两个函数图象的另一个交点的坐标.AB C DP1O2O(第15题图)A BCQOPl (第18题图)21.(本小题8分)已知一抛物线与x 轴的交点是(20)A -,,(10)B ,,且经过点(28)C ,. (I )求该抛物线的解析式; (II )求该抛物线的顶点坐标. 22.(本小题8分)如图,O 和O '都经过点A B ,,点P 在BA 延长线上,过P 作O 的割线PCD 交O 于C D ,两点,作O '的切线PE 切O '于点E .若4PC =,8CD =,O 的半径为5. (I )求PE 的长;(II )求COD △的面积.23.(本小题8分) 如图,从山顶A 处看到地面C 点的俯角为60,看到地面D 点的俯角为45,测得1503CD =米,求山高AB .(精确到0.1米,3 1.732≈)24.(本小题8分)注意:为了使同学们更好地解答本题,我们提供了一种解题思路,你可以依照这个思路,填写表格,并完成本题解答的全过程.如果你选用其他的解题方案,此时,不必填写表格,只需按照解答题的一般要求,进行解答即可.甲乙二人同时从张庄出发,步行15千米到李庄.甲比乙每小题多走1千米,结果比乙早到半小时.问二人每小时各走几千米?(I )设乙每小时走x 千米,根据题意,利用速度、时间、路程之间的关系填写下表. (要求:填上适当的代数式,完成表格)速度(千米/时)所用时间(时)所走的路程(千米)甲15 乙x15A B C D P OO ' E AB C D(II )列出方程(组),并求出问题的解. 25.(本小题10分)如图①,AD 是圆O 的直径,BC 切圆O 于点D ,AB AC ,与圆O 相交于点E F ,. (I )求证:AE AB AF AC =;(II )如果将图①中的直线BC 向上平移与圆O 相交得图②,或向下平移得图③,此时,AE AB AF AC =是否仍成立?若成立,请证明;若不成立,说明理由.26.(本小题10分)已知关于x 的一元二次方程2x bx c x ++=有两个实数根12x x ,,且满足10x >,211x x ->.(I )试证明0c >; (II )证明22(2)b b c >+;(III )对于二次函数2y x bx c =++,若自变量取值为0x ,其对应的函数值为0y ,则当010x x <<时,试比较0y 与1x 的大小.ABCD E FO 图①ABCD E FO图②D 'AB C DEFO图③D '2007年天津市初中毕业生学业考试数学试题参考答案及评分标准一、选择题:本大题共10小题,每小题3分,共30分.1.A 2.D 3.C 4.B 5.A 6.C 7.C 8.D 9.B 10.B 二、填空题:本大题共8小题,每小题3分,共24分. 11.1- 12.61x -<≤ 13.2 14.3 15.138 16.1 17.11218.①存在;②符合条件的点P 共有3个:当点P 在线段AO 上时,40OCP ∠=;当点P 在OB 的延长线上时,20OCP ∠=;当点P 在OA 的延长线上时,100OCP ∠=.三、解答题:本大题共8小题,共66分. 19.(本小题满分6分) 解:(I )在这50个数据中,1.2出现了10次,出现的次数最多,即这组数据的众数是1.2;将这50个数据从小到大的顺序排列,其中第25个数是0.8,第26个数是1.0,∴这组数据的中位数是0.9. ································································································· 3分 (II )这50个数据的平均数是1(0.110.210.330.440.530.640.740.85501.09 1.210 1.56)x =⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯ 43.50.8750==. ···················································································································· 5分 ∴这50名学生右眼视力的平均值为0.87.据此可估计该年级学生右眼视力的平均值为0.87. ····························································· 6分 20.(本小题满分8分) 解:(I )点(15)A ,在反比例函数ky x=的图象上, 有51k=,即5k =. ∴反比例函数的解析式为5y x=. ························································································ 3分 又点(15)A ,在一次函数3y x m =+的图象上, 有53m =+,2m ∴=.∴一次函数的解析式为32y x =+. ···················································································· 6分 (II )由题意可得532y x y x ⎧=⎪⎨⎪=+⎩,.解得1115x y =⎧⎨=⎩,.或22533x y ⎧=-⎪⎨⎪=-⎩,. ∴这两个函数图象的另一个交点的坐标为533⎛⎫-- ⎪⎝⎭,. ······················································ 8分 21.(本小题满分8分)解:(I )设这个抛物线的解析式为2y ax bx c =++.由已知,抛物线过(20)A -,,(10)B ,,(28)C ,三点,得 4200428a b c a b c a b c -+=⎧⎪++=⎨⎪++=⎩,,. ··················································································································· 3分 解这个方程组,得224a b c ===-,,.∴所求抛物线的解析式为2224y x x =+-. ······································································ 6分 (II )222192242(2)222y x x x x x ⎛⎫=+-=+-=+- ⎪⎝⎭.∴该抛物线的顶点坐标为1922⎛⎫-- ⎪⎝⎭,.················································································ 8分 22.(本小题满分8分)解:(I )PD PB ,分别交O 于C D ,和A B ,, 根据割线定理得PA PB PC PD =. ···················································· 2分又PE 为O '的切线,PAB 为O '的割线, 根据切割线定理得2PE PA PB =, ······················································· 4分即24(48)48PE PC PD ==⨯+=.43PE ∴=. ······················································································································· 5分 (II )在O 中过O 点作OF CD ⊥,垂足为F .根据垂径定理知OF 平分弦CD ,即142CF CD ==. ····················································· 6分在Rt OFC △中,22222549OF OC CF =-=-=,3OF ∴=.A BC DP OO 'EF11831222COD S CD OF ∴==⨯⨯=△个面积单位. ··························································· 8分23.(本小题满分8分)解:由已知,可得45ADB ∠=,60ACB ∠=, ······ 2分∴在Rt ABD △中,DB AB =.在Rt ABC △中,cot 60CB AB =.DB DC CB =+,cot 60AB DC AB ∴=+. ································································································· 5分1503225(31)1cot 60313DC AB ∴===+--········································································ 7分 614.3≈(米).答:山高约614.3米. ··········································································································· 8分 24.(本小题满分8分) 解:(I )速度(千米/时)所用时间(时)所走的路程(千米)甲 1x +151x + 15 乙x15x15···························································································· 3分 (II )根据题意,列方程得1515112x x -=+; ········································································ 5分 整理得2300x x +-=.解这个方程,得1256x x ==-,. ······················································································· 7分 经检验,1x =5,26x =-都是原方程的根,但速度为负数不合题意,所以只取5x =,此时16x +=.答:甲每小时走6千米,乙每小时走5千米. ····································································· 8分 25.(本小题满分10分)解:(I )如图①,连接DE , AD 是圆O 的直径, ∴90AED ∠=. ··················································· 1分 又BC 切圆O 于点D ,AD BC ∴⊥,90ADB ∠=. ······························ 2分在Rt AED △和Rt ADB △中,ABCD45 60ABC D E FO 图①EAD DAB ∠=∠,∴Rt AED △∽Rt ADB △. ······························································································ 3分 AE AD AD AB∴=,即2AE AB AD =. ···················································································· 4分 同理连接DF ,可证Rt Rt AFD ADC △∽△,2AF AC AD =.AE AB AF AC ∴=. ········································································································· 5分 (II )AE AB AF AC ∴=仍然成立.如图②,连接DE ,因为BC 在上下平移时始终与AD 垂直,设垂足为D ',则90AD B '∠=. ······················································· 7分AD 是圆O 的直径,90AED ∴∠=.又D AB EAD '∠=∠,Rt Rt AD B AED '∴△∽△. ····································· 8分AB AD AD AE'∴=,AE AB AD AD '=. 同理AF AC AD AD '=.AE AB AF AC ∴=. ········································································································· 9分 同理可证,当直线BC 向下平移与圆O 相离如图③时, AE AB AF AC =仍然成立. ··························································································· 10分 26.(本小题满分10分) 解:(I )将已知的一元二次方程化为一般形式, 即2(1)0x b x c +-+=.12x x ,是该方程的两个实数根,∴12(1)x x b +=--,12x x c =. ······················································································· 1分 而10x >,2110x x >+>,0c ∴>. ································································································································ 2分(II )22212112()()4x x x x x x -=+-2(1)4b c =--2241b b c =--+.………………………………………………………3分211x x ->,221()1x x ∴->. ··················································································································· 4分 于是22411b b c --+>,即2240b b c -->.ABC D E FO 图② D '∴22(2)b b c >+. ················································································································ 5分 (III )当010x x <<时,有01y x >.22000111y x bx c x bx c x =++++=,, ∴22010011()y x x bx c x bx c -=++-++0101()()x x x x b =-++. ····················································································· 7分010x x <<,∴010x x -<.又211x x ->,∴211x x >+,12121x x x +>+.12(1)x x b +=--,∴1(1)21b x -->+.于是120x b +<.010x x <<,∴010x x b ++<.················································································································· 9分 由于010100x x x x b -<++<,,∴0101()()0x x x x b -++>,即010y x ->.∴当010x x <<时,有01y x >. ························································································ 10分。