经济数学第1章所有习题及测试题详细解答

合集下载

经济数学1参考答案

经济数学1参考答案
11、
A. B. C. D. 参考答案: C
12、
A. k=0 B. k=1 C. k=2 D. -1/2 参考答案: C
13、
A. (n+1)阶无穷小 B. n阶无穷小 C. 同阶无穷小 D. 高阶无穷小 参考答案: A
14、
A. 不含有对数函数 B. 含有反三角函数 C. 一定是初等函数 D. 一定是有理函数 参考答案: C
一、单项选择题
1、
A. л B. 2л C. 4л D. 6л 参考答案: C
2、
A. -1 B. 0 C. 1 D. 不存在 参考答案: C
3、
A. 1 B. 2 C. 6 D. 1/6 参考答案: C
4、
A.
B. C. D. 参考答案: B
5、
A. B. C. D. 参考答案: C
6、
A. 5/6 B. 1/2 C. -1/2 D. 1 参考答案: A
A. [0,л] B. (0,л) C. [-л/4,л/4] D. (-л/4,л/4) 参考答案: C
26、 若函数f(x)在(a,b)内存在原函数,则原函数有( )
A. 一个 B. 两个 C. 无穷多个 D. 都不对 参考答案: C
27、
A. 必要条件 B. 充分条件 C. 充分必要条件 D. 无关条件 参考答案: A
7、
A.
B.
C. D.
参考答案: B
8、 若函数f(x)在(a,b)内存在原函数,则原函数有( )
A. 一个 B. 两个 C. 无. 参考答案: B
10、 数列有界是数列收敛的( )
A. 充分条件 B. 必要条件 C. 充要条件
D. 既非充分也非必要 参考答案: B

经济数学 第一章

经济数学     第一章
(10)函数 的反函数是 ,它的图像与 的图像关于 对称。
3. 选择题
(1)函数 的定义域是( D )
(A) (2, +∞) (B) [2, +∞]
(C) (﹣∞,3)∪(3, +∞) (D) [2 ,3]∪(3, +∞)
解:
11. 已知函数 ,求 , , 。
解:令 ,则 ,代入 ,可知 ,即 , , 。
12. 已知函数 ,求 的定义域。
解:由于 ,则 的定义域为 。
练习题1.3
1. 构成成本函数的两部分是固定成本和可变成本。
2. 收益函数的自变量指产品的销量,而成本函数的自变量是产品的产量。
3. 利润函数的自变量是产品的销量。
4. 需求函数的自变量是价格。
5. 需求函数不是单调增加函数,是单调减少函数。
6. 供给函数是单调增加函数。
复习题 一
1. 判断题
( √ )(1)y = 是基本初等函数。
( )(2)奇函数与偶函数的和是奇函数。
( )(3)设 , ,这两个函数可以复合成一个函数 。
(2)函数 在区间 (0, 1) 内( D )
(A) 单调增加 (B) 单调减少
(C) 不增不减 (D) 有增有减
(3)下列函数中是,是奇函数的是( C )
(A) (B)
(C) (D)
( √ )(4)函数 的定义域是 且
( )(5)函数 在 内无界。
( )(6)函数 在 内无界。
( )(7) 是奇函数。
( )(8) 与 是相同的函数。
( )(9)函数 是奇函数。
( )(10)设 ,且 ,则 的定义域是 。

经济数学第一章典型例题与综合练习

经济数学第一章典型例题与综合练习

经济数学基础 第一章 函数第一章 典型例题与综合练习第一节 典型例题一、函数的概念例1求函数24)1ln(1)(x x x f -+-=的定义域.解:要使函数有意义,必须⎪⎩⎪⎨⎧≥->-≠-04010)1ln(2x x x ,即⎪⎩⎪⎨⎧≤≤->≠2212x x x故定义域 {}21|<<=x x D例2求函数⎩⎨⎧≤<+<-=20 520 32)(2x x x x x f 的定义域. 解:分段函数的定义域是自变量x 取值的各个区间的并集,即{}20}0{≤<<x x x x ,亦即{}02≠≤=x x x D 且.例3已知函数f (x +1)=x 2+4x -3,求f (x ),)1(xf ,f (0),f (1).解方法一:f (x )=f ((x -1)+1)=(x -1)2+4(x -1)-3=x 2-2x +1+4x -4-3=x 2+2x -6;)1(x f =2)1(x +2)1(x -6=6212-+x x=22621x x x -+;经济数学基础 第一章 函数f (0)=02+20-6=-6;f (x )=12+21-6=-3方法二:将x +1看作一个变量,得f (x )=x 2+2x -6,后面的作法同方法一,分别得出22621)1(x x x x f -+=,3)1(,6)0(-=-=f f例4判断函数f (x )=log 0.5(x 2+1)的单调性.解:易知函数f (x )=log 0.5(x 2+1)为偶函数,偶函数的图形关于y 轴对称,故只需讨论x >0时函数的单调性.对任意x 1>x 2>0,有x 12+1>x 22+1因为对数之底0.5<1,此时对数函数单调减少,故 log 0.5(x 12+1)<log 0.5(x 22+1),即f (x 1)<f (x 2)由单调性定义可知当x >0时,f (x )=log 0.5(x 2+1)是单调减函数.再由偶函数的性质可知当x <0时,f (x )=log 0.5(x 2+1)是单调增函数.因此函数f (x )=log 0.5(x 2+1)在(-∞,0)上单调增加,在(0,+∞)上单调减少.例5设函数f (x )和g (x )都是奇函数,试证f (x )·g (x )是偶函数. 证明:已知f (x )和g (x )都是奇函数,由定义可知,对任意x ,有f (-x )=-f (x );g (-x )=-g (x ),上两个等式的左右端分别相乘得 f (-x )·g (-x )=(-f (x ))·(-g (x ))=f (x )·g (x ) 即对任意x 有f (-x )·g (-x )=f (x )·g (x ) 由定义可知f (x )·g (x )是偶函数.二、函数的运算例1将下列初等函数分解为基本初等函数的四则运算或复合运算:经济数学基础第一章函数(1)y=ln(tan x21+);(2)y=e x2cos2x解:(1)y=ln u,u=tan v,v=w,w=x2+1其中y,u,v作为中间变量u,v,w的函数都是基本初等函数,而w是幂函数x2与常数函数1的和.(2) y=e u v2,u=x2,v=cos xy是指数函数e u和幂函数v2的乘积,u,v为中间变量.三、经济分析中的常见函数例1某种产品的需求函数为q d=100-2p,供给函数为q s=10p-8,求该产品的市场均衡价格和市场均衡数量.解:由100-2p=10p-8;移项整理得12p=108,故p0=9因q0=100-2p0,故q0=82即该产品的市场均衡价格为9,市场均衡数量为82.例2已知生产某种产品的成本函数为C(q)=80+2q,试求生产该产品的固定成本,并求当产量q为50时的平均成本.解:固定成本就是当产量为零时的总成本,设为c0,有c0=C(0)=80因为平均成本为C=C q q ()所以C(50)=C(50)50=8025050+⨯=3.6即生产该产品的固定成本为80,产量q为50时的平均成本为3.6.经济数学基础 第一章 函数例3已知某厂生产某种产品的成本函数为C (q )=500+2q (元),其中q 为该产品的产量,如果该产品的售价定为每件6元,试求:(1)生产200件该产品时的利润和平均利润;(2)求生产该产品的盈亏平衡点.解(1)已知C (q )=500+2q (元) 又由题意知收入函数为R (q )=6q因此,利润函数为L (q )=R (q )-C (q )=6q -(500+2q )=4q -500 (元)又因该产品的平均利润函数为L =L q q ()=4-500q (元件)生产200件该产品时的利润为L (200)=4×200-500=300(元)而此时平均利润为L =4-500200=1.5(元件)即生产200件该产品时的利润为300元,平均利润为每件1.5元. (2)利用L (q )=0得4q -500=0解得q 0=125 ,(件),即盈亏平衡点为125件.第一节 典型例题一、填空题1. 函数y =41--xx lg()的定义域是 .2. 函数f (x +1) = x 2+2x -5,则f (x ) = . 3. 函数y = x 2-6x +10的单调区间是 . 4. 设f (u )=u 2+1,g (x )=x+11,则f (g (2)) = .经济数学基础 第一章 函数5. 如果某商品的需求函数是q d =25-2 p ,供给函数是q s =3p -12,那么该商品的市场均衡价格是 .6. 已知某产品的成本函数为C (q )=0.2q 2+4q +294,该产品的需求函数为q =180-4 p ,该产品的利润函数为 .7. 厂家生产某种产品的固定成本是18000元,而可变成本是总收入的40,若厂家以每件30元的价格出售该产品,则生产该产品的盈亏平衡点是 .1.(1,2)∪(2,4]; 2.x 2-6; 3.(-,3)和(3,+);4.910;5.7.4;6.L (q )=41q -0.45q 2-294;7.1000件二、单选题1.设f (x )=log a x ,则( )成立.(A)f (x )·f (y )=f (x +y );(B)f (x )+f (y )=f (x +y ) (C)f (x ·y )=f (x )·f (y );(D)f (x ·y )=f (x )+f (y ) 2.下列各函数对中,( )中的两个函数相等.(A)f (x )=sin 2x +cos 2x ,g (x )=1;(B)f (x )=lg x 2,g (x )=2lg x ;(C)f (x )=(x )2,g (x )=x ;(D)f (x )=112--x x ,g (x )=x +13.下列函数中,( )是奇函数.(A)y =x 3+1;(B)y =2x x a a -+;(C)y =x x -+1ln(2;(D) y =)2sin(π+x4.下列函数中,( )不是基本初等函数. (A)y =31x ;(B)y =lg(1-x );(C)y =x )101(;(D)y =1085.设f (x )=x1,则f (f (x ))=( ).经济数学基础 第一章 函数(A)x 1;(B)21x;(C)x ;(D) x 21.D ;2.A ;3.C ;4.B ;5.C三、多选题1.设f (x )=x x x x x x +-∞-+∞⎧⎨⎪⎩⎪20202223<<≤<≤<()则( )成立.(A)f (-1)=f (0);(B)f (0)=f (1);(C)f (-1)=f (3);(D)f (-3)=f (3) 2.设f (x )=a x (a0,a1),则等式( )成立.(A)f (x )+f (y )=f (x +y );(B)f (x )·f (y )=f (x +y ); (C))()()(yxf y f x f =;(D))()()(y x f y F x f -= 3.下列函数中( )是偶函数.(A)y =x 3sin x ;(B)y =2x x a a -+;(C)y =e x 2;(D)y =5+cos x4.下列结论中( )是正确的.(A)基本初等函数都是单调函数;(B)偶函数的图形关于y 轴对称 (C)奇函数的图形关于坐标原点对称;(D) 周期函数都是有界函数 5.指数函数y =a x (a0,a1)满足( ).(A)图形过点(0,1);(B)是单调函数;(C)是有界函数;(D)函数值都大于零 6.设C (q )是成本函数,R (q )是收入函数,L (q )是利润函数,则盈亏平衡点是方程( )的解.(A)C (q )+R (q )=0;(B)L (q )=0;(C) R (q )-C (q )=0;(D)L (q )-C (q )=0 1.AC ;2.BD ;3.ABCD ;4.BC ;5.ABD ;6.BC经济数学基础 第一章 函数四、配伍题1.(A)函数f (x )=e sin x ;①在区间(-,1)是单调减少的(B)函数f (x )=x 2-2x +5;②是偶函数 (C)函数f (x )=x 3sin x +6;③是有界函数 2.(A)函数f (x )=2tan x ;①是奇函数(B)函数f (x )=cos2010x x x x-∞++∞⎧⎨⎩<<≤<e ;②是以为周期的函数(C)函数f (x )=a x-a -x;③满足f (0)=2 1.A ③;B ①;C ②;2.A ②;B ③;C ①;五、是非题1.函数y =ln x 3与函数y =3ln x 是相同的.( )2.设ab c ,若函数f (x )在(a ,b ]和(b ,c )上都是单调增加的,则f (x )在(a ,c )上也是单调增加的.( )3.若函数f (x )是定义在(-l ,l )(l0)上的函数,则有(1)f (x )+f (-x )是偶函数( );(2)f (x )-f (-x )是奇函数( ). 4.初等函数是由基本初等函数经复合而得到的.( ) 5. 分段函数不一定是初等函数.( )6. 利润函数L (q )是销售量q 的单调增加函数.( )1.√ ; 2.× ; 3.(1) √;(2) √ ; 4.× ; 5.√ ; 6.×六、计算题1.求函数y =x x 26--的定义域.2.设函数f (x )=1001412-∞-+∞⎧⎨⎪⎩⎪<<≤<≤<x x x x x e经济数学基础 第一章 函数求f (-1),f (21),f (1)和f (2). 3.求函数y =ln(4+3x -x 2)的定义域.4.设函数f (u )的定义域为[0,1],求f (ln x )的定义域.5.将下列函数写成较简单函数的复合形式 (1)y =ex 21+;(2)y =cossin 2x 36.已知某产品的需求函数是q d =50-10 p ,供给函数是q s =10p -10,求该产品的市场均衡价格和市场均衡数量.7.已知厂家生产某种产品的成本函数为C (q )=50+3q ,收入函数为R (q )=5q ,(1)求该产品的平均利润;(2)求该产品的盈亏平衡点.8.某商品的成本函数为C (q )=2q 2-4q +27,供给函数为q =p -8,(1)求该商品的利润函数;(2)说明该商品的盈亏情况.1.函数的定义域为),3[]2,(∞+--∞ ;2.f (-1)=1;f (21)=e ;f (1)=3;f (2)=0;3.(-,4);4.[1,e];5.(1)y =e u ;u =v ;v =x 2+1;(其中y ,u 作为中间变量u ,v 的函数都是基本初等函数,而v 是幂函数x 2与常数函数1的和.);(2)y =cos u ;u =v 2;v =sin w ;w =x 3;(其中y ,u ,v ,w 分别作为中间变量和自变量u ,v ,w ,x 的函数都是基本初等函数.);6.市场均衡价格为p 0=3,市场均衡数量为q 0=20; 7.(1)L =q502-;(2)q 0=25.经济数学基础第一章函数8.(1)L(q)=12q-q2-27;(2)由L(q)=(q-3)(9-q)可以分析出,当3<q<9时盈利,当q<3或q>9时亏损,当q=3或q=9时盈亏平衡.七、证明题1.试证:两个单调增函数之和仍是单调增函数.2.试证:奇函数与偶函数的乘积是奇函数.3.试证:若奇函数f (x)在原点有定义,则f (0)=0.1.证明:设f1(x), f2(x)都是单调增函数.令h(x)=f1(x)+f2(x),对任意x1<x2有f1(x1)< f1(x2),f2(x1)<f2(x2)故h(x1)=f1(x1)+f2(x1)<f1(x2)+f2(x2)=h(x2)即h(x1)<h(x2),由此可知h(x)是单调增函数.2.证明:设f1(x)是奇函数,f2(x)是偶函数.令h(x)=f1(x)·f2(x),对任意x有f1(-x)=-f1(x),f2(-x)=f2(x)故h(-x)=f1(-x)·f2(-x)=-f1(x)·f2(x)=-h(x)即h(-x)=-h(x),由此可知h(x) 是奇函数.3.证明:已知f (x)是奇函数,对任意x有f(-x)=-f(x)令x=0代入上式得f(-0)=-f(0)即f(0)=-f(0),由此得出f(0)=0.。

《经济数学基础》习题答案及试卷(附答案)

《经济数学基础》习题答案及试卷(附答案)

习题解答第一章 经济活动中的函数关系分析实训一(A )1.填空题:(1)(,2][2,)-∞-+∞ ; (2)()3,5; (3)1x; (4)2x e ;2x e ; (5)473x -,提示:由()()47433433g f x x x =+=+-⎡⎤⎣⎦,所以()473x g x -=.2.(1)tan(2)y x =;(2)(3)y=;(4)y=lg(sin 2)x .3.(1)cos y u =,1xu e =-; (2)ln y u =,222u x x =-+;(3)y =1u x =+;(4)y lg u v =,v =实训一(B )1.由已知可知2110x -<-<,得到201x <<,即定义域为()()1,00,1- .2.由()21f x x -=,可得()()2111f x x -=-+,所以()()21f x x =+.也可令1x t -=.3.(1)u y e =,sin u v =,2v x =;(2)log uv ay =,21u x =+,sin v w =,2w x =. 4. ()()()log log log a a a f x f y x y xy f xy +=+==;()()log log log a a axx f x f y x y f y y ⎛⎫-=-== ⎪⎝⎭. 实训二 (A )1.填空题:(1)y =(2)[]1,3-; (3)2π-,4π; (4)12,π. 2.(1)⨯;(2)⨯;(3)⨯;(4)√.3.(1)由()cos 21y x =+,解得21arccos x y +=,()1arccos 12x y =-, 所以,()()11arccos 12fx x -=-.定义域:[]1,1x ∈-;值域:11,22y π-⎡⎤∈-⎢⎥⎣⎦(2)由()1ln 2y x =++,解得12y x e -+=,12y x e -=-,所以,()112x fx e --=-定义域:(),x ∈-∞+∞;值域:()2,y ∈-+∞ 4.【水面波纹的面积】设面积为S (2cm ),时间为t (s ),则()22502500S t t ππ==【仪器初值】()0.04200.800208986.58Q Q e Q e -⨯-===解得0.808986.582000Q e =≈.实训二(B )1.由()x a f x x b +=+,解得反函数为()11a bx f x x --=-. 由已知()1x a f x x b -+=+,可得1a bx x a x x b-+=-+,相比较,可得a 为任意实数,1b =-.2.由()ln x x ϕ=,()21ln 3g x x ϕ=++⎡⎤⎣⎦,可得()221ln 3ln 3x x g x e e e ϕ+=⋅⋅=⎡⎤⎣⎦所以,()213x g x e+=.实训三【商品进货费用】 设批次为x ,由题意: 库存费:11250030000242C x x=⋅⋅=; 订货费:2100C x =. 【原料采购费用】设批量为x ,库存费用为1C ,进货费用为2C ,进货总费用为12C C C =+.1122C x x=⋅⋅= 23200640000200C xx=⋅=所以进货总费用为:12640000C C C x x=+=+. 【商品销售问题】设需求函数关系式为:d Q ap b =+,其中p 为定价. 由已知可得:1000070700073a ba b=+⎧⎨=+⎩,解得1000a =-,80000b =,所以100080000d Q p =-+; 供给函数为:1003000s Q p =+平衡状态下:价格70p =;需求量10000d Q =. 【商品盈亏问题】设()()()()2015200052000L x R x C x x x x =-=-+=-.()6001000L =; 无盈亏产量:()0L x =,解得400x =. 【供给函数】答案:1052PQ =+⋅. 【总成本与平均成本】总成本()1306C Q Q =+,[]0,100Q ∈. 平均成本()13061306Q C Q Q Q+==+,[]0,100Q ∈.第一章自测题一、填空题1、[2,1)(1,1)(1,)---+∞2、(,)-∞+∞3、(,1)a a --4、23x x -5、2ln(1)x -6、arcsin 2x7、cos(ln )x8、2142R Q Q =-+9、22()2505;()6248100R x x x L x x x =-=-+- 10、6P = 二、选择题1、C2、B3、B4、D5、C三、计算解答题1、(1)22log , 1y u u x ==+(2)1x y u e ==+ 2、1()1 , ()1f x x f x x -=+=- 四、应用题1、(1) 6 , 8P Q == (2) 3.5 , 3P Q == (3) 6.5 , 7P Q ==2、(1)()10200C x x =+,()200()10C x C x x x==+ (2)()15R x x =(3)()()()5200L x R x C x x =-=-,无盈亏点:40x =五、证明题(略)第二章 极限与变化趋势分析实训一(A )1.(1)×;(2)√;(3)×;(4)×;(5)√. 2.(1)收敛,且lim 0n n x →∞=;(2)发散,lim n n x →∞=∞;(3)收敛,且lim 2n n x →∞=;(4)发散.3.(1)收敛,且lim 2x y →∞=;(2)收敛,且0lim 1x y →=;(3)收敛,且lim 1x y →+∞=;(4)发散.【产品需求量的变化趋势】lim lim 0t t t Q e -→+∞→+∞==.实训一(B )(1)无穷大;(2)无穷大;(3)无穷大;(4)无穷大. 【人影长度】越靠近路灯,影子长度越短,越趋向于0.实训二 (A )1.填空题(1)5;(2)2;(3)1;(4)13;(5)∞;(6)∞;(7)2. 2.(1)()()()()2211111112lim lim lim 21121213x x x x x x x x x x x x →→→-+-+===---++; (2)(222211lim2x x x x x x →→→===--;(3)()()2322000222lim lim lim 211x x x x x x x x x x x x x →→→---===---; (4)()()211121111lim lim lim 111112x x x x x x x x x →→→--⎛⎫-===-⎪---++⎝⎭. 3.(1)222112lim lim 2111x x x x x x x →+∞→+∞-⎛⎫-==- ⎪+--⎝⎭; (2)()()()1121lim lim lim 22222222n n n n n n n n n n n n →∞→∞→∞⎛⎫++++-⎛⎫-=-==- ⎪⎪ ⎪+++⎝⎭⎝⎭. 【污染治理问题】由题意可知,该问题为等比级数问题,首项为a ,公比为45,则设n 周后所剩污染物为n a ,则45nn a a ⎛⎫= ⎪⎝⎭,因为4lim 05nn a →∞⎛⎫= ⎪⎝⎭,所以,可以确定随着时间的推移能将污染物排除干净.【谣言传播】 (1)1lim (t)lim11ktt t P ae -→∞→∞==+;(2)121(t)0.8110t P e-==+,可解得2ln 407.38t =≈.实训二(B )1.填空题(1)32π-; (2)0;0.(无穷小与有界函数的乘积为无穷小)(3)0a =,2b =-.2.(1)()3320lim3h x h x x h→+-=;(2)442x x x →→→===.3.由()3lim 30x x →-=,且232lim 43x x x kx →-+=-,可得()23lim 20x x x k →-+=,解得3k =-.4.由题意可知()()21116lim lim 511x x x x x ax bx x→→--++==--,可得7a =-,6b =.实训三 (A )1.填空题(1)1e -;(2)3e -;(3)e ;(4)e ;(5)3k =;(6)5050.1230⨯⨯=万元,()55010.125038.1⨯+-=万元,50.125041.1e ⨯=万元. 2.(1)6e -;(2)1e -;(3)2e -;(4)01e =. 3.(1)0.042003 6.68rtPe e ⨯==万元; 2.25o P =万元.(2)24.38t p =万元;24.43t p =万元.实训三(B )1.(1)(()0111lim 1lim 1lim 11x x x x x x e x x x --→∞→∞→∞⎡⎤⎛⎛⎫⎛⎫-=-=-==⎢⎥⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦;(2)()15lim 15xx x x e →→∞=+=;(3)()1111111lim lim 11xxx x xx e ---→→=+-=;(4)()()()1000ln 121limlim ln 12limln 12x x x x x x x xx →→→+=+=+ ()()112limln 12lnlim 12ln 2x xx x x x e →→=+=+==.2.322lim lim 122x xc x x x c c e e x c x c →∞→∞+⎛⎫⎛⎫=+== ⎪ ⎪--⎝⎭⎝⎭,所以3c =. 实训四 (A )1.填空题 (1)(]0,3;(2)()243,110,1x x x f x x ⎧-+≤-=⎨>⎩;(3)()0lim 1x f x -→=-,()0lim 0x f x +→=,()0lim x f x →不存在; (4)()(),22,-∞--+∞ ; (5)1x =,2x =;(6)1k =.2.图略,()0lim 1x f x -→=,()0lim 0x f x +→=,()0lim x f x →不存在. 3.()()1lim 11x f x f -→==,()1lim 2x f x +→=,因为()()11lim lim x x f x f x -+→→≠,所以()f x 在1x =处不连续.【个人所得税计算】个人所得税的起征点为月收入3500元.850035005000-=,50000.2555455⨯-=;1200035008500-=,85000.25551145⨯-=.【出租车费用】图略,()8, 322, 3836, 8x f x x x x x ≤⎧⎪=+<≤⎨⎪->⎩.实训四 (B )1.图略,()()0lim 10x f x f -→=-=,()0lim 0x f x +→=,因为()()11lim lim x x f x f x -+→→≠,所以()f x 在0x =处不连续.2.由连续的定义可知:()()220lim 1xx k f x e →==+=.3.因为()01f =,()01lim sin00x x f x→=≠(无穷小与有界函数的乘积), 所以0x =为第一类的可去间断点.第二章自测题一、填空题 1、1- 2、1 3、12- 4、345、221,02,0x x x x ⎧+=⎪⎨≠⎪⎩6、1-7、100 ; 0 8、0.035; 5.15e(万)(万)二、选择题1、C2、A3、C4、A5、B 三、计算解答题1、(1)原式=211(1)1 lim lim0(1)(1)1x xx xx x x→→--==+-+(2)原式=lim lim x x=1lim2x==-(3)设1xe t-=,则ln(1)x t=+,0x→时,0t→,原式=10011lim lim1ln(1)ln(1)limln(1)t ttttt ttt→→→==+⋅++1111lnln[lim(1)]ttet→===+(4)原式=sin[lim sin[limx x→+∞=s i n[l]s i n00x===2、(0)2f=00l i m()l) x x xf x---→→→==00lim lim(12x x--→→==+=00lim()lim(2)2x xf x x++→→=+=lim()2(0)xf x f→∴==()f x∴在0x=点连续,从而()f x在(,)-∞+∞内连续.四、应用题第三章经济最优化问题分析实训一(A )1.填空题(1)45x ; (2)2313x -; (3)23x ; (4)5232x --;(5)2ln 2x ; (6)1ln10x ; (7)0; (8)0.2.2log y x =,1ln 2y x '=.212ln 2x y ='=,122ln 2x y ='=.3.(1)()141y x -=-,即43y x =-; (2)()222y x +=--,即22y x =-+; (3)cos y x '=,312x k y π='==,切线方程为123y x π⎛⎫=- ⎪⎝⎭,即126y x π=-. 实训一(B )1.()()()20001sin010limlim lim sin 00x x x x f x f x f x x x x→→→-'====-.2.()()()()000002lim h f x h f x f x h f x h →+-+--()()()()0000022lim2h f x h f x hh f x h f x h →+-=+--()()()()00000022limlim 12h h f x h f x hh f x h f x h →→+-=⋅=+--. 其中()()()00002lim2h f x h f x f x h→+-'=,()()()()()00000021limh h f x f x h f x f x h f x →='+----⎡⎤⎡⎤⎣⎦⎣⎦. 3.因为3,02⎛⎫⎪⎝⎭不在21y x =上,不是切点.设过点3,02⎛⎫⎪⎝⎭与21y x =相切的切线的切点坐标为21,a a ⎛⎫ ⎪⎝⎭,则切点为21,a a ⎛⎫ ⎪⎝⎭的切线方程为:()2312Y X a a a -=--,有已知3,02⎛⎫ ⎪⎝⎭在切线上,带入可得1a =,所以切线方程为:()121y x -=--,即23y x =-+.实训二 (A )1.(1)223146y x x x '=+-; (2)11'ln n n y nx x x --=+; (3)21'41y x x =++; (4)2cosx cosx sinx'(x 1)x y +-=+. 2.(1)22'1xy x =+; (2)22'2sin3x 3cos3x x x y e e =+; (3)'y = (4)22sec cos122'csc sinx 2tan 2cos sin222x x y x x x x ====.3.(1)''2y =; (2)''2x x y e xe --=-+(3)222222(1x )2(2x)''224(1x )x y x x --+-==-+--; (4)2322222(1x)2''2arctanx 1(1x )x x x y x +-=++++. 4.(1)2212dy x xdx y y --+==;(2)x y x y dy y e y xy dx e x xy x++--==--. 【水箱注水】由24r h =,12r h =,22311133212h v r h h h πππ⎛⎫=== ⎪⎝⎭,两边求导得214v h h π''=,由已知2v '=,3h =,带入可得: 1294h π'=,89h π'=所以水位上升的速度为89π米/分.【梯子的滑动速度】由题意可得22100x y +=,两边求导可得:220dx dy xy dt dt +=,即dx y dy dt x dt=-, 将8y =,6x =,0.5dy dt =带入可得:820.563dy dt =-⨯=-.所以梯子的另一端华东的速度为23米/秒.负号表示运动方向. 实训二 (B )1.(1)11(1ln )e x e x y x x x e -=+++; (2)()()1112121y x x x ⎫'=--⎪⎪-+⎭. 2.()()cos sin x x y e x f e x ''=++. 3.将1y y xe -=两边对x 求导可得:0y y dy dy e xe dx dx --=,即1y ydy e dx xe =-.…………(1) 将0,1x y ==带入(1)可得:y e '=. 对(1)继续求导,()()()22121y y y y y y y e xe e e xy e y e xe ''----''==-.4.(1)22x z z xy x ∂'==∂, 22y zz yx y ∂'==∂; (2)2xy x z z ye xy x ∂'==+∂,2xy y z z xe x y∂'==+∂. 实训三 (A )1.填空题(1)单调递增区间,(),0-∞;单调递减区间()0,+∞. (2)6a =-.(3)驻点. (4)()00f x ''<.2.()()3444110y x x x x x '=-=-+=,得驻点1230,1,1x x x ==-=,单调递增区间:()()1.0 1.-+∞ ,单调递减区间:()().10.1-∞- .3.()()23693310y x x x x '=--=-+=,得驻点121,3x x =-=.又由于:66y x ''=-,()1120y ''-=-<,所以11x =-为极大点,极大值为0; ()360y ''=>,所以23x =为极小点,极小值为32-.【定价问题】21200080R PQ P P ==-,25000502500050(1200080)6250004000C Q P P =+=+-=-, 224000160T Q P ==-,21200080625000400024000160L R C T P P P P =--=--+-+28016160649000P P =-+-160161600L P '=-+=,解得:101P =, 167080L =.【售价与最大利润】1100200Q p =-,21100200R PQ P P ==-;220019004400L R C P P =-=+-,40019000L P '=-+=,解得 4.75P =此时:150Q =,112.5L =. 【最小平均成本】210000501000050x x c x x x ++==++;21000010c x '=-+=,解得100x =.【最大收入】315x R px xe -==,33155x x R exe--'=-3(155)0x x e-=-=,解得:3x =,此时115p e -=,145R e -=.实训三 (B )1.(1)设()1xf x e x =--,()10xf x e '=->(0x >),说明()f x 在0x >时单调递增,又()00f =,所以,当0x >时,()()00f x f >=,所以不等式成立. (2)设()()ln 1f x x x =-+,()1101f x x'=->+(0x >),说明()f x 在0x >时单调递增,又()00f =,所以,当0x >时,()()00f x f >=,所以不等式成立. 2.()cos cos3f x a x x '=+,没有不可导点,所以cos cos 033f a πππ⎛⎫'=+=⎪⎝⎭,得2a =.又()2sin 3sin3f x x x ''=--,03f π⎛⎫''=<⎪⎝⎭,所以3x π=为极大值点,极大值为3f π⎛⎫= ⎪⎝⎭【采购计划】 设批量为x ,采购费:132********200C x x =⨯=; 库存费:222xC x =⨯=;总费用:12640000C C C x x=+=+; 264000010C x'=-+=,解得800x =唯一驻点, 所以采购分4次,每次800吨,总费用最小.第三章自测题一、填空题 1. 2 2. 12-3. 21x -4. 1-5. 212c o s x xx+ 6. 17. 2l n3x + 8. 2 ; 09. 11ln ; ln y x y x yxy y x x xy --+⋅⋅+10. 12x =二、选择题1、C2、A3、A4、D5、A 三、计算解答题1、(1)([1]y x '''=+=+[12]()1x =⋅⋅⋅==(2)222()()2x x x x y e x e x xe e --'''=⋅+⋅-=- 2、方程221x y xy +-=两边对x 求导,得22()0x y y y x y ''+⋅-+= 解得:22y xy y x-'=-,将0,1x y ==代入,得切线斜率12k =,所以,切线方程为:11(0)2y x -=-,即:220x y -+=. 3、定义域(,)-∞+∞2363(2)y x x x x '=-=- 令0y '=,得驻点120,2x x ==递增区间:(,0)-∞、(2,)+∞ 递减区间:(0,2)极大值:(0)7f = 极小值:(2)3f = 四、应用题1、50S t ==(50)50dSt dt'== 所以,两船间的距离增加的速度为50千米/小时. 2、第四章 边际与弹性分析实训一(A )1.填空题(1)0.2x ∆=, 2.448y ∆=, 2.2dy =. (2)1x dy edx ==. (3)12dy x dx x ⎛⎫=+⎪⎝⎭. (4)cos(21)x +,2cos(21)x +. (5)[]()f g x ',[]()()f g x g x ''.2.(1)(12)dy x dx =+; (2)221dy dx x =+; (3)222(22)x x dy xe x e dx --=-; (4)322(1)dy x x dx -=-+; (5)23(1)1dy dx x =-+; (6)1dx dy x nx=. 3.()ln 11x y x x '=+++,11ln 22x y ='=+,所以11ln 22x dy dx =⎛⎫=+ ⎪⎝⎭. 【金属圆管截面积】2s r π=,2200.05ds r r πππ=∆=⨯=.实训一(B )1.(1)2sec x ;(2)1sin 5x 5;(3)2x ;(4)232x ;(5)21x +;(6)arctan x . 2.将x yxy e+=两边对x 求导,()1x yy xy ey +''+=+,解得:x y x ye yy x e ++-'=-,所以x y x ye ydy dx x e++-=-.3.(1110.001 1.00052≈+⨯=;(20.02221 2.001783⎛⎫==≈+= ⎪⨯⎝⎭; (3)()ln 1.01ln(10.01)0.01=+≈; (4)0.0510.05 1.05e ≈+=. 【圆盘面积的相对误差】2s r π=,0.2r ∆≤()'2s ds s r r r r π∆≈=∆=∆(1)()()22482240.29.65s ds cm cm πππ∆≈=⨯⨯==; (2)2220.22 1.67%24r r r s ds s s r r ππ∆∆∆≈===⨯≈. 实训二 (A )1.(1)()2'2x f x xe =;(2)[]1'()(1)a bf x x e a x ac --=++.2.(1)()21900110090017751200C =+⨯=;17757190036C ==. (2)()39002C '=,表示第901件产品的成本为32个单位;()51000 1.673C '=≈,表示第1001件产品的成本为53个单位. 3.(1)(50)9975R =;9975199.550R ==. (2)()502000.0250199R '=-⨯=,表示第51件产品的收入为199个单位. 4.22()()100.01520050.01200L R x C x x x x x x =-=---=--,50.020L x '=-=,解得唯一驻点250x =,所以当每批生产250个单位产品时,利润达到最大.实训二(B )1.()()()()()242,04282, 4x x x x L x R x C x x x ⎧--+≤≤⎪=-=⎨⎪-+>⎩, 即()232,0426, 4x x x L x x x ⎧-+-≤≤⎪=⎨⎪->⎩,求导()3,041, 4x x L x x -+≤<⎧'=⎨->⎩,令()0L x '=解得3x =百台(唯一驻点) 所以每年生产300台时,利润达到最大.()()430.5L L -=-万元,在最大利润的基础上再生产1百台,利润将减少0.5万元.2.()0.50.25C a a =+(万元)()2152R a aa =- ()22150.50.25 4.750.522a L a a a a a =---=-+-令() 4.750L a a '=-+=,解得 4.75a =(百台)又()10L a ''=-<,有极值的第二充分条件,可知当 4.75a =为最大值(唯一驻点) 所以该产品每年生产475台时,利润最大.实训三 (A )1.填空题 (1)1axy=;(2)21x Ey Ex ==;(3)1ln()4p η=-;(4)()334η=,()41η=,()554η=. 2.(1)15x η=; (2)3(3)5η=,价格为3时,价格上涨1%,需求下降0.6%,缺乏弹性;(5)1η=,价格为5时,价格上涨1%,需求下降1%,单位灵敏性; 6(6)5η=,价格为6时,价格上涨1%,需求下降1.2%. 3.(1)500P =元时,100000Q =张. (2)18002ppη=-.(3)1η=时,18002600p p p =-⇒=所以:当0600p ≤<时,1η<;当600900p <≤时,1η>.实训三 (B )1.(1)224202EQ x x Q Ex Q x '==--,243x EQ Ex ==-,所以价格增长5%,需求量减少6.7%;(2)()()3220R x xQ x x x ==--,x =403Q =.2.(1)2Q P '=-,48P Q ='=-,经济意义:在价格4P =的基础上,增加一个单位,需求量减少8个单位.(2)22275P P Q Q P η'=-=-,4320.542359P η===,经济意义,在4P =的基础上涨1%,需求减少0.54%.(3)375R PQ p p ==-,3375375p p p pη-=-,(4)0.46η=,经济意义,在4P =的基础上,若价格上涨1%,收入上涨0.46%.(4)198(6)0.46234η-=≈-,经济意义,在6P =的基础上,若价格上涨1%,收入减少0.46%. (5)375R p p =-,275305R p p '=-=⇒=,又6R p ''=-,()5300R ''=-<,所以由极值的第二充分条件,可知5P =时,总收入最大.第四章自测题一、填空题 1. 22 ; 2xxe e2.212x 3. arctan x4. 0.1 ; 0.63 ; 0.6 5. 45 ; 11 ; 456.10 ; 10% ; 变动富有弹性 7. 15%20% 8. 10% 二、选择题1、C2、B3、D4、A5、C 三、计算解答题1、(1)2222222()()2(2)x x x x y x e x e xe x e x ''''=⋅+⋅=+⋅2222222(1)x x x x e x e x e x =+=+ 22(1)xd y y d x xe x d x'∴==+ (2)222sin(12)[sin(12)]y x x ''=+⋅+2222s i n (12)c o s (12)(12)x x x '=+⋅+⋅+ 24s i n (24)x x =+ 24s i n (24)d y y d x x x d x'∴==+ 2、方程242ln y y x -=两边对x 求导,得31224dy dyy x dx y dx⋅-⋅⋅= 解得,3221dy x y dx y =-,3221x y dy dx y ∴=-3、四、应用题1、(1)()60.04C Q Q '=+ ()300()60.02C Q C Q Q Q Q==++(2)2300()0.02C Q Q'=-+令()0C Q '=,得Q = (3)2()()(204)204R Q P Q Q Q Q Q Q =⋅=-⋅=-2()()() 4.0214300L Q R Q C Q Q Q =-=-+- ()8.0414L Q Q '=-+ 令()0L Q =,得Q =2、 4Q P '=-(1)(6)24Q '=-,6P =时,价格上升1个单位,需求量减少24个单位.(2)22224(1502)15021502P P P Q P Q P P η''=-⋅=-⋅-=-- 24(6)13η=6P =时,价格变动1%,需求量变动2413% (3)23()()(1502)1502R P Q P P P P P P =⋅=-⋅=-33(1502)1502E R P PR P P E P R P P''=⋅=⋅--2215061502P P -=-61113P EREP==-6P =时,若价格下降2%,总收入将增加2213%第五章 经济总量问题分析实训一(A )1.填空题(1)3x ,3x C +; (2)3x ,3x C +; (3)cos x -,cos x C -+;(4C ; (5)arctan x ,arctan x C +.2.(1)B ; (2)C ; (3)D ; (4)A .3.(1)5322225x x C -+;(2)31cos 3xx e x C --+;(3)21x x C x-++; (4)(2)ln 2xe C e+. 4.(1)1arctan x C x--+;(2)sin cos x x C ++. 【曲线方程】由题意()21f x x '=+,所以()()()23113f x f x dx x dx x x C '==+=++⎰⎰,又过点()0,1带入,得到1C =,所以曲线方程为:()3113f x x x =++. 【总成本函数】由题意可得()220.01C x x x a =++,又固定成本为2000元,所以 ()220.012000C x x x =++. 【总收入函数】()()278 1.2780.6R x x dx x x C =-=-+⎰,由()000R C =⇒=,所以总收入函数为()2780.6R x x x =-.实训一(B )1.填空题(1)sin 2ln x x x +;(2)223cos3x e x +;(3)ln x x C +. 2.(1)D ; (2)B .3.(1)322233331u u u I du u du u u u -+-⎛⎫==-+- ⎪⎝⎭⎰⎰ 2133ln 2u u u C u=-+++; (2))32332333I dx x x C ===-+⎰;(3)()222222121212arctan 11x x I dx dx x C x x x x x ++⎛⎫==+=-++ ⎪++⎝⎭⎰⎰; (4)()()()1111tttt te e I dt edt e t C e +-==-=-++⎰⎰.实训二 (A )1.填空题 (1)212x ; (2)x e --; (3)ln x ; (4)arctan x ; (5)23x x +; (6)arcsin x . 2.(1)B ; (2)B .3.(1)()()()11cos 2121sin 2122I x d x x C =++=++⎰; (2)()()3212313139I x x C =+=++;(3)()()231ln ln ln 3I x d x x C ==+⎰;(4)111xx I e d e C x ⎛⎫=-=-+ ⎪⎝⎭⎰.4.(1)sin sin sin x xI e d x eC ==+⎰; (2)()()11ln 11x xx I d e e C e =+=+++⎰;(3)()()2222ln 22d x x I x x C x x -+==-++-+⎰;(4)22221111111x x x I dx dx x x x ++-⎛⎫==+- ⎪+++⎝⎭⎰⎰ 21l n (1)a r c t a n 2x x x C=++-+. 5.(1)()x x x x x I xd e xe e dx xe e C -----=-=-+=--+⎰⎰;(2)()()()ln 1ln 1ln 1I x dx x x xd x =+=+-+⎰⎰()()11ln 1ln 111x x x x dx x x dx x x +-=+-=+-++⎰⎰()()l n 1l n 1x x x x C =+-+++. 【需求函数】由已知,()111000ln3100033p pQ p dp C ⎛⎫⎛⎫=-⨯=+ ⎪ ⎪⎝⎭⎝⎭⎰ 又因为0p =时,1000Q =,代入上式,得到0C =.所以,()110003pQ p ⎛⎫= ⎪⎝⎭.【资本存量】由已知,32()2(1)y I t dt t C ===++⎰⎰因为0t =时,2500498y C C =+=⇒= 所以,322(1)498y t =++.实训二 (B )1.填空题(1)ln ()f x C +;(2)arctan(())f x C +;(3)'()()xf x f x C -+. 2.(1)()()2arctan 1x x x d e I e C e ==++⎰;(2)()()11131431dx I dx x x x x ⎛⎫==-⎪-+-+⎝⎭⎰⎰113l n 3l n 1l n 441x I x x C C x -=⎡--+⎤+=+⎣⎦+;(3)()()2arctan 111dxI x C x ==++++⎰;(4)()22222x x x x x I x d e x e e dx x e xe dx -----=-=-+=--⎰⎰⎰()22222x x x x x x I x e xe e C x e xe e C ------=----+=-+++. 【物体冷却模型】设()T t 为t 时刻物体的温度,由冷却定律可得:0()dTk T T dt=-, 分离变量0dT kdt T T =-,两边积分0dTkdt T T =-⎰⎰,可得:()0ln ln T T kt c -=+,0()kt T t T ce =+.由已知()0100T =,()160T =,020T =,带入得到:80c =,ln 2k =-, 所以ln2()2080t T t e -⋅=+, 当ln 23020803te t -⋅=+⇒=.实训三 (A )1.填空题 (1)122lim(1)nn i i n n→∞=+∑;(2)2)x dx -;(3)2π;(4)0. 2.(1)12010(3)3S x dx =+=⎰; (2)12218(2)3S x x dx -=--=⎰;(3)1303(1)4S x dx =-=⎰或034S ==⎰.实训三 (B )1.(1)分割:将[]0,4n 等分,每份长度为4n ;(2)近似代替:2412823i i n iA n n n⎡⎤+⎛⎫∆=⋅+= ⎪⎢⎥⎝⎭⎣⎦;(3)求和:()2212221111281281282nnni ii i n n n in n iA A n nn===++++≈∆===∑∑∑; (4)取极限:()2211282lim16n n n n A n→∞++==. 2.1sin xdx π⎰.3.22211113ln ln 222x dx x x x ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭⎰.实训四 (A )1.填空题(1)64;(2)1;(3)2π;(4)3;(5)1. 2.(1)()()()44341118111144I x d x x =--=-=⎰; (2)()()44223328I x dx xx =+=+=⎰;(几何上为直角三角形的面积)(3)22242200111222x x e I e dx e -===⎰; (4)2112111xx I e d e e x =-=-=⎰(5)01cos sin 222x x x I dx πππ++===⎰; (6)0;(利用当积分区间为对称区间,被积函数为奇函数时定积分的性质) (7)121211122222235I xdx xdx xdx xdx -=+=+=+=⎰⎰⎰⎰;(8)02sin 4I xdx π==⎰.(利用定积分的周期性)【资本存量问题】 (1)434211214I t ===⎰(万元);(4)33224422820 6.87x xtx x ⎛⎫==-=⇒=≈ ⎪⎝⎭⎰.【投资问题】01000P =,200A = 0.05()200T t tdP e dt-= 0.05()0.05020040004000TT t T t P edt e -==-+⎰ 10t =,0.5400040002595t P e=-+= 因为0.515741600T P e-≈<,所以,此项投资不恰当.实训四 (B )1.因为()1229214x dx --+=-⎰,()1129214x dx -+=⎰,()20216x dx +=⎰,()21214x dx +=⎰, ()3222213x dx +=⎰, 所以应该分两种情况: (1)因为()3403kf x dx =⎰,()()332240221816333k f x dx x dx -+=-==⎰⎰ 所以,0k =; (2)因为()()102112f x dx f x dx ---=⎰⎰,由对称性可知1k =-.2.对()21f x dx -⎰作代换令1x t -=(切记:定积分的换元要换限,积分值不变),则有:()()21011f x dx f t dt --=⎰⎰,所以,()()21101101112tte f x dx f t dt dt dt e t ---==+++⎰⎰⎰⎰ ()()()()001101011132ln 1ln 2ln 121t t td e ed te t e t e --+=++=+++=+++⎰⎰. 3.()()()()11111111I xf x dx xdf x x f x f x dx ----'===-⎰⎰⎰()()()()21111110x f f e f f --=+--=+-=.因为()()222x x f x e xe --'==-,()f x 为奇函数,所以()()110f f +-=.【储存费用问题】第五章自测题一、填空题 1.sin x x e c ++2.5314453x x x c -++ 3.ln xdx4.21ln 2x c +5.196.327.94π8.21200 ;200Q Q - 9.二、选择题1、D2、B3、A4、B5、C 三、计算解答题 1、(1)原式=1111()(3)(2)532dx dx x x x x =--+-+⎰⎰ 113[l n 3l n 2]l n 552x x x c cx -=--++=++ (2)原式=22111112sin ()cos cos cos1d x x x πππ-==-⎰2、(1)222222212(1)()()(1)(1)x x x F x G x dx dx x x x x ++++==++⎰⎰22111()arctan 1dx x c x x x=+=-+++⎰(2)222222212(1)3()()(1)(1)x x x F x G x dx dx x x x x -+--==++⎰⎰ 22131()3arctan 1dx x c x x x=-=--++⎰3、原式=31222(1)(1)1)33x x =+=+=⎰⎰四、应用题 1、(1)32412)2(24S x x dx x x =-=-=(2)1100()()1x x S e e dx ex e =-=-=⎰2、(1)2()()(100020)C Q C Q dQ Q Q dQ '==-+⎰⎰2311000103Q Q Q c =-++(0)9000C = ,9000c ∴=, 321()10100090003C Q Q Q Q ∴=-++ ()3400R Q Q = 321()()()10240090003L Q R Q C Q Q Q Q =-=-++- (2)令()()R Q C Q ''=,得60Q = 最大利润(60)99000L =(元) 3、.期末考试(90分钟)一、选择题(每题3分,共9分)1、设()0, 0x f x k x ≠=⎪=⎩在0x =处连续,问k =( )。

经济数学课程第一章练习题

经济数学课程第一章练习题

第一章练习题一、填空题1.函数的间断点是 x=-1 ; 2. 函数的间断点是 x=1 ;3.函数的间断点是 x=0 ; 4.函数的间断点是 x=-2 ;5. e15 ;6. e-10 ;7. e-2 ;8. e2 ; 9. 1 ; 10. 2 ; 11. 1/2 ;12.设需求函数,供给函数,则均衡价格为 260/31 ;13. 设需求函数,供给函数,则均衡价格为 4 ;二、判断题(对的打“√”,错误的打“×”)1.数列收敛于1。

( √ ); 2. 函数列收敛于0。

( √ ); 3. 数列发散。

( × ) ;4. 数列是发散的。

( × ); 5. 函数在点处连续。

( × );6. 设在点处连续。

( × );7. ( √ ); 8.不存在.( × ); 9. ( √ ); 10.( × ); 11y x =+1-1y x =1y x =242x y x -=+=⎪⎭⎫ ⎝⎛+∞→x x x 531lim 5124lim(1)x x x +→∞-=230lim(1)x x x +→-=41lim(1+)2x x x→∞=lim sin()x x x πππ→-=-0sin 6lim tan 3x x x →=0sin 3lim sin 6x x x →=20033p Q =-2010S p =-+0p 14.5 1.5Q p =-7.54S p =-+0p 1{1}2n +1{}2n 21{}1n n +-21{2}n+24,2()24, 2x x f x x x ⎧-≠-⎪=+⎨⎪=-⎩2x =-2, 0,()21, 0.x x f x x x ⎧<=⎨+>⎩0x =2211lim 1.43x x x x →-=--+0x →01lim sin 0.x x x →=sin lim 1.x x x →∞=11. . ( √ ). 三、选择题1、1. 下列关于Mathmatica 中正弦函数的写法,正确的是( c );A . sinxB . SinxC . Sin[x]D . sin [x]2、下列关于Mathmatica 中函数的写法,正确的是( c );A . Ln[x]B . Ln[x]C . Log[x]D . log[x]3、下列关于Mathmatica 中的写法,正确的是( c );A .B .C .D .4、下列关于Mathmatica 中的写法,正确的是( c );A .B .C .D .5、( b )。

(11-29)新编经济数学第一章练习参考答案

(11-29)新编经济数学第一章练习参考答案

习题 1-21. 45.953=p .2. 3000=a ,15=b ,p Q 153000-=.3. ,850,20==d c 85020-=p Q .4. 1100=p 元,13500=Q 个.5. 1003+=q C ,1000=C ,700)200(=C , 5.3=C .6. 251200q q R -= ,36800)200(=R . 7.p Q -=90 ,290P P R -=. 8. %90)1000(100500⨯-+⨯=Q R )500(t Q >. 9. 25.2,9)4(,782==-+-=L L q q L .10. Q Q C 102700)(+=,p p C 18011700)(-=,()21890018900)(p p p p p R -=-⋅=,()4500301811700108018)()()(22+--=-+-=-=p p p p C p R p L . 容易看出,当价格定为30p =元时,利润4500=L 元为最大利润.在此价格下,该新产品的销售量为3603018900=⨯-=Q (单位).习题 1-31.x x x x f cos sin )()1(+=' dx x x x x df )cos (sin )(+=x x x x x f sin cos 2)()2(2-=' dx x x x x x df )sin cos 2()(2-=)cos (sin )()3(x x e x f x +=' dx x x e x df x )cos (sin )(+= x x x x x f 121)2(3)()4(32++=' dx xx x x x df ]121)2(3[)(32++= 2)42(4)()5(--='x x f dx x x df 2)42(4)(--= x x x x x x f 22sin )1(cos sin 2)()6(+-=' dx xx x x x x df 22sin )1(cos sin 2)(+-= x x x x x x f 2cos sin ln cos 1)()7(+=' dx xx x x x x df 2cos sin ln cos 1)(+= 222)cos (sin 2sin 3cos 6)()8(x x x x x x x x x f -----='dx x x x x x x x x x df 222)cos (sin 2sin 3cos 6)(-----= 2155)1(+='x y )12cos(2)2(+='x y x e y x cos )3(sin =' )(ln cos 1)4(2x x y =' )12248()82()53()5(42+++='x x x y)123020)(64()6(5x x x x y +++=' n n x x n x y 21)ln 1()7(-='- 32)3(])3)(42(92)[42()8(x x x x y ++---=' 习题 1-41.(1)10000=C x x x C 507)(1+= xx C 257)(+='.(2)5.9)100(='C 元/吨 经济意义是在产量为100吨的基础上,再多生产一吨产品所增加的成本是9.5元.(3)22元(4)7元 从降低成本角度看,应该继续提高产量.2. 总收入250、平均收入25及边际收入10.3.(1)3000060004.0)(2-+-=x x x L 60008.0)(+-='x x L ; (2)200)5000(='C ,400)5000(='R ,200)5000(='L 4.(1)5.0- 缺乏弹性; (2)5- 富有弹性5.(1)21)(-='p Q ;(2)pp p EQ -=20)(;18.0173)3(≈=EQ (3)当3=p 时,若价格上张1%,其总收入增加0.82%习题 1-51.(1)解:)(x f 的定义域为R ,62)(+='x x f ,令0)(='x f ,得3-=x ,无一阶导数不存在点,因为02)(>=''x f ,所以6)3(-=-f 为极小值,而没有极大值,因此此极小值为最小值.故在其定义域内有一个最小值为6)3(-=-f .(2)解:)(x f 的定义域为1-≠x0)1(2)1(222)1()1(2)1()2()(222>+=+-+=+'+-+'='x x x x x x x x x x f 所以)(x f 在其定义域内单调递增,无最值.(3)解:)1()(+='x e x f x ,令0)(='x f ,得1-=x ,无一阶导数不存在点, 计算 12)1(,0)0(,2)2(---=-=-=-e f f e f ,比较上述值有:最大值为0)0(=f , 最小值为1)1(--=-e f .(4)最小值:1)2()0(-==f f ;最大值:0)1(=f .2. 解: 要使材料最省,就是要罐头筒的总表面积最小.设罐头筒的底半径为r ,高为h ,则它的侧面积为,底面积为 ,因此总表面积为)),0((22222∞+∈+===r r V r S r V h h r V πππ,所以有由体积公式)),0((0442,033∞+∈>+=''=='r rV S V r S ππ,又得令 。

经济应用数学基础(一)-微积分-课后习题答案_高

经济应用数学基础(一)-微积分-课后习题答案_高

第一章 函 数习 题 一(A)1.解下列不等式,并用区间表示解集合(其中δ>0):(1)(x-2)2>9; (2)|x+3|>|x-1|;(3)|x-x0|<δ;(4)0<|x-x0|<δ.解 (1)由(x-2)2>9得|x-2|>3,从而解得x-2>3 或 x-2<-3由此得 x>5或x<-1.因此,解集合为(-∞,-1)∪(5,+∞)(2)由绝对值的几何意义知,不等式|x+3|>|x-1|表示点x与-3的距离大于点x与1的距离,如下图所示:因此,该不等式的解集合为(-1,+∞)(3)由|x-x0|<δ得-δ<x-x0<δ,由此得x0-δ<x<x0+δ,因此,解集合为(x0-δ,x0+δ)(4)由0<|x-x0|知x≠x0,由|x-x0|<δ知x0-δ<x<x0+δ.因此,解集合为(x0-δ,x0)∪(x0,x0+δ)2.证明如下不等式:(1)|a-b|≤|a|+|b|;(2)|a-b|≤|a-c|+|c-b|证 (1)由绝对值性质(4),有|a-b|≤|a|+|-b|=|a|+|b|.(2)|a-b|=|a-c+c-b|≤|a-c|+|c-b|.3.判断下列各对函数是否相同,并说明理由:(1)y=x与y=x2;(2)y=1-x2+x与y=(1-x)(2+x);(3)y=1与y=sin2x+cos2x;(4)y=2cosx与y=1+cos2x;(5)y=ln(x2-4x+3)与y=ln(x-1)+ln(x-3);(6)y=ln(10-3x-x2)与y=ln(2-x)+ln(5+x).解 (1)因y=x2=|x|与y=x的对应规则不同(值域也不同),故二函数不相同.(2)因y=1-x2+x与y=(1-x)(2+x)的定义域均为D f=[-2,1],故此二函数相同.(3)因sin2x+cos2x≡1,x∈(-∞,+∞),故此二函数相同.(4)因y=1+cos2x=2cos2x=2|cosx|与y=2cosx的对应规则不同,可知此二函数不相同.(5)因y=ln(x2-4x+3)=ln[(x-1)(x-3)]的定义域为D f=(-∞,1)∪(3,+∞);y=ln(x-1)+ln(x-3)的定义域为D f=(3,+∞).因此,此二函数不相同.(6)因y=ln(10-3x-x2)=ln[(2-x)(5+x)]与y=ln(2-x)+ln(5+x)的定义域均为D f=(-5,2),故此二函数相同.4.求下列函数的定义域:(1)y=x2+x-2; (2)y=sin(x);(2)y=9-x2+1ln(1-x);(4)y=lnx2-9x10;(5)y=1x-3x+10x-10;(6)y=(x-1)(x-3)x-3.解 (1)使该函数有定义的x应满足条件:x2+x-2=(x-1)(x+2)≥0由此解得x≥1或x≤-2.因此,该函数定义域为D f=(-∞,2]∪[1,+∞).(2)使该函数有定义的x应满足条件:x≥0 且 sinx≥0而由sinx≥0得2kπ≤x≤(2k+1)π,k=0,1,2,….因此,该函数的定义域为D f=∪∞k=0[(2kπ)2,(2k+1)π2].(3)使该函数有定义的x应满足如下条件:9-x2≥0, 1-x>0, 1-x≠1解得 |x|≤3且x<1且x≠0.因此,该函数定义域为D f=[-3,0)∪(0,1).(4)使该函数有定义的x应满足条件:x2-9x10≥1由此得 x2-9x-10=(x+1)(x-10)≥0,解得x≥10或x≤-1因此,该函数定义域为D f=(-∞,-1]∪[10,+∞)(5)使该函数有定义的x应满足如下条件:x-3≠0, x-10≠0, x+10x-10≥0由此解得x>10或x≤-10.因此,该函数定义域为D f=(-∞,-10]∪(10,+∞).(6)使该函数有定义的x应满足条件:x-3≠0, (x-1)(x-2)x-3≥0即(x-1)(x-2)≥0 且 x-3>0痴x>3(x-1)(x-2)≤0 且 x-3<0痴1≤x≤2因此,该函数定义域为D f=[1,2]∪(3,+∞).5.已知函数f(x)=q-x2,|x|≤3x2-9,|x|>3求函数值f(0),f(±3),f(±4),f(2+a).解 因为x=0,x=±3时,|x|≤3,所以f(0)=9=3, f(±3)=9-(±3)2=0又因为x=±4时,|x|>3,所以f(±4)=(±4)2-9=7当|2+a|≤3即-5≤a≤1时,f(2+a)=q-(2+a)2=(1-a)(5+a)当|2+a|>3即a>1或a<-5时,f(2+a)=(2+a)2-9=(a-1)(a+5)所以f(2+a)=(1-a)(5+a),-5≤a≤1(a-1)(5+a),a<-5或a>1.6.讨论下列函数的单调性:(1)y=1+6x-x2; (2)y=e|x|.解 (1)易知该函数定义域为D f=[0,6].设x1,x2∈(0,6), x1<x2则f(x1)-f(x2)=6x1-x21-6x2-x22=(6x1-x21)-(6x2-x22)6x1-x21+6x2-x22=6(x1-x2)-(x21-x22)6x1-x21+6x2-x22=[6-(x1+x2)](x1-x2)6x1-x21+6x2-x22<0,0<x1<x2<3>0,3<x1<x2<6所以该函数在区间(0,3)上单调增加,在区间(3,6)上单调减少.另解,因6x-x2=9-(x-3)2,所以y=1+6x-x2是圆(x-3)2+(y-1)2=32的上半圆.由此可知,该函数在(0,3)上单调增加,在(3,6)上单调减少.(2)因y=e|x|=ex,x≥0e-x,x<0所以,该函数在[0,+∞)上单调增加,在(-∞,0]上单调减少.7.讨论下列函数是否有界:(1)y =x 21+x2; (2)y =e-x 2;(3)y =sin1x;(4)y =11-x.解 (1)因为|y |=x21+x 2=1-11+x2≤1所以,该函数有界.(2)因为|y |=e-x 2=1ex 2≤1e0=1所以,该函数有界.(3)因为sin1x≤1(x ≠0),所以,该函数有界.(4)对任意给定的正数M >0,令x 0=1-12M≠1,则|y (x 0)|=11-1-12M=2M >M此式表明,对任意给定的M >0,存在点x 0∈D f ,使|y (x 0)|>M .因此,该函数无界.8.讨论下列函数的奇偶性:(1)f (x )=x sinx +cosx ; (2)y =x 5-x 3-3;(3)f (x )=ln(x +1-x 2);(4)f (x )=1-x ,x <0,1,x =0,1+x ,x >0.解 (1)因为f (-x )=(-x )sin(-x )+cos(-x )=x sinx +cosx =f (x ),x ∈(-∞,+∞)所以,该函数为偶函数.(2)因为f (-x )=-x 5+x 3-3≠f (x )或-f (x )所以,该函数既不是偶函数,也不是奇函数.(3)因为f (-x )=ln(-x +1+x 2)=ln(1+x 2)-x2x +1+x2=-ln(x+1+x2)=-f(x), x∈(-∞,+∞)所以,该函数为奇函数.(4)因为x>0(即-x<0)时, f(-x)=1-(-x)=1+xx<0(即-x>0)时, f(-x)=1+(-x)=1-x所以f(-x)=1-x,x<01,x=01+x,x>0=f(x)因此,该函数为偶函数.9.判别下列函数是否是周期函数,若是周期函数,求其周期:(1)f(x)=sinx+cosx; (2)f(x)=|sinx|;(3)f(x)=xcosx;(4)f(x)=1+sinπx.解 (1)因为f(x)=sinx+cosx=2sinx+π4所以f(x+2π)=2sinx+2π+π4=2sinx+π4=f(x)因此,该函数为周期函数,周期为2π.(2)因f(x+π)=|sin(x+π)|=|-sinx|=|sinx|=f(x)所以,该函数为周期函数,周期为π.(3)因cosx是以2π为周期的周期函数,但是f(x+2π)=(x+2π)cos(x+2π)=(x+2π)cosx≠xcosx=f(x)所以,该函数不是周期函数.(4)因为f(x+2)=1+sin(x+2)π=1+sinπx=f(x)所以,该函数为周期函数,周期为2.10.求下列函数的反函数及其定义域:(1)y=1-x1+x; (2)y=12(ex-e-x);(3)y=1+ln(x-1);(4)y=53x-5;(5)y=2sinx3, x∈-π2,π2;(6)y=2x-1,0<x≤12-(x-2)2,1<x≤2.解 (1)由y=1-x1+x 解出x,得x=1-y1+y因此,反函数为y=1-x1+x其定义域为D(f-1)=(-∞,-1)∪(-1,+∞)(2)由所给函数解出ex,得ex=y±1+y2=y+1+y2(因为ex>0,所以舍去“-”号)由此得x=ln(y+1+y2)因此反函数为y=ln(x+1+x2)其定义域为D(f-1)=(-∞,+∞).(3)所给函数定义域为D(f)=(1,+∞),值域为Z(f)=(-∞,+∞).由所给函数解出x,得x=1+ey-1,故反函数为y=1+ex-1其定义域为D(f-1)=(-∞,+∞).(4)所给函数定义域、值域分别为D(f)=(-∞,+∞), Z(f)=(-∞,+∞)由所给函数解出x,得x=13(y5+5), y∈Z(f)=(-∞,+∞)所以,反函数为y=13(x5+5)其定义域为D(f-1)=Z(f)=(-∞,+∞)(5)由所给函数解出x,得x=3arcsiny2所以,反函数为y=3arcsinx2其定义域为D(f-1)=Z(f)=[-1,1].(6)由所给函数可知:当0<x≤1时,y=2x-1,y∈(-1,1];当1<x≤2时,y=2-(x-2)2,y∈(1,2];由此解出x,得x=12(1+y),-1<y≤12-2-y,1<y≤2 (舍去“+”号,因1<x≤2)因此,反函数为y=12(1+x),-1<x≤12-2-x,1<x≤2其定义域为D(f-1)=Z(f)=(-1,2].11.分析下列函数由哪些基本初等函数复合而成:(1)y=loga x; (2)y=arctan[tan2(a2+x2)];(3)y=e2x/(1-x2);(4)y=cos2x2-x-1.解 (1)所给函数由对数函数y=loga u与幂函数u=x复合而成;(2)所给函数由反正切函数y=arctanu、幂函数u=v2、正切函数v=tanw 和多项式函数w=a2+x2复合而成;(3)所给函数由指数函数y=eu和有理分式函数u=2x1+x2复合而成;(4)所给函数由幂函数y=u2、余弦函数u=cosv、幂函数v=w与多项式函数w=x2-x-1复合而成.12.设销售某种商品的总收入R是销售量x的二次函数,且已知x=0,10,20时,相应的R=0,800,1200,求R与x的函数关系.解 设总收入函数为R(x)=ax2+bx+c(a≠0)已知R(0)=0 所以c=0又知R(10)=800, R(20)=1200即有100a+10b=800, 400a+20b=1200整理后,得联立方程组10a+b=80, 20a+b=60由此解得 a=-2,b=100.因此,总收入函数为R(x)=100x-2x2=x(100-2x).13.某种电视机每台售价为2000元时,每月可售出3000台,每台售价降为1800元时,每月可多售出600台,求该电视机的线性需求函数.解 设该电视机的线性需求函数为Q=a-bp则由已知条件有Q(2000)=a-2000b=3000Q(1800)=a-1800b=3600由此解得a=9000,b=3.因此,该商品的线性需求函数为Q=9000-3p.14.已知某商品的需求函数与供给函数分别由下列方程确定:3p+Q2d+5Q d-102=0p-2Q2s+3Q s+71=0试求该商品供需均衡时的均衡价格p e和均衡数量Q e.解 供需均衡的条件为Q d=Q s=Q e,对应均衡价格为p e,于是有3p3+Q2e+5Q-102=0p e-2Q2e+3Q e+71=0由其中第二个方程得p e=2Q2e-3Q3-71 (倡)将上式代入第一个方程,得7Q2e-4Q e-315=0由此解得Q e=7(舍去负根).将Q e=7代入(倡)得p e=6.因此,该商品供需均衡时,均衡价格p e=6,均衡数量Q e=7.(B)1.填空题:(1)已知函数f(x)的定义域为(0,1],则函数f(ex)的定义域为,函数f x-14+f x+14的定义域为;(2)已知函数f(x)=x1+x2,则f(sinx)=;(3)已知函数f(x)=x1-x,则f[f(x)]=,f{f[f(x)]}=;(4)已知f(3x-2)=x2,则f(x)=;(5)已知某商品的需求函数、供给函数分别为:Q d=100-2p, Q s=-20+10p,则均衡价格p e=,均衡数量Q e=;答 (1)(-∞,0],14,34; (2)sinx|cosx|;(3)x1-2x,x1-3x;(4)19(x+2)2;(5)10,80.解 (1)由0<ex≤1得x∈(-∞,0],由0<x-14≤1且0<x+14≤1,得x∈14,34;(2)f(sinx)=sinx1-sin2x=sinxcos2x=sinx·|cosx|;(3)f[f(x)]=f(x)1-f(x)=x1-2x,f{f[f(x)]}=f[f(x)]1-f[f(x)]=x1-3x;(4)令t=3x-2,则x=13(t+2),于是f(t)=f(3x-2)=x2=13(t+2)2=19(t+2)2所以f(x)=19(x+2)2(5)由Q d=Q s=Q e,得100-2p e=-20+10p e解得 p e=10,从而Q e=80.2.单项选择题:(1)若函数y=x+2与y=(x+2)2表示相同的函数,则它们的定义域为.(A)(-∞,+∞); (B)(-∞,2];(C)[-2,+∞);(D)(-∞,-2].(2)设f (x )=1,|x |<1,0,|x |>1,则f {f [f (x )]}=.(A)0;(B)1(C)1,|x |<1,0,|x |≥1;(D)1,|x |≥1,0,|x |<1.(3)y =sin1x在定义域内是.(A)周期函数;(B)单调函数;(C)偶函数;(D)有界函数.(4)设函数f (x )在(-∞,+∞)内有定义,下列函数中,必为偶函数.(A)y =|f (x )|;(B)y =[f (x )]2;(C)y =-f (-x );(D)y =f (x 2)cosx .(5)设函数f (x )在(-∞,+∞)内有定义,且f (x +π)=f (x )+sinx ,则f (x ).(A)是周期函数,且周期为π;(B)是周期函数,且周期为2π;(C)是周期函数,且周期为3π;(D)不是周期函数.答 (1)C; (2)C; (3)D; (4)D; (5)B.解 (1)由(x +2)2=|x +2|=x +2≥0可知x ≥-2,故选(C).(2)因f [f (x )]=1,|f (x )|<10,|f (x )|≥1=1,|x |≥10,|x |<1f {f [f (x )]}=1,|f [f (x )]|<10,|f [f (x )]|≥1=1,|x |<10,|x |≥1故选(C).(3)因sin1x≤1,橙x ≠0,故选(D).(4)因f ((-x )2)cos(-x )=f (x 2)cosx ,故选(D).(5)因f (x +2π)=f (x +π)+sin(x +π)=f (x )+sinx -sinx =f (x )故f (x )为周期函数,且周期为2π,选(B).3.设f2x +12x -2-12f (x )=x ,求f (x ).解 令t =2x +12x -2,则x =2t +12t -2,代入所给方程,得f (t )-12f 2t +12t -2=2t +12t -2其中,由所给方程有f2t +12t -2=t +12f (t )于是得f (t )-12t +12f (t )=2t +12t -2由此得f (t )=23t 2+t +1t -1因此f (x )=23x 2+x +1x -1.4.证明下列各题:()若函数f (x ),g (x )在D 上单调增加(或单调减少),则函数h (x )=f (x )+g (x )在D 上单调增加(或单调减少).(2)若函数f (x )在区间[a ,b ],[b ,c ]上单调增加(或单调减少),则f (x )在区间[a ,c ]上单调增加(或单调减少).证 (1)对任意的x 1,x 2∈D ,且x 1<x 2,因f (x ),g (x )单调增加(减少),故有f (x 1)<f (x 2) (f (x 1)>f (x 2))g (x 1)<g (x 2) (g (x 1)>g (x 2))于是h (x 1)=f (x 1)+g (x 1)<f (x 2)+g (x 2)=h (x 2)(h (x 1)>h (x 2))所以,h (x )=f (x )+g (x )在D 上单调增加(减少).(2)对任意的x1,x2∈[a,c],x1<x2,若 a≤x1<x2≤b或b≤x1<x2≤c,则由题设有f(x1)<f(x2) (或f(x1)>f(x2))若 a≤x1≤b<x2≤c,则由题设有f(x1)≤f(b)<f(x2) (或f(x1)≥f(b)>f(x2))综上所述,f(x)在[a,c]上单调增加(或单调减少).5.设函数f(x)与g(x)在D上有界,试证函数f(x)±g(x)与f(x)g(x)在D 上也有界.证 因f(x)与g(x)在D上有界,故存在常数M1>0与M2>0,使得|f(x)|<M1, |g(x)|<M2, 橙x∈D.令M=M1+M2>0,则有|f(x)±g(x)|≤|f(x)|+|g(x)|<M1+M2=M,橙x∈D因此,f(x)±g(x)在D上有界.再令M=M1M2,则有|f(x)g(x)|=|f(x)||g(x)|<M1M2=M,橙x∈D因此,f(x)g(x)在D上有界.6.证明函数f(x)=xsinx在(0,+∞)上无界.证 要证f(x)=xsinx在(0,+∞)上无界,只需证明:对任意给定的常数M>0,总存在x0∈(0,+∞),使得|x0sinx0|>M.事实上,对任意给定的M>0,令x0=π2+2(1+[M])π∈(0,+∞)([M]为M的整数部分),则有|f(x0)|=π2+2(1+[M])π·sinπ2+2(1+[M])π=π2+2(1+[M])πsinπ2=π2+2(1+[M])π>M于是,由M>0的任意性可知,f(x)=xsinx在(0,+∞)上无界.7.已知函数函数f(x)满足如下方程af(x)+bf1x=c x,x≠0其中a,b,c为常数,且|a|≠|b|.求f (x ),并讨论f (x )的奇偶性.解 由所给方程有af1x+bf (x )=cx于是,解方程组af (x )+bf 1x=c xaf1x+bf (x )=cx可得f (x )=ac -bcx 2(a 2-b 2)x因为f (-x )=ac -bc (-x )2(a 2-b 2)(-x )=-ac -bcx2(a 2-b 2)x=-f (x )所以,f (x )为奇函数.8.某厂生产某种产品1000吨,当销售量在700吨以内时,售价为130元/吨;销售量超过700吨时,超过部分按九折出售.试将销售总收入表示成销售量的函数.解 设R (x )为销售总收入,x 为销售量(单位:吨).依题设有当0≤x ≤700时,售价p =130(元/吨);当700<x ≤1000时,超过部分(x -700)的售价为p =130×0.9=117(元/吨).于是,销售总收入函数为R (x )=130x , 0≤x ≤700130×700+117×(x -700), 700<x ≤1000=130x ,0≤x ≤700117x +9100,700<x ≤1000可见销售总收入R (x )为销售量x 的分段函数.9.某手表厂生产一只手表的可变成本为15元,每天固定成本为2000元,每只手表的出厂价为20元,为了不亏本,该厂每天至少应生产多少只手表?解 设每天生产x 只手表,则每天总成本为C (x )=15x +2000因每只手表出厂价为20元,故每天的总收入为20x (元),若要不亏本,应满足如下关系式:20x ≥15x +2000解得x≥400(只)即,若要不亏本,每天至少应生产400只手表.10.某玩具厂每天生产60个玩具的成本为300元,每天生产80个玩具的成本为340元,求其线性成本函数.该厂每天的固定成本和生产一个玩具的可变成本各为多少?解 设线性成本函数为C(x)=ax+b其中C(x)为总成本,x为每天的玩具生产量.由题设有C(60)=60a+b=300(元)C(80)=80a+b=340(元)由此解得a=2, b=180因此,每天的线性成本函数为C(x)=2x+180其中a=2元为生产一个玩具的可变成本,b=180元为每天的固定成本.第二章 极限与连续习 题 二(A)1.观察判别下列数列的敛散性;若收敛,求其极限值:(1)u n=5n-3n; (2)u n=1ncosnπ;(3)u n=2+-12n;(4)u n=1+(-2)n;(5)u n=n2-1n;(6)u n=a n(a为常数).解 (1)将该数列具体写出来为2,72,4,174,225,…,5-3n,…观察可知u n→5(n→∞).因此,该数列收敛,其极限为5.(2)因为u n=1ncosnπ=1n(-1)n=1n→0(n→∞)所以,该数列收敛,其极限为0.(3)因为u n-2=-12n=12n→0(n→∞)所以,该数列收敛,其极限为2.(4)该数列的前五项分别为:-1,5,-7,17,-31,…观察可知u n→∞(n→∞).因此,该数列发散.(5)该数列的前五项分别为0,32,83,154,245,…观察可知u n→∞(n→∞).所以,该数列发散.(6)当a<1时,u n=a n→0(n→∞);当a>1时,u n=a n→∞(n→∞);当a=1时,u n=1→1(n→∞);当a=-1时,u n=(-1)n,发散因此,a<1时,数列收敛,其极限为0;a=1时,数列收敛,其极限为1;a ≤-1或a>1时,数列发散.2.利用数列极限的定义证明下列极限:(1)limn→∞-13n=0; (2)limn→∞n2+1n2-1=1;(3)limn→∞1n+1=0;(4)limn→∞n2+a2n=1(a为常数).证 (1)对任意给定的ε>0(不妨设0<ε<1),要使u n-0=13n<ε只需n>log31ε (∵0<ε<1,∴log31ε>0)取正整数N=1+log31ε>log31ε,则当n>N时,恒有-13n-0<ε因此limn→∞-13n=0.(2)对任意给定的ε>0,要使u n-1=n2+1n2-1-1=2n2-1=2n+1·1n-1≤1n-1<ε只需n>1+1ε.取正整数N=1+1ε,则当n>N时,恒有n2+1n2-1-1<ε由此可知limn →∞n 2+1n 2-1=1.(3)对任意给定的ε>0,要使u n -0=1n +1-0=1n +1<1n<ε只需n >1ε2.取正整数N =1ε2+1,则当n >N >1ε2时,恒有1n +1-0<ε.由此可知limn→∞1n +1=0.(4)对任意给定的ε>0,要使u n -1=n 2+a2n -1=a2n (n 2+a 2+n )<a22n2<ε只需n >a2ε.取正整数N =a 2ε+1,则当n >N >a2ε时,恒有n 2+a2n-1<ε因此limn →∞n 2+a2n=1.3.求下列数列的极限:(1)limn →∞3n +5n 2+n +4; (2)limn →∞(n +3-n );(3)limn →∞(1+2n+3n+4n)1/n;(4)limn →∞(-1)n+2n(-1)n +1+2n +1;(5)limn →∞1+12+122+…+12n ;(6)limn →∞1+12+122+…+12n1+14+142+…+14n.解 (1)因为3n +5n 2+n +4=3+5n1+1n +4n 2→3(n →∞)所以limn→∞3n +5n 2+n +4=3.(2)因为n +3-n =3n +3+n →0(n →∞)所以limn →∞(n +3-n )=0.(3)因为(1+2n+3n+4n)1/n=414n+24n+34n+11/n→4(n →∞)所以limn→∞(1+2n+3n+4n)1/n=4.(4)因为(-1)n+2n(-1)n +1+2n +1=12·-12n+1-12n +1+1→12(n →∞)所以limn →∞(-1)n+2n(-1)n +1+2n +1=12.(5)因为 1+12+122+…+12n =1-12n +11-12=21-12n +1→2(n →∞)所以limn →∞1+12+122+…+12n =2.(6)因为1+12+122+…+12n =21-12n +1,1+14+142+…+14n =1-14n -11-14=431-14n +1于是1+12+122+…+12n 1+14+142+…+14n =32·1-12n +11-14n +1→32(n →∞)所以limn →∞1+12+122+…+12n1+14+142+…+14n=32.4.利用函数极限的定义,证明下列极限:(1)limx →3(2x -1)=5; (2)limx →2+x -2=0;(3)limx →2x 2-4x -2=4;(4)limx →1-(1-1-x )=1.证 (1)对任意给定的ε>0,要使(2x -1)-5=2x -3<ε只需取δ=ε2>0,则当0<x -3<δ时,恒有(2x -1)-5=2x -3<2δ=ε因此limx →3(2x -1)=5.(2)对任意给定的ε>0,要使x -2-0=x -2<ε只零取δ=ε2>0,则当0<x -2<δ时,恒有x -2-0=x -2<δ=ε所以limx →2+x -2=0.(3)对任意给定的ε>0,要使(x ≠2)x 2-4x -2-4=(x +2)-4=x -2<ε只需取δ=ε>0,则当0<x -2<δ时,恒有x 2-4x -2-4=x -2<δ=ε因此limx →2x 2-4x -2=4.(4)对任意给定的ε>0,要使(1-1-x )-1=1-x <ε只需0<1-x <ε2取δ=ε2>0,则当0<1-x <δ时,恒有(1-1-x )-1=1-x <δ=ε因此limx →1-(1-1-x )=1.5.讨论下列函数在给定点处的极限是否存在?若存在,求其极限值:(1)f (x )=1-1-x ,x <1,在x =1处;x -1,x >0(2)f (x )=2x +1,x ≤1,x 2-x +3,1<x ≤2,x 3-1,2<x ,在x =1与x =2处.解 (1)因为f (1-0)=limx →1-f (x )=limx →1-(1-1-x )=1f (1+0)=limx →1+f (x )=limx →1+(x -1)=0这表明f (1-0)≠f (1+0).因此,limx →1f (x )不存在.(2)在x =1处,有f (1-0)=limx →1-(2x +1)=3.f (1+0)=limx →1+(x 2-x +3)=3.因f (1-0)=f (1+0)=3,所以,limx →1f (x )=3(存在);在x =2处,有f (2-0)=limx →2-(x 2-x +3)=5f (2+0)=limx →2+(x 3-1)=7因f(2-0)≠f(2+0),所以limx→2f(x)不存在.6.观察判定下列变量当x→?时,为无穷小:(1)f(x)=x-2x2+2; (2)f(x)=ln(1+x);(3)f(x)=e1-x;(4)f(x)=1ln(4-x).解 (1)因为当x→2或x→∞时,x-2x2+2→0因此,x→2或x→∞时,x-2x2+2为无穷小.(2)因为当x→0时,ln(1+x)→0因此,x→0时,ln(1+x)为无穷小.(3)因为当x→+∞时,e1-x=eex→0,因此,x→+∞时,e1-x为无穷小.(4)因为当x→4-或x→-∞时,1ln(4-x)→0因此,x→4-或x→-∞时,1ln(4-x)为无穷小.7.观察判定下列变量当x→?时,为无穷大:(1)f(x)=x2+1x2-4; (2)f(x)=ln1-x;(3)f(x)=e-1/x;(4)f(x)=1x-5.解 (1)因为当x→±2时,x2-4x2+1→0因此当x→±2时,x2+1x2-4→∞所以,x→±2时,x2+1x2-4为无穷大.(2)因为当x→1时,1-x→0+当x→∞时,-x→+∞因此当x→1时,ln1-x→-∞当x→∞时,ln1-x→+∞所以,x→1或x→∞时,ln1-x为无穷大.(3)因为limn→0--1x=+∞所以limx→0-e-1/x=+∞由此可知,x→0-时,e-1/x为无穷大.(4)因为limx→5+x-5=0所以limx→5+1x-5=+∞由此可知,x→5+时,1x-5为无穷大.8.求下列函数的极限:(1)limx→3(3x3-2x2-x+2); (2)limx→05+42-x;(3)limx→16x-5x+4x-16;(4)limx→0(x+a)2-a2x(a为常数);(5)limx→0x2+a2-ax2+b2-b(a,b为正的常数);(6)limx→1x+x2+…+x n-nx-1(提示:x+x2+…+x n-n=(x-1)+(x2-1)+…+(x n-1))解 (1)由极限的线性性质,得原式=3limx→3x3-2limx→3x2-limx→3x+2=3x33-2×32-3+2=62(2)因为limx→0(2-x)=2≠0,所以原式=5+limx →042-x =5+4limx →0(2-x )=5+42=7.(3)因为x -5x +4=(x -4)(x -1),x -16=(x -4)(x +4).所以原式=limx →16(x -4)(x -1)(x -4)(x +4)=limx →16x -1x +4=38.(4)因为(x +a )2-a 2=x (x +2a ),所以原式=limx →0x (x +2a )x=limx →0(x +2a )=2a .(5)原式=limx →0(x 2+a 2-a )(x 2+a 2+a )(x 2+a 2+b )(x 2+b 2-b )(x 2+b 2+b )(x 2+a 2+a )=limx →0x 2(x 2+b 2+b )x 2(x 2+a 2+a )=limx →0x 2+b 2+bx 2+a 2+a=b a(6)因为 x +x 2+…+x n-n =(x -1)+(x 2-1)+…+(x n-1)=(x -1)[1+(x +1)+…+(xn -1+xn -2+…+1)]所以原式=limx →1(x -1)[1+(x +1)+…+(xn -1+xn -2+…+1)]x -1=limx →1[1+(x +1)+…+(x n -1+xn -2+…+1)]=1+2+…+n =12n (n +1).9.求下列函数的极限:(1)limx →∞[x 2+1-x 2-1]; (2)limx →∞(x -1)10(3x -1)10(x +1)20;(3)limx →+∞5x 3+3x 2+4x 6+1;(4)limx →∞(x +31-x 3);(5)limx →+∞x (3x -9x 2-6);(6)limx →+∞(a x+9)-a x+4(a >0).解 (1)原式=limx →∞2x 2+1+x 2-1=0.(2)原式=limx→∞1-1x103-1x 101+1x20=310(3)原式=limx →+∞5+(3/x )+(4/x 3)1+(1/x 3)=5.(4)因为(x +31-x 3)[x 2-x31-x 3+(31-x 3)2]=x 3-(31-x 3)3=1所以原式=limx→∞1x 2-x 31-x 3+(31-x 3)2=0.(5)因为x (3x -9x 2-6)=x (3x -9x 2-6)(3x +9x 2-6)3x +9x 2-6=x [9x 2-(9x 2-6)]3x +9x 2-6=6x3x +9x 2-6所以原式=limx →+∞6x3x +9x 2-6=limx →+∞63+9-(6/x 2)=1(6)原式=limx →+∞5a x+9+a x+4=1,0<a <110-5,a =10,a >1.10.求下列各题中的常数a 和b :(1)已知limx →3x -3x 2+ax +b=1;(2)已知limx →+∞(x 2+x +1-ax -b )=k (已知常数).解 (1)由于分子的极限limx →3(x -3)=0,所以分母的极限也应为0(否则原式=0≠1),即有limx →3(x 2+ax +b )=9+3a +b =0另一方面,因分子=x -3,故分母x 2+ax +b =(x -3)(x -c ),于是原式=limx →3x -3(x -3)(x -c )=limx →31x -c =13-c=1由此得c =2.于是得x 2+ax +b =(x -3)(x -2)=x 2-5x +6由此得a =-5,b =6(2)原式可变形为原式=limx →+∞[x 2+x +1-(ax +b )][x 2+x +1+(ax +b )]x 2+x +1+ax +b=limx →+∞(1-a 2)x 2+(1-2ab )x +(1-b 2)x 2+x +1+ax +b显然应有1-a 2=0,即有a =±1.于是原式=limx →+∞(1-2ab )x +(1-b 2)x 2+x +1+ax +b=limx →+∞1-2ab +(1-b 2)/x1+(1/x )+(1/x 2)+a +(b /x )=1-2ab1+a=k (a ≠-1)由上式可知,a ≠-1,于是a =1,从而有1-2b2=k 痴b =12-k .11.已知f (x )=2+x1+x(1-x )/(1-x )(1)limx →0f (x ); (2)limx →1f (x ); (3)limx →∞f (x ).解 令g (x )=2+x 1+x ,h (x )=1-x1-x.(1)因为limx →0g (x )=2,limx →0h (x )=1所以limx →0f (x )=limx →0g (x )h (x )=21=2.(2)因为 limx →1g (x )=32>0limx →1h (x )=limx →1(1-x )(1+x )(1-x )(1+x )=limx →111+x =12所以limx →1f (x )=limx →1g (x )h (x )=3212(3)因为limx →∞g (x )=limx →∞1+(2/x )1+(1/x )=1>0limx →∞h (x )=limx→∞(1/x )-(1-x )(1/x )-1=0所以limx →∞f (x )=limx→∞g (x )h (x )=10=1.12.求下列极限:(1)limx →0sin3x sin2x ; (2)limx →0tan5xsin2x ;(3)limx →0arctan4x arcsin2x;(4)limx →∞x sin1x;(5)limx →0sin2(2x )x2;(6)limx →0tan3x -sin2xx;(7)limx →01-cosxx sinx;(8)limx →0ax -sinbxtankx(a ,b ,k >0).解 (1)原式=limx →0sin3x3x·2x sin2x ·32=32.(2)原式=limx →0tan5x 5x ·2x sin2x ·52=52.(3)原式=limx →0arctan4x 4x ·2x arcsin2x ·42=2.(4)令u =1x,则x →∞时u →0.于是原式=limu →0sinu u=1.(5)原式=limx →0sin2(2x )(2x )2·4=4limx →0sin2x 2x 2=4.(6)原式=3limx →0tan3x 3x -2limx →0sin2x2x =3-2=1(7)因为1-cosx ~12x 2(x →0),所以原式=12limx →0x 2x sinx =12limx →0x sinx =12(8)原式=limx →0a k ·kx tankx -b k ·sinbx bx ·kxtankx=a k -b k =a -bk.13.求下列极限:(1)limx →∞1-1xx; (2)limx →∞1+5xx;(3)limx →0(1-sinx )1/x;(4)limx →0(1+3x )1/x;(5)limx →01-x22/x;(6)limx →∞x -2x +2x.解(1)原式=limx→∞1+1-x-x-1=1e.(2)原式=limx→∞1+1x /5x /55=e5.(3)令u =sinx ,则x →0时,u →0.于是原式=limu →0(1+u )1/u u /arcsin(-u )=e-1.(4)原式=limx →0[(1+3x )1/(3x )]3=e3(5)原式=limx →01-x 2-2/x-1=e-1(6)原式=limx →∞1-4x +2x=limx→∞1-4x +2-(x +2)/4-4x /(x +2)=e-4另解,令u =-x +24,则x =-4u -2,且u →∞(x →∞时),于是原式=limu →∞1+1u-4u -2=limu →∞1+1uu -4·limu →∞1+1u-2=e-4.14.求下列极限:(1)limx →0(cosx )1/(1-cosx ); (2)limx →0(sec2x )cot2x;(3)limx →π/2(1+cosx )5secx;(4)limx →0sinx -tanxsinx3;(5)limx →0(sinx 3)tanx1-cosx 2;(6)limx →π/61-2sinxsin(x -π/6);(7)limx →π/4(tan2x )tanπ4-x .解(1)令u =1-cosx ,则cosx =1-u ,且u →0(x →0时),因此原式=limu →0(1-u )1/u=e-1.(2)令u =cot2x ,则sec2x =1+1cot2x=1+1u ,且x →0时,u →+∞.因此原式=limu →+∞1+1uu=e(3)令u =cosx ,则secx =1u ,且x →π2时,u →0.因此原式=limu →0(1+u )5/u=limu →0(1+u )1/u 5=e5.(4)因为x →0时,sinx ~x ,sinx 3~x 3,cosx -1~-x22所以 原式=limx →0sinx (cosx -1)cosx ·sinx3=limx →0x ·(-x 2/2)x 3cosx=-12limx →01cosx =-12.(5)因为x →0时,sinx 3~x 3,tanx ~x ,1-cosx 2~12(x 2)2,所以原式=limx →0x 3·xx 4/2=2(6)令u =x -π6,则x →π6时,u →0,且有sinx =sinu +π6=12(3sinu +cosu )于是有 原式=limu →01-(3sinu +cosu )sinu=limu →01-cosu sinu -3=limu →0u 2/2sinu-3=-3.(7)因为tan2x =sin2x cos2x =sin2xcos2x -sin2xtanπ4-x =sinπ4-x cosπ4-x =cosx -sinx cosx +sinx所以tan2x tanπ4-x =sin2x cos2x -sin2x ·cosx -sinx cosx +sinx =sin2x (cosx +sinx )2从而原式=limx →π/4sin2x (cosx +sinx )2=122+222=12.15.讨论下列函数的连续性:(1)f (x )=x1-1-x ,x <0,x +2,x ≥0;(2)f (x )=e1/x,x <0,0,x =0,1xln(1+x 2),x >0.解 (1)由题设知f (0)=2,且f (0-0)=limx →0-x 1-1-x=limx →0-x (1+1-x )x =2f (0+0)=limx →0+(x +2)=2可见limx →0f (x )=2=f (0).所以,该函数在x =0处连续.另一方面,x1-1-x 在(-∞,0)内为初等函数,连续;x +2在(0,+∞)内为线性函数,连续.综上所述,该函数在(-∞,+∞)内连续.(2)因f (0)=0,且 f (0-0)=limx →0-e1/x=0, f (0+0)=limx →0+1xln(1+x 2)=limx →0+x ln(1+x 2)1/x 2=0·1=0所以 limx →0f (x )=0=f (0).因此,该函数在x =0处连续.另一方面,e1/x在(-∞,0)内连续,1xln(1+x 2)在(0,+∞)内连续.综上所述,该函数在(-∞,+∞)内连续.16.指出下列函数的间断点及其类型;如为可去间断点,将相应函数修改为连续函数;作出(1)、(2)、(3)的图形:(1)f (x )=1-x21+x ,x ≠-1,0,x =-1;(2)f (x )=x 2,x ≤0,lnx ,x >0;(3)f (x )=x x ; (4)f (x )=x sin1x.解 (1)由题设知f (-1)=0,而limx →-1f (x )=limx →-11-x 21+x =limx →-1(1-x )=2≠f (0)所以,x =-1为该函数的可去间断点.令f (-1)=2,则f ~(x )=1-x 21+x ,x ≠-12,x =-1=1-x在(-∞,+∞)内连续.f (x )的图形如图2.1所示.图2.1图2.2(2)由题设有f (0)=0,而f (0-0)=limx →0-x 2=0,f (0+0)=limx →0+lnx =-∞所以,x =0为该函数的无穷间断点.f (x )的图形如图2.2所示.(3)该函数在x =0处无定义,而f (0-0)=limx →0-xx =limx →0-x-x =-1,f (0+0)=limx →0+x x=limx →0+x x=1.图2.3因为左、右极限均存在但不相等,所以,x =0为该函数的跳跃间断点.f (x )的图形如图2.3所示.(4)该函数在x =0处无定义.因limx →0f (x )=limx →0x sin1x=0,故x =0为该函数的可去间断点.若令f (0)=0,则函数f ~(x )=x sin1x,x ≠00,x =0在(-∞,+∞)内连续.17.确定下列函数的定义域,并求常数a ,b ,使函数在定义域内连续:(1)f (x )=1x sinx ,x <0,a ,x =0,x sin1x+b ,x >0;(2)f (x )=ax +1,x ≤1,x 2+x +b ,x>1;(3)f (x )=1-x 2,-45<x <35,a +bx ,其他.解 (1)D f =(-∞,+∞).因f (x )在D f 的子区间(-∞,0)与(0,+∞)内均为初等函数.因此,f (x )在(-∞,0)∪(0,+∞)内连续.现讨论f (x )在分界点x =0处的连续性.已知f (0)=a ,而且f (0-0)=limx →0-sinxx =1,f (0+0)=limx →0+x sin1x+b =b 当f (0-0)=f (0+0)=f (0)时,即当a =b =1时,f (x )在x =0处连续.综上所述,当a =b =1时,该函数在其定义域(-∞,+∞)内连续.(2)D f =(-∞,+∞).因为f (-1)=1-a ,且f (-1-0)=limx →(-1)-(x 2+x +b )=bf (-1+0)=limx →(-1)+(ax +1)=1-a 所以,当a +b =1时,f (x )在x =-1处连续.又因f (1)=1+a ,且f (1-0)=limx →1-(ax +1)=a +1f (1+0)=limx →1+(x 2+x +b )=2+b所以,当a +1=2+b ,即a -b =1时,f (x )在x =1处连续.综上所述,当a +b =1且a -b =1,即a =1,b =0时,f (x )在x =-1和x =1处连续,从而f (x )在其定义域(-∞,+∞)内连续.(3)D f =(-∞,+∞).因f -45=a -45b ,且f -45-0=limx →-45-(ax +b )=a -45b f -45+0=limx →-45+1-x 2=35所以,当a -45b =35,即5a -4b =3时,f (x )在点x =-45处连续.又因f35=a +35b ,且f35-0=limx →35-1-x 2=45f35+0=limx →35+(a +bx )=a +35b 所以,当a +35b =45,即5a +3b =4时,f (x )在点x =35处连续.综上所述,当5a -4b =3且5a +3b =4,即a =57,b =17时,f(x)在x=-45与x=35处连续,从而f(x)在其定义域(-∞,+∞)内连续.(B)1.填空题:(1)limn→∞1n2+1(n+1)2+…+1(2n)2= ;(2)limx→0ln(x+a)-lnax(a>0)= ;(3)limx→a+x-a+x-ax2-a2(a>0)= ;(4)若limx→+∞xx n+1-(x-1)n+1=k≠0,n为正整数,则n= ,k= ;(5)x→0时,1+x-1-x是x的 无穷小;(6)设f(x)=sinx·sin1x,则x=0是f(x)的 间断点;(7)设f(x)=x x,则x=0是f(x)的 间断点;(8)函数f(x)=1x2-5x+6的连续区间是 .答 (1)0; (2)1a; (3)12a;(4)2008,12008; (5)等价;(6)可去; (7)跳跃; (8)(-∞,2)∪(3,+∞).解 (1)因为14n≤1n2+1(n+1)2+…+1(2n)2≤1n且limn→∞14n=0,limn→∞1n=0.所以,由夹逼定理可知,原式=0.(2)原式=limx→0ln1+x a1/x=1alimx→0ln1+x a a/x=1alnlimx→01+x a a/x=1alne=1a.(3)因为x-a+x-ax2-a2=x-ax+a(x+a)+1x+a且limx→a+x-ax+a(x+a)=0,limx→a+1x+a=12a所以,原式=12a.(4)因为x n+1-(x-1)n+1=[x-(x-1)][x n+x n-1(x-1)+…+x(x-1)n-1+(x-1)n]=x n1+1-1x+…+1-1x n-1+1-1x n所以,由题设有原式=limx→+∞x2008-n1+1-1x+…+1-1x n-1+1-1x n=k≠0显然,要上式成立,应有2008-n=0,即n=2008.从而原式=limx→+∞11+1-1x+…+1-1x n-11-1x n=1n=k所以,k=1n=12008.(5)因为limx→01+x-1-xx=limx→021+x+1-x=1所以,x→0时,1+x-1-x是x的等价无穷小.(6)因为limx→0sinx·sin1x=limx→0sinx x·limx→0xsin1x=1×0=0.所以,x=0是f(x)的可去间断点(令f(0)=0,即可).(7)因为f (0-0)=limx →0--x x =-1,f (0+0)=limx →0+xx=1左、右极限存在,但不相等,故x =0为跳跃间断点.(8)该函数有定义的条件是x 2-5x +6=(x -2)(x -3)>0由此得x <2或x >3.因此,该函数的连续区间为(-∞,2)或(3,+∞).2.单项选择题:(1)函数f (x )在点x 0处有定义,是极限limx →x 0f (x )存在的 .(A)必要条件; (B)充分条件;(C)充分必要条件;(D)无关条件.(2)下列“结论”中,正确的是 .(A)无界变量一定是无穷大;(B)无界变量与无穷大的乘积是无穷大;(C)两个无穷大的和仍是无穷大;(D)两个无穷大的乘积仍是无穷大.(3)设函数f (x )=1,x ≠1,0,x =1,则limx →1f (x )= .(A)0; (B)1; (C)不存在; (D)∞.(4)若limx →2x 2+ax +bx 2-3x +2=-1,则 .(A)a =-5,b =6; (B)a =-5,b =-6;(C)a =5,b =6;(D)a =5,b =-6.(5)设f (x )=1-x 1+x,g (x )=1-3x ,则当x →1时, .(A)f (x )与g (x )为等价无穷小;(B)f (x )是比g (x )高阶的无穷小;(C)f (x )是比g (x )低阶的无穷小;(D)f (x )与g (x )为同阶但不等价的无穷小.(6)下列函数中,在定义域内连续的是 .(A)f (x )=cosx ,x ≤0,sinx ,x >0; (B)f (x )=1x,x >0,x ,x ≤0;(C)f (x )=x +1,x ≤0,x -1,x >0;(D)f (x )=1-e-1/x 2,x ≠0,1,x =0.(7)下列函数在区间(-∞,1)∪[3,+∞]内连续的是 .(A)f (x )=x 2+2x -3; (B)f (x )=x 2-2x -3;(C)f (x )=x 2-4x +3;(D)f (x )=x 2+4x +3.(8)若f (x )在区间 上连续,则f (x )在该区间上一定取得最大、最小值.(A)(a ,b ); (B)[a ,b ]; (C)[a ,b ); (D)(a ,b ].答 (1)D; (2)D; (3)B;(4)A;(5)D; (6)D; (7)C; (8)B.解 (1)limx →x 0f (x )是否存在与f (x )在点x 0是否有定义无关,故应选(D).(2)(A)、(B)、(C)都不正确.例如n →∞时n sinn 是无界变量,而不是无穷大;n →∞时,n sinn 是无界变量,n 是无穷大,而n ·n sinn =n 2sinn 是无界变量,不是无穷大;n →∞时,n 与-n 都是无穷大,但n +(-n )=0是一常量,不是无穷大.(D)正确.例如,设limu →∞u 0=∞, limu →∞v n =∞则对任意给定的M >0,存在正整数N 1,N 2,使当n =N 1,n >N 2时,恒有u n>M ,v n >M取N =max{N 1,N 2},则当n >N 时,恒有u n v n=u n ·v n>M ·M =M2这表明limn →∞u n v n =∞.(3)易知f (1-0)=f (1+0)=1,从而limx →1f (x )=1,故应选(B).(4)因为limx →2(x 2-3x +2)=limx →2(x -2)(x -1)=0,因此,分子的极限也应为0,即应有x 2+ax +b =(x -2)(x -c )=x 2-(2+c )x +2c由此得a =-(2+c ),b =2c于是,由题设有limx →2x 2+ax +b x 2-3x +2=limx →2(x -2)(x -c )(x -2)(x -1)=limx →2x -cx -1=2-c =-1由此得c =3,从而得a =-5,b =6.故应选(A).(5)因为。

经济数学基础综合练习及参考答案----第一部分微积分

经济数学基础综合练习及参考答案----第一部分微积分

1经济数学基础综合练习及参考答案第一部分 微分学一、单项选择题 1.函数()1lg +=x xy 的定义域是(1->x 且0≠x). .2.若函数)(x f 的定义域是[0,1],则函数)2(xf 的定义域是(]0,(-∞ ).3.下列各函数对中,( x x x f 22cos sin )(+=,1)(=x g )中的两个函数相等.4.设11)(+=xx f ,则))((x f f =(11++xx).5.下列函数中为奇函数的是( 11ln+-=x x y).6.下列函数中,()1ln(-=x y )不是基本初等函数.7.下列结论中,( 奇函数的图形关于坐标原点对 )是正确的. 8. 当x →0时,下列变量中(xx 21+ )是无穷大量. 9. 已知1tan )(-=xxx f ,当( x →0 )时,)(x f 为无穷小量.10.函数sin ,0(),0xx f x xk x ⎧≠⎪=⎨⎪=⎩ 在x = 0处连续,则k = ( 1).11. 函数⎩⎨⎧<-≥=0,10,1)(x x x f 在x = 0处(右连续 ).12.曲线11+=x y 在点(0, 1)处的切线斜率为( 21- ).13. 曲线x y sin =在点(0, 0)处的切线方程为(y =x ).14.若函数x x f =)1(,则)(x f '=(-21x ).15.若xx x f c o s )(=,则='')(x f ( x x x cos s i n 2-- ).16.下列函数在指定区间(,)-∞+∞上单调增加的是(e x).17.下列结论正确的有( x 0是f (x )的极值点,且f '(x 0)存在,则必有f '(x 0) = 0 ).18. 设需求量q 对价格p 的函数为p p q 23)(-=,则需求弹性为E p =(--pp32 ).二、填空题1.函数⎩⎨⎧<≤-<≤-+=20,105,2)(2x x x x x f 的定义域是[-5,2]2.函数xx x f --+=21)5ln()(的定义域是(-5, 2 )3.若函数52)1(2-+=+x x x f ,则=)(x f 62-x .4.设函数1)(2-=u u f ,xx u 1)(=,则=))2((u f 43-.5.设21010)(x x x f -+=,则函数的图形关于 y 轴对称.6.已知生产某种产品的成本函数为C (q ) = 80 + 2q ,则当产量q = 50时,该产品的平均成本为3.6 .7.已知某商品的需求函数为q = 180 – 4p ,其中p 为该商品的价格,则该商品的收入函数R (q ) = 45q – 0.25q 2 . 8. =+∞→xx x x sin lim1 .9.已知x x x f sin 1)(-=,当0→x 时,)(x f 为无穷小量.10. 已知⎪⎩⎪⎨⎧=≠--=1111)(2x a x x x x f ,若f x ()在),(∞+-∞内连续,则=a 2 .11. 函数1()1e xf x =-的间断点是0x =.12.函数)2)(1(1)(-+=x x x f 的连续区间是)1,(--∞),2(∞+.)1处的切线斜率是(1)0.5y '=14.函数y = x 2 + 1的单调增加区间为(0, +∞)15.已知x x f 2ln )(=,则[f =0 .16.函数y x =-312()的驻点是x =1.17.需求量q 对价格p 的函数为2e 100)(pp q -⨯=,则需求弹性为E p =2p-.18.已知需求函数为pq 32320-=,其中p 为价格,则需求弹性E p =10-p p.三、计算题(答案在后面)1.423lim222-+-→x x x x 2.231lim21+--→x x x x 3.x → 4.2343limsin(3)x x x x →-+- 52)1tan(lim 21-+-→x x x x 6.))32)(1()23()21(lim 625--++-∞→x x x x x x 7.已知y xxx cos 2-=,求)(x y ' . 8.已知)(x f x x x ln sin 2+=,求)(x f ' . 9.已知x y cos 25=,求)2π(y ';10.已知y =32ln x ,求y d . 11.设x y x5sin cos e +=,求y d .12.设xx y -+=2tan 3,求y d .13.已知2sin 2cos x y x -=,求)(x y ' .14.已知xx y 53e ln -+=,求)(x y ' . 15.由方程2e e )1ln(=++xy x y 确定y 是x 的隐函数,求)(x y '.16.由方程0e sin =+yx y 确定y 是x 的隐函数,求)(x y '.17.设函数)(x y y =由方程y x y e 1+=确定,求0d d =x xy.18.由方程x y x y =++e )cos(确定y是x 的隐函数,求y d .四、应用题(答案在后面) 1.设生产某种产品x个单位时的成本函数为:x x x C 625.0100)(2++=(万元),求:(1)当10=x 时的总成本、平均成本和边际成本;(2)当产量x为多少时,平均成本最小?2.某厂生产一批产品,其固定成本为2000元,每生产一吨产品的成本为60元,对这种产品的市场需求规律为q p =-100010(q 为需求量,p 为价格).试求:(1)成本函数,收入函数; (2)产量为多少吨时利润最大?3.设某工厂生产某产品的固定成本为50000元,每生产一个单位产品,成本增加100元.又已知需求函数p q 42000-=,其中p 为价格,q 为产量,这种产品在市场上是畅销的,试求:(1)价格为多少时利润最大?(2)最大利润是多少? 4.某厂生产某种产品q 件时的总成本函数为C (q ) = 20+4q +0.01q 2(元),单位销售价格为p = 14-0.01q (元/件),试求:(1)产量为多少时可使利润达到最大?(2)最大利润是多少?5.某厂每天生产某种产品q件的成本函数为9800365.0)(2++=q q q C (元).为使平均成本最低,每天产量应为多少?此时,每件产品平均成本为多少? 6.已知某厂生产q件产品的成本为C q q q ()=++25020102(万元).问:要使平均成本最少,应生产多少件产品? 三、极限与微分计算题(答案) 1.解423lim222-+-→x x x x =)2)(2()1)(2(lim2+---→x x x x x =)2(1lim2+-→x x x = 412.解:231lim21+--→x x x x =)1)(2)(1(1lim 1+---→x x x x x=21)1)(2(1lim1-=+-→x x x3.解l ix →0x → =xx x x x 2sin lim)11(lim 00→→++=2⨯2 = 44.解 2343lim sin(3)x x x x →-+-=3(3)(1)lim sin(3)x x x x →---=333limlim(1)sin(3)x x x x x →→-⨯--= 25.解)1)(2()1tan(lim2)1tan(lim121-+-=-+-→→x x x x x x x x1)1tan(lim21lim11--⋅+=→→x x x x x 31131=⨯= 6.解))32)(1()23()21(lim 625--++-∞→x x x x x x =))32)(11()213()21(lim 625xx x x xx --++-∞→=2323)2(65-=⨯-7.解:2y '(x )=)cos 2('-xx x =2cos sin 2ln 2x xx x x --- =2cos sin 2ln 2x xx x x ++8.解xx x x f x x 1cos 2s i n 2ln 2)(++⋅=' 9.解 因为5ln 5sin 2)cos 2(5ln 5)5(cos 2cos 2cos 2x x x x x y -='='='所以5ln 25ln 52πsin 2)2π(2πcos2-=⋅-='y10.解 因为 )(ln )(ln 3231'='-x x y331ln 32)(ln 32xx x x ==- 所以x xx y d ln 32d 3=11.解 因为)(cos cos 5)(sin e4sin '+'='x x x y xx x x xsin cos 5cos e4sin -=所以x x x x y xd )sin cos 5cos e(d 4sin -=12.解 因为)(2ln 2)(cos 1332'-+'='-x x xy x2ln 2cos 3322x xx--=所以 x xx y x d )2ln 2cos 3(d 322--=13.解 )(cos )2(2sin )(22'-'-='x x x y x x2cos 22ln 2sin 2x x x x --=14.解:)5(e )(ln ln 3)(52'-+'='-x x x x y xx xx525e ln 3--=15.解 在方程等号两边对x 求导,得 )e ()e (])1ln([2'='+'+xy x y0)(e 1)1ln(='+++++'y x y xyx y xyxy xyy xyy x x e 1]e )1[ln(-+-='++故]e )1)[ln(1(e )1(xyxyx x x y x y y +++++-='16.解 对方程两边同时求导,得0e e cos ='++'y x y y yyyyy x y e)e (cos -='+)(x y '=yyx y e cos e +-.17.解:方程两边对x 求导,得 y x y yy '+='e eyy x y e1e-='当0=x 时,1=y所以,d d =x xye e 01e 11=⨯-=18.解 在方程等号两边对x 求导,得)()e (])[cos('='+'+x y x y1e ]1)[sin(='+'++-y y y x y)sin (1)]sin(e [y x y y x y++='+-)sin(e )sin(1y x y x y y +-++='故x y x y x y yd )sin(e )sin(1d +-++=四、应用题(答案)1.解(1)因为总成本、平均成本和边际成本分别为:x x x C 625.0100)(2++=625.0100)(++=x xx C ,65.0)(+='x x C所以,1851061025.0100)10(2=⨯+⨯+=C5.1861025.010100)10(=+⨯+=, 116105.0)10(=+⨯='C(2)令25.0100)(2=+-='xx ,得20=x (20-=x 舍去)因为20=x 是其在定义域内唯一驻点,且该问题确实存在最小值,所以当=x 20时,平均成本最小.2.解 (1)成本函数C q ()= 60q +2000.因为 qp =-100010,即p q =-100110, 所以 收入函数R q ()=p ⨯q =(100110-q )q =1001102q q -. (2)因为利润函数L q ()=R q ()-C q ()=1001102qq --(60q +2000)= 40q -1102q -2000 且'L q ()=(40q -1102q -2000')=40-0.2q令'L q ()= 0,即40- 0.2q = 0,得q = 200,它是L q ()在其定义域内的唯一驻点. 所以,q = 200是利润函数L q ()的最大值点,即当产量为200吨时利润最大.3.解 (1)C (p ) = 50000+100q = 50000+100(2000-4p ) =250000-400pR (p ) =pq = p (2000-4p )= 2000p -4p 2利润函数L (p ) = R (p ) - C (p ) =2400p -4p 2 -250000,且令)(p L '=2400 – 8p = 0得p =300,该问题确实存在最大值. 所以,当价格为p =300元时,利润最大.(2)最大利润1100025000030043002400)300(2=-⨯-⨯=L (元).4.解 (1)由已知201.014)01.014(q q q q qp R -=-==利润函数22202.0201001.042001.014q q q q q q C R L --=----=-=则q L 04.010-=',令004.010=-='q L ,解出唯一驻点250=q .因为利润函数存在着最大值,所以当产量为250件时可使利润达到最大,(2)最大利润为1230125020250025002.02025010)250(2=--=⨯--⨯=L (元)5. 解 因为 C q ()=C q q ()=05369800.q q++(q >0)'C q ()=(.)05369800q q++'=0598002.-q令'C q ()=0,即0598002.-q =0,得q 1=140,q 2=-140(舍去).q 1=140是C q ()在其定义域内的唯一驻点,且该问题确实存在最小值. 所以q 1=140是平均成本函数C q ()的最小值点,即为使平均成本最低,每天产量应为140件. 此时的平均成本为C ()140=05140369800140.⨯++=176 (元/件) 6.解 (1) 因为 C q ()=C q q ()=2502010q q ++'C q ()=()2502010qq ++'=-+2501102q令'C q ()=0,即-+=2501100q ,得q 1=50,q 2=-50(舍去),q 1=50是C q ()在其定义域内的唯一驻点.所以,q 1=50是q ()的最小值点,即要使平均成本最少,应生产50件产品.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 习题一1.设函数x x x f 3)(3-=,x x 2sin )(=ϕ,求⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛6πϕf ,()[]1f f ,[])(x f ϕ。

解:(1)∵233sin 62sin 6==⎪⎭⎫⎝⎛=⎪⎭⎫⎝⎛πππϕ, ∴8398312833233833233232363-=-=-=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛f f πϕ; (2)∵2131)1(3-=⋅-=f ,∴()[]268)2(3)2(13-=+-=-⋅--=f f ;(3)[][]()()x x x x x f x f 62sin 32sin )(2sin )(33-=-==ϕ2.设)(x f 的定义域为(0,1),求)12(+x f 的定义域。

解:令012=+x ,得21-=x ,令112=+x ,得0=x , 故)12(+x f 的定义域为⎪⎭⎫⎝⎛-0,21。

3,下列表达式中,哪个不是初等函数? (1)x x y -=12; (2)⎪⎩⎪⎨⎧<≥=.0,,0,32x x x y x (3)xx x f -+-=111)(; (4)x x x f 22sin )(+=解:(2)4.分析下列函数的复合结构: (1)xey 2cos ln =; (2)2tan ln x y =;(3)x y 21sin +=; (4)[]2)21arcsin(x y +=; (5)xe y 3tan =; (6)非复合函数。

解(1)ue y =,v u =,s v ln =,t s cos =,x t 2=;(2)u y =,v u ln =,s v tan =,2x s =;(3)u y sin =,v u =,x v 21sin +=;(4)2u y =,v u arcsin =,x v 21+=;(5)u y tan =,ve u =,x v 3=; (6)非复合函数。

5.将)2(sin22x x e y +=分解为一系列简单函数。

解:ue y =,2v u =,s v sin =,x x s 22+=。

6.若23)1(242++=+x x x f ,求)(x f 。

解:∵12)1(2422++=+x x x ,即12)1(2224--+=x x x ∴2312)1(23)1(2222242++--+=++=+x x x x x x f 故1)(2+=x x f第一章 习题二1.已知某商品的需求函数和供给函数分别为P Q 2300-=,P S 5.030+-=,求该商品的均衡价格和均衡数量。

解: 由题意,P P 5.0302300+-=-, 即P 5.2330=,求得132=P ,由此得36264300=-=Q ,因此,该商品的均衡价格和均衡数量分别为132与36。

2.当市场上鸡蛋的收购价格为每千克2.5元时,收购站每月能收购5000千克,若收购价每千克提高0.1元时,则每月能多收购400千克,求鸡蛋的线性供给函数。

解:设鸡蛋的线性供给函数为bp a Q +=,由题意得⎩⎨⎧+=+=b a ba 6.254005.25000,即b 1.0400=,4000=b ,因此5000-=a故鸡蛋的线性供给函数为p Q 40005000+-=。

3.某人现在有1000元钱存入银行,银行年利率为2.15%,按单利计算,5年后的本利和是多少?解;由题意,本金为1000元,5年的利息为5.1075%15.21000=⨯⨯, 故5年后的本利和是1107.5元。

4.某人若想在5年后在银行提取10万元,银行年利率为5%,按照复利计算,现在应该存入银行多少钱?解:设现在应该存入银行x 元钱。

该笔钱1年后的本息为%)51(+x ;2年后的本息为2%)51(+x ;3年后的本息为3%)51(+x ; 4年后的本息为4%)51(+x ;5年后的本息为5%)51(+x ;因此可得方程100000%)51(5=+x 。

即5%)51(100000+=x ,得:62.783522762815625.1100000==x 故现在应该存入银行78352.62元。

5.某商品的需求函数为410p q -=,总成本函数为227q q C ++=,求 (1)商品的利润函数;(2)销售10件商品时的利润。

解:(1)因为收入函数为pq R =,总成本函数为227q q C ++=, 所以利润函数为227q q pq C R L ---=-=, 由需求函数为410pq -=可知,p q -=404,即q p 440-=,代入上式,便得 2222744027)440(q q q q q q q q L ----=----=,即得所求的利润函数为25387q q L -+-=。

(2)当10=q 时,1275003807-=-+-=L , 即销售10件商品时,亏损127元。

6.经营牛仔裤的某个体户的成本函数为23096q q C ++=,若销售单价定为50元/件,求:(1)该商品经营的保本点;(2)每天销售20件该商品,缴纳所得税100元,为了不亏本,销售单价定为多少合适?解:(1)设每天销售q 件。

则收入函数为q R 50=,又成本函数为23096q q C ++=,故利润函数为C R L -=,即22096q q L -+-=,令0≥L ,即020962≥-+-q q ,解得166≤≤q 。

即在定价为50元/件且不考虑交税的情形之下,每天销售量在6到16件之间可确保不亏本。

(2)若每天销售20件该商品,缴纳所得税100元,则设定价为p 元/件, 此时收入为p R 20=元,非税成本为1096202030962=+⨯+=C 元,含税成本为11961001096=+=C 元。

易知此时的利润为C R L -=,即119620-=p L 。

0≥L ,即0119620≥-p ,解得59.8。

因此,这时的销售单价应不低于59.8元/件。

第一章 习题三1.观察下列数列的变化趋势,并确定它们是否有极限。

(1)nx n n 21)1(1+-=; (2)n n x n n 1)1(--+=;(3)213nx n +=; (4)21=n x 。

解:(1)0lim =∞→n n x ;(2)1lim =∞→n n x(3)3lim =∞→n n x(4)21lim =∞→n n x 2.设xx xx f 32)(+=,问)(lim 0x f x →是否存在?解:当-→0x 时,122lim 32lim 32lim)(lim 0000==+-=+=→→-→-→xxx x x x x x x f x x x x ; 当+→0x 时,2142lim 32lim 32lim)(lim 0000==+=+=→→+→+→x x x x x x x x x f x x x x ,由于左、右极限不相等,故∞=→)(lim 0x f x 。

3.判断xx e 1lim ∞→是否存在,若将极限过程改为0→x 呢?解:当∞→x 时,01→x ,故x x e 1lim ∞→=10=e ;而当0→x 时,∞→x1,故∞=→x x e 10lim 。

4.当0→x 时,讨论函数xx x f =)(的极限是否存在。

解:当-→0x 时,1limlim)(lim 000-=-==→-→-→xxxx x f x x x ;当+→0x 时,1limlim)(lim 000===→+→+→xxxx x f x x x , 由于)(lim )(lim 00x f x f x x +→-→≠,即左、右极限不相等,故∞=→)(lim 0x f x 。

5.设函数⎪⎩⎪⎨⎧>+-=<=,2,2)1(,2,0,2,)(22x x x x x x f 讨论当2→x 时,)(x f 的极限。

解:∵4lim )(lim 222==→-→x x f x x ;[]32)1(lim )(lim 222=+-=→+→x x f x x ,由于)(lim )(lim 22x f x f x x +→-→≠,即左、右极限不相等,故∞=→)(lim 2x f x ∴6. 设⎪⎩⎪⎨⎧>+=<+=,0,12,0,0,0,2)(x x x b x x f x 试确定b 的值,使)(lim 0x f x →存在。

解:当-→0x 时,b b x x f x x =+=→-→)2(lim )(lim 00; 当+→0x 时,2)12(lim )(lim 00=+=→+→xx x x f ,由题意知,)(lim )(lim 00x f x f x x +→-→=,即2=b 。

第一章 习题四1.下列极限正确的是(A )1sin lim=∞→xx x ; (B )12sin lim 0=→x xx ;(C )11sin lim =∞→xx x ; (D )111sinlim0=→xx x 。

解:(D )2. cbx x x a +∞→⎪⎭⎫ ⎝⎛+1lim 等于(A )e ; (B )be ;(C )ab e ; (D )cab e+。

解:由于⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛+∞→+∞→c bx x cbx x x a x a x a 11lim 1lim 故选(C )。

3. 21lim e x k xx =⎪⎭⎫⎝⎛-∞→,则=k (A )2; (B )2-; (C )21; (D )21-。

解:由于k kkxx xx e x k x k ---∞→∞→=⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-1lim 1lim ,由题意可知,2e e k=-,即2-=k ,故选(B )。

4.求下列各极限:(1)1352lim 22+-+→x x x x ; (2))153(lim 21+-→x x x ;(3)x x x x x x 2324lim 2230++-→; (4)137243lim 22+++-∞→x x x x x ; (5)11lim 31--→n n n ; (6))4)(1(1lim 22+++∞→n n n n ;(7)x x x 11lim-+→; (8)⎪⎭⎫ ⎝⎛---→311311lim x x x ; (9)⎪⎭⎫ ⎝⎛++++∞→n x 2121211lim 2 ; (10)454lim 24+--→x x x x ;(11)20cos 1limxx x -→; (12)x xx 5sin 3sin lim 0→; (13)()xx x 321lim -→; (14)xx xx x sin sin lim+-→;(15) xx x 4011lim ⎪⎭⎫ ⎝⎛+→; (15)xx x x ⎪⎭⎫⎝⎛-+∞→1212lim 。

相关文档
最新文档