53反比例函数的应用2
湘教版九年级上册数学精品教学课件 第1章 反比例函数 反比例函数的应用 (2)

(1) 写出电流 I 与电阻 R 的函数关系式;(2) 如果该电路的
电阻 R 为220Ω,则通过它的电流是多少的值. 解:(1) 因为 U = IR,且 U = 220V ,
所以 IR = 220 ,
即该电路的电流 I 关于电阻 R 的函数表达式为 I 220 .
(2) 因为该电路的电阻 R = 220Ω,
(2) 若到达目的地后,按原路匀速返回,并要求
在 3 小时内回到 A 城,则返回的速度不能低 于__2_4_0_千__米__/_时__.
4. 学校锅炉旁建有一个储煤库,开学时购进一批煤, 现在知道:按每天用煤 0.6 吨计算,一学期 (按 150 天 计算) 刚好用完. 若每天的耗煤量为 x 吨,那么这批煤 能维持 y 天.
解:对当于提F函示=数:40对F0×于 6函120l 0数=,2F0当0时l6>0l,00,由时F2,0随0l =越l 的大60l增0,大F得而越减 小小. .因因此此,,只若要想l求用 出6力00不F=超32,过004N00时N对的应一的半l,的则值, 就动能力确臂定至动少力要臂加l长至201少0.5应m加. 长的量. 3-1.5 = 1.5 (m).
解:由 p= ,得 p= p 是 S 的反比例函数,因为给定一个 S 的值,就有唯一 的一个 p 值和它相对应,这符合反比例函数的定义. (2) 当木板面积为 0.2 m2 时,压强是多少? 解:当 S=0.2 m2 时,p= =3000 (Pa) . 答:当木板面积为 0.2 m2 时,压强是 3000 Pa.
天卸载完,则平均每天至少要卸载 48 吨.
练一练 某乡镇要在生活垃圾存放区建一个老年活动中心,
这样必须把 1200 立方米的生活垃圾运走. (1) 假如每天能运 x 立方米,所需时间为 y 天,写出 y
反比例函数的应用

反比例函数的应用反比例函数是数学中的一种特殊函数形式,也称为倒数函数。
它的形式可以表示为y=k/x,其中k是常数。
在实际生活中,反比例函数有着广泛的应用,本文将探讨几个常见的反比例函数应用场景。
1. 面积与边长的关系在几何学中,矩形的面积与其两条边长之间存在着反比例关系。
假设一个矩形的长为L,宽为W,那么它的面积S可以表示为S=L*W。
由于长度和宽度是矩形两个独立的参数,它们之间存在反比例关系。
当一个参数增加时,另一个参数相应地减小,以保持面积不变。
这种反比例关系可以应用于很多实际问题中,比如房间的面积与家具的数量,农田的面积与种植作物的产量等。
通过理解面积与边长之间的反比例关系,我们可以在实际问题中做出合理的决策。
2. 时间和速度的关系另一个常见的反比例函数应用是时间和速度之间的关系。
在物理学中,速度可以定义为物体在单位时间内所移动的距离。
假设一个物体在时间t内移动的距离为d,则它的速度v可以表示为v=d/t。
根据这个公式,我们可以看到时间和速度之间呈现出反比例关系。
这个关系在实际生活中有很多应用。
比如旅行中的车辆速度与到达目的地所需时间之间的关系,运输货物的速度与到达目的地所需的时间之间的关系等。
这种反比例关系帮助我们计算和预测在不同速度下所需的时间。
3. 电阻与电流的关系在电学中,电阻和电流之间存在着反比例关系。
根据欧姆定律,电流I通过一个电阻R时,产生的电压V可以表示为V=I*R。
由于电阻是电流通过的障碍物,当电阻增加时,电流减小,反之亦然。
这种反比例关系在电路设计和计算中起着重要的作用。
我们可以根据电阻和电流之间的关系来选择合适的电阻值,以控制电路中的电流大小。
此外,这种关系还能帮助我们解决一些实际电路中的问题,比如计算电路中的功率、阻值等。
总结:反比例函数在各个领域中都有广泛的应用。
通过理解反比例关系,我们能够分析和解决实际问题,做出合理的决策。
本文介绍了三个常见的反比例函数应用,包括面积与边长的关系、时间和速度的关系,以及电阻与电流的关系。
反比例函数的性质与应用

反比例函数的性质与应用反比例函数是数学中一种常见的函数类型,也被称为倒数函数。
在反比例函数中,两个变量的乘积为常数,其中一个变量的增大伴随着另一个变量的减小。
本文将探讨反比例函数的性质,并介绍其在实际生活中的应用。
一、反比例函数的定义与表示方式反比例函数是一种特殊的函数形式,可以使用以下的定义和表示方式:定义:如果两个变量x和y满足x*y=k,其中k为非零常数,则称y为x的反比例函数。
表示方式:反比例函数通常以y = k/x的形式表示,其中k为常数。
二、反比例函数的性质反比例函数具有以下几个重要的性质:1. 当x趋近于零时,反比例函数的值趋于无穷大。
这意味着函数图像会与y轴趋近于平行,但永远不会触及y轴。
2. 反比例函数的图像是一个双曲线。
具体来说,当k为正数时,图像位于第一和第三象限;当k为负数时,图像位于第二和第四象限。
3. 反比例函数的图像关于y轴和x轴均对称。
这意味着,如果(x, y)是函数图像上的一点,那么(-x, -y)也是该函数图像上的一点。
三、反比例函数的应用反比例函数在实际生活中有广泛的应用。
以下是一些常见的应用领域:1. 物体运动问题:当物体的速度与时间成反比例关系时,可以使用反比例函数来描述物体的运动。
例如,当汽车以恒定的速率行驶时,行驶的距离与所用时间成反比例关系。
2. 电阻与电流问题:在电路中,电阻和电流之间的关系可以由反比例函数来描述。
根据欧姆定律,电阻与电流成反比例关系。
3. 货币兑换问题:在国际贸易中,货币兑换率通常与两个国家的经济情况有关,它们之间呈现反比例关系。
这种关系可以用反比例函数来表示。
4. 物质的浓度问题:在化学中,溶液的浓度与所使用的溶剂的体积成反比例关系。
因此,反比例函数可以用来描述溶液的浓度变化。
5. 行动与反应问题:在心理学和社会科学中,人们的行动和其他人的反应通常呈反比例关系。
例如,人们参与某项活动的数量可能与其他人的参与数量成反比例关系。
总结:反比例函数是数学中常见的函数类型,具有特殊的性质。
湘教版数学九年级上册1.3《反比例函数的应用》说课稿2

湘教版数学九年级上册1.3《反比例函数的应用》说课稿2一. 教材分析湘教版数学九年级上册1.3《反比例函数的应用》这一节的内容,是在学生已经掌握了反比例函数的定义、性质的基础上进行学习的。
本节课的主要内容是让学生学会如何运用反比例函数解决实际问题,从而提高学生的数学应用能力。
教材中通过实例引入反比例函数的应用,让学生了解反比例函数在实际生活中的应用,接着通过例题和练习题,让学生学会如何运用反比例函数解决实际问题。
教材还设置了“思考题”和“探索题”,激发学生的思考,提高学生的学习兴趣。
二. 学情分析九年级的学生已经掌握了反比例函数的定义和性质,对于如何运用反比例函数解决实际问题,他们可能还存在一定的困难。
因此,在教学过程中,我将会引导学生运用已学的知识解决实际问题,帮助他们克服学习中的困难。
三. 说教学目标1.知识与技能目标:让学生掌握反比例函数的应用,能够运用反比例函数解决实际问题。
2.过程与方法目标:通过实例引入,让学生了解反比例函数在实际生活中的应用,培养学生的数学应用能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识。
四. 说教学重难点1.教学重点:让学生掌握反比例函数的应用。
2.教学难点:如何引导学生运用反比例函数解决实际问题。
五. 说教学方法与手段在教学过程中,我将采用实例引入、小组合作、讨论交流等教学方法,以激发学生的学习兴趣,提高学生的学习积极性。
同时,我还会运用多媒体教学手段,如PPT、网络资源等,以丰富教学内容,提高学生的学习效果。
六. 说教学过程1.导入新课:通过实例引入反比例函数的应用,让学生了解反比例函数在实际生活中的重要性。
2.讲解新课:讲解反比例函数的应用,让学生学会如何运用反比例函数解决实际问题。
3.巩固新课:通过练习题,让学生巩固所学知识。
4.拓展延伸:设置“思考题”和“探索题”,激发学生的思考,提高学生的学习兴趣。
5.课堂小结:对本节课的内容进行总结,让学生掌握反比例函数的应用。
反比例函数的应用与问题解决

反比例函数的应用与问题解决反比例函数是数学中常见的一种函数形式,其特点是自变量和因变量之间的关系满足倒数关系。
在实际应用中,反比例函数可以用来描述一些与数量和比例有关的问题,同时也可以帮助我们解决一些实际生活中的难题。
本文将介绍反比例函数的基本性质和常见应用,并通过实例来讨论一些与反比例函数相关的问题解决方法。
一、反比例函数的基本性质反比例函数的一般形式为y = k/x,其中k是常数,x和y分别表示自变量和因变量。
反比例函数的基本性质如下:1. 定义域和值域:自变量x的取值范围为除0以外的实数集,当x趋近于0时,函数值趋于无穷大;因变量y的取值范围为除0以外的实数集,当x趋近于无穷大时,函数值趋近于0。
2. 奇偶性:反比例函数不具有奇偶性,即不满足f(-x) = f(x)或f(-x)= -f(x)。
3. 对称轴:反比例函数的图像关于原点对称。
二、反比例函数的应用反比例函数在实际应用中具有广泛的应用,常见的领域包括物理学、经济学和工程学等。
下面将介绍几个常见的反比例函数应用实例:1. 电阻与电流关系:根据欧姆定律,电阻R与通过其的电流I之间的关系为R = U/I,其中U为电压常数。
可以看出,当电流增大时,电阻减小,两者成反比关系。
2. 速度与时间关系:对于匀速直线运动,速度v与时间t之间的关系为v = s/t,其中s为位移常数。
可以看出,当时间增加时,速度减小,两者成反比关系。
3. 药物浓度与体积关系:在化学实验中,溶液的浓度C与溶质在溶剂中的体积V之间的关系为C = n/V,其中n为溶质的量。
可以看出,当体积增大时,浓度减小,两者成反比关系。
三、反比例函数问题的解决方法在实际问题中,与反比例函数相关的问题可能涉及到函数值的计算、变量之间的关系以及最值的求解等。
下面将针对几种常见问题提供解决方法。
1. 计算函数值:根据反比例函数的定义,要计算函数在某一点的值,只需将该点的自变量代入函数表达式中即可。
反比例函数的应用

反比例函数的应用反比例函数是一种特殊的函数形式,在数学中应用十分广泛。
它的形式为f(x) = k/x,其中k为常数,x为自变量。
反比例函数具有一些独特的性质,例如当x趋近于无穷大或无穷小时,y趋近于0;当x增大时,y的值会很快变小,但不会变为0。
反比例函数在工程学、物理学、经济学等领域中有着广泛的应用。
下面分别介绍其中几个应用案例。
一、雷达波与距离在雷达信号的发送和接收中,控制信号的强度是非常重要的。
当雷达的发射功率增加时,雷达信号到达目标的时间会减少,信号在传输过程中所损失的能量也会减少。
这就是反比例函数的应用。
设雷达发射的电磁波在经过距离r后到达了目标,电磁波在传输过程中会损失能量,但总的能量仍然保持不变。
于是,我们可以利用反比例函数来描述这种情况:当雷达距离目标的距离越近时,信号的强度越大;反之亦然。
这一应用极大地提高了雷达的精准度和可靠性,为军事和民用领域带来实际效益。
二、人口增长与资源分布在生态学和环保学领域,反比例函数被用于描述人口增长和资源分布的关系。
一个经典的例子是章鱼和鱼类的数量之间的关系:章鱼数量越多,鱼类数量就会减少,反之亦然。
这可以用反比例函数来表示:鱼类数量F与章鱼数量O成反比例函数,即F = k/O。
这种函数形式可以非常准确地描述章鱼和鱼类数量之间的关系,为保护海洋生态系统提供了重要参考。
另一个例子是城市发展与资源分配的关系。
城市人口增长越快,资源的消耗和浪费也会相应增加。
如果我们考虑到城市中空气污染、水质污染、垃圾处理等因素,就可以将城市人口数量和资源分配写成反比例函数的形式,建立定量模型,提供对城市可持续发展的指导。
三、化学反应动力学反比例函数在化学领域中也有大量的应用,尤其是在化学反应动力学中。
在很多化学反应中,反应速率和反应物浓度是成反比例关系的。
这种现象可以用反比例函数来描述:当反应物浓度越高时,化学反应的速率会越低。
在化学反应动力学实验中,这一性质可以为实验设计和数据计算带来便利,提高研究化学反应的准确度。
反比例函数的性质与应用总结

反比例函数的性质与应用总结反比例函数是数学中常见的函数类型之一,它与比例关系相反。
在反比例函数中,当一个变量增大时,另一个变量会相应地减小,而当一个变量减小时,另一个变量会相应地增大。
本文将对反比例函数的性质及其应用进行总结,并探讨在实际问题中的具体应用。
一、反比例函数的性质1. 定义域与值域:反比例函数的定义域通常为实数集,值域为除零以外的实数集。
2. 函数表达式:反比例函数的一般形式为 y = k/x,其中 k 为常数。
3. 曲线特征:反比例函数的图像为一条经过原点的双曲线。
随着 x 的增大,y 的值逐渐减小,反之亦然。
4. 渐近线:反比例函数的图像存在两条渐近线,即 y = 0 和 x = 0,分别表示 y 趋近于 0 和 x 趋近于无穷大的情况。
二、反比例函数的应用反比例函数在实际问题中具有广泛的应用,以下是一些常见的应用示例:1. 电阻与电流关系:根据欧姆定律,电阻与电流之间的关系符合反比例函数。
电阻越大,通过电阻的电流越小;电阻越小,通过电阻的电流越大。
2. 时间与速度关系:在匀速运动中,时间与速度之间的关系也是反比例函数。
时间越长,相同距离下的速度越小;时间越短,相同距离下的速度越大。
3. 工作人员数量与完成时间关系:在一项任务中,工作人员数量与完成时间之间存在着反比例关系。
工作人员数量增多,完成时间相应缩短;工作人员数量减少,完成时间相应延长。
4. 投资收益与投入资金关系:一些投资项目中,投资收益与投入资金之间符合反比例函数。
投入资金越多,相同周期下的投资收益越低;投入资金越少,相同周期下的投资收益越高。
5. 音乐演奏中的音高与音强关系:在音乐领域,音高与音强之间也存在反比例关系。
音高越高,音强相对较小;音高越低,音强相对较大。
综上所述,反比例函数在数学中具有明确的性质,同时也在各个领域中有着广泛的应用。
了解反比例函数的性质以及在实际问题中的应用,无论是在解题过程还是在实际生活中都能带来便利,为我们解决问题提供了有力的数学工具。
反比例函数实际应用

反比例函数实际应用反比例函数是数学中的一个重要概念,它在实际生活中有着广泛的应用。
本文将探讨反比例函数的实际应用,并举例说明其在不同领域的具体用途。
一、什么是反比例函数反比例函数是指函数关系中,当自变量变化时,因变量与自变量的乘积保持不变的函数。
一般表达式为 y = k/x,其中 k 是常数。
当 x 增大时,y 的值减小;当 x 减小时,y 的值增大,呈现反比例关系。
二、反比例函数在实际应用中的例子1. 照明系统设计反比例函数在照明系统设计中有着重要的应用。
考虑到照明强度与照明距离的关系,当光源与被照射物体之间的距离增大时,光照强度会随之减小。
根据反比例函数的特性,可以通过调整灯具的位置和光源的强度来满足照明需求,使得不同距离下的照明质量保持一致。
2. 电阻和电流关系在电路中,电阻和电流之间的关系通常可以用反比例函数来描述。
根据欧姆定律,电流大小与电阻大小成反比例关系。
当电阻增大时,电流减小;当电阻减小时,电流增大。
这种关系在电路设计和电子元件选型中起到了重要的指导作用。
3. 时间与速度关系在运动学中,时间与速度之间的关系可以用反比例函数来表示。
例如,在汽车行驶的过程中,如果保持驱动力和负载不变,车辆行驶的速度与所用时间成反比。
行驶的时间越长,速度越慢;行驶的时间越短,速度越快。
这种关系在交通规划和车辆调度中具有重要意义。
4. 物质浓度与溶液体积关系在化学实验中,物质浓度与溶液体积之间的关系可以用反比例函数来描述。
根据稀释定律,当物质浓度增大时,溶液体积减小;当物质浓度减小时,溶液体积增大。
利用反比例函数的特性,可以根据需求调整溶液的浓度和体积,实现精确的配制和稀释。
5. 传输速率和带宽关系在计算机网络领域,传输速率和带宽之间的关系可以用反比例函数来表达。
根据香农理论,带宽越大,传输速率越快;带宽越小,传输速率越慢。
利用反比例函数的特性,可以优化网络带宽的分配,提高数据传输的效率和可靠性。
三、总结反比例函数作为数学中的一个重要概念,在实际生活中有着广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三数学导学案总课时数课题 5.3反比例函数的应
用
课时数 1 撰写人
学习目标经历分析实际问题中变量之间的关系、建立反比例函数模型,进而解决问题的过程。
体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。
重点难点建立反比例函数模型,进而解决问题的过程。
.
自学指导复习反比例函数的图象与性质
反比例函数:当k>0时,两支曲线分别在,在每一象限内,y的值随
x的增大而。
当k<0时,两支曲线分别在,在每一象限内,y的值随x的增大而。
自主探究某校科技小组进行野外考察,途中遇到一片十几米宽的烂泥湿地,为了安全、
迅速通过这片湿地,他们沿着前进路线铺垫了若干块木板,构筑成一条临时通
道,从而顺利完成了任务的情境。
你能解释他们这样做的道理吗?(见书P143)
(1)用含S的代数式表示P,P是S的反比例函数吗?为什么?
(2)当木板面积为0.2 2
m时,压强是多少
(3)如果要求压强不超过6000Pa,木板面积至少要多大
(4)在直角坐标系中,作出相应的函数图象。
(5)请利用图象对(2)和(3)作出直观解释,并与同伴进行交流。
做一做
1.蓄电池的电压为定值,使用此电源时,电流
I(A)与电阻R( )之间的函数关系如图所示。
(书上P144)
(1)蓄电池的电压是多少?你能写出这一函数的
表达式吗?
(2)完成下表,并回答问题:如果以此蓄电池为
电源的用电器限制电流不得超过10A,那么用电器的可变电阻应控制在什么范
围内?
2.如图,正比例函数y=k
1
x的图象与反比例函数y=x
k
2
的
图象相交于A,B两点,其中点A的坐标为(3,23).
(1)分别写出这两个函数的表达式:
(2)你能求出点B的坐标吗?你是怎样求的?与同伴进
行交流.
尝
试
应
用
1.某蓄水池的排水管每时排水8m3,6h可将满池水全部排空。
(1)蓄水池的容积是多少?
(2)如果增加排水管,使每时的排水量达到Q(3
m),那么将满池水排空所需的
时间t(h)将如何变化?
(3)写出t与Q之间的关系;
(4)如果准备在5h内将满池水排空,那么每时的排水量至少为多少?
(5)已知排水管的最大排水量为每时123
m,那么最少多长时间可将满池水全部
排空?
自学时发现的问题。