原子结构与元素周期律
原子结构元素周期律知识总结

原子结构元素周期律知识总结一、原子结构1.几个量的关系(X)质量数(A)=质子数(Z)+中子数(N)质子数=核电荷数=原子序数=原子的核外电子数阳离子:核外电子数=质子数—所带电荷数阴离子:核外电子数=质子数+所带电荷数2.同位素(1)要点:同——质子数相同,异——中子数不同,微粒——原子。
(2)特点:同位素的化学性质几乎完全相同;3.核外电子排布规律(1).核外电子是由里向外,分层排布的。
(2).各电子层最多容纳的电子数为2n2个;最外层电子数不得超过8个(第一层为最外层不超过2个),次外层电子数不得超过18个,。
(3).以上几点互相联系。
二、元素周期律和周期表1.几个量的关系周期数=电子层数主族序数=最外层电子数=最高正价数 |最高正价|+|负价|=8O、F无最高正价,金属无负价2.周期表中部分规律总结(1).最外层电子数大于或等于3而又小于8的元素一定是主族元素;最外层电子数为1或2的元素可能是主族、副族或0族(He)元素;最外层电子数为8的元素是稀有气体元素(He除外)。
(2).在周期表中,第ⅡA与ⅢA族元素的原子序数差分别有以下三种情况:①第2、3周期(短周期)元素原子序数相差1;②第4、5周期相差11;③第6、7周期相差25。
(3).同主族相邻元素的原子序数差别有以下二种情况:①第ⅠA、ⅡA族,上一周期元素的原子序数+该周期元素的数目=下一同期元素的原子序数;②第ⅢA~ⅦA族,上一周期元素的原子序数+下一周期元素的数目=下一周期元素的原子序数。
4概念:元素的性质随着元素核电荷数的递增而呈周期性变化的规律叫做元素周期律。
本质:元素性质的周期性变化是元素原子的核外电子排布的周期性变化的必然结果。
(1)、半径(除稀有气体外)同周期元素原子从左到右逐渐减少,同主族元素原子从上到下逐渐增大。
(2)不同电子层数的粒子,电子层数多半径大。
(3)相同核外电子排布的粒子,核电荷数大半径小。
(4)同种元素的原子阴离子半径大于原子半径,原子半径大于阳离子半径。
《原子结构与元素周期律》知识总结

电第一章 原子结构与元素周期律第一节原子结构有关原子结构的知识是自然科学的重要基础知识之一。
原子是构成物质的一种基本微粒,物质的组成、性质和变化都与原子结构密切相关。
1、原子核核素§1原子的组成及微粒间的关系构成原子或离子微粒间的数量关系: 1质子数Z +中子数N =质量数A =原子的近似相对原子质量质量关系2原子的核外电子数=核内质子数=核电荷数3阳离子核外电子数=核内质子数-阳离子所带电荷数 4阴离子核外电子数=核内质子数+阴离子所带电荷数 元素、核素、同位素)(X A Z 原子原质子:相对原子质量为1,1个质子带1中子:相对质量为1,不带电核处电子:质量忽略不计,1个电子例如:氢元素有、、三种不同的核素,它们之间互称同位素。
放射性同位素的应用:1、作为放射源和同位素示踪。
2、用H11H11于疾病诊断和治疗。
§2核外电子排布:如:53号元素碘的电子排布为,2-8-18-18-7元素的化学性质与原子最外层电子排布的关系:如:钠原子最外层只有1个电子,容易失去这个电子而达到稳定结构,因此钠元素在化合物中通常显1价;氯原子最外层有7个电子,只需得到1个电子便可达到稳定结构,因此氯元素在化合物中可显-1价。
第2节元素周期律和元素周期表 §1元素周期律外层电子数从1~8)。
(2)原子半径呈周期性变化(由大~小,稀有气体除外)。
(3)元素的主要化合价呈周期性变化(正化价从1~7,负化合价从-4~-1)。
元素周期律的实质元素原子的核外电子排布呈周期性变化§2元素周期表排列原则(1)按原子序数递增的顺序从左到右排列 (2)将电子层数相同的元素排成一个横行(1横称为1个周期) (3)把最外层电子数相同的无素(个别除外)排成一个纵列(1个纵列称为1个族)元素周期表元素周期律 原子半径比较方法:(1)电子层数越多,半径越大;电子层数越少,半径越小(即周期越大,半径越大)(2)当电子层结构同时,核电荷数多的半径小,核电荷数少的半径大,如:F ->Na +>Mg 2(3)对于同种元素的各种微粒,核外电子数越多,半径越大;核外电子数越少,半径越小。
原子结构与元素周期律的关系

原子结构与元素周期律的关系(1)“位、构、性”之间的关系:(2)“位、构、性”关系的应用:1)元素原子的核外电子排布,决定元素在周期表中的位置,也决定了元素的性质;2)元素在周期表中的位置,以及元素的性质,可以反映原子的核外电子排布;3)根据元素周期律中元素的性质递变规律,可以从元素的性质推断元素的位置;4)根据元素在周期表中的位置,根据元素周期律,可以推测元素的性质.【命题方向】本考点主要考察位构性的关系及其应用,在高考中通常以综合题推断题的形式出现,需要重点掌握.题型一:“位、构、性”的关系典例1:(2014•滨州一模)短周期元素甲、乙、丙、丁的原子序数依次增大,甲和乙形成的气态化合物的水溶液呈碱性,乙位于第VA族,甲和丙同主族,丁原子最外层电子数与电子层数相等,则()A.原子半径:丙>乙>丁B.单质的还原性:丁>丙>甲C.甲、乙、丙的氧化物均为共价化合物D.乙、丙、丁的最高价氧化物对应的水化物能相互反应分析:短周期元素甲乙丙丁的原子序数依次增大,甲和乙形成的气态氢化物的水溶液呈碱性,则甲为H,乙位于第VA族,乙为N;甲和丙同主族,丙为Na;丁的最外层电子数和电子层数相等,则丁在第三周期第ⅢA族,即丁为Al,以此来解答.解答:短周期元素甲乙丙丁的原子序数依次增大,甲和乙形成的气态氢化物的水溶液呈碱性,则甲为H,乙位于第VA族,乙为N;甲和丙同主族,丙为Na;丁的最外层电子数和电子层数相等,则丁在第三周期第ⅢA族,即丁为Al,A、同周期原子半径从左向右减小,电子层越多,半径越大,则原子半径为丙>丁>乙,故A错误;B、金属性越强,单质的还原性越强,则单质的还原性丙>丁>甲,故B错误;C、甲、乙的氧化物为共价化合物,丙的氧化物为离子化合物,故C错误;D、乙、丙、丁的最高价氧化物对应的水化物分别为硝酸、氢氧化钠、氢氧化铝,氢氧化铝为两性氢氧化物,能相互反应,故D正确.故选D.点评:本题考查元素周期律及元素对应的单质、化合物的性质,元素的推断是解答本题的关键,注意氨气的水溶液为碱性是解答本题的突破口,难度不大.题型二:“位、构、性”关系的应用﹣﹣元素的推断典例2:(2014•番禺区一模)短周期元素X、Y、W、Q在元素周期表中的相对位置如图所示.常温下,Al能溶于W的最高价氧化物的水化物的稀溶液,却不溶于其浓溶液.下列说法正确的是()X YW QA.Y的最高化合价为+6B.离子半径:W>Q>Y>XC.氢化物的沸点:Y>Q D.最高价氧化物的水化物的酸性:W>Q分析:短周期元素X、Y、W、Q,常温下,Al能溶于W的最髙价氧化物的水化物的稀溶液,却不溶于其浓溶液.则W为S元素,由元素周期表中的相对位置可知,X为N元素、Y为O元素、Q为Cl元素,据此解答.解答:短周期元素X、Y、W、Q,常温下,Al能溶于W的最高价氧化物的水化物的稀溶液,却不溶于其浓溶液.则W为S元素,由元素周期表中的相对位置可知,X为N元素、Y为O元素、Q为Cl元素,A.Y为O元素,没有+6价,故A错误;B.电子层越多离子半径越大,电子层结构相同核电荷数越大离子半径越小,故离子半径S2﹣>Cl﹣>N3﹣>O2﹣,故B错误;C.水分子之间存在氢键,常温下为液体,HCl常温下为气体,故水的沸点更高,故C正确;D.非金属性Cl>S,故最高价氧化物的水化物的酸性:HClO4>H2SO4,故D错误,故选C.点评:本题考查结构位置性质关系应用,难度不大,注意把握周期表的结构,注意主族元素化合价与族序数关系及元素化合价特殊性.【解题思路点拨】平时做注意积累元素相关的知识有利用快速做题.。
第三章-原子结构和元素周期律

v = ————
E2 – E1
h
; E = – —————— J
2.179 ×10-18
n2
v = —————— —— – ——
2.179 ×10-18
h
n12
n22
1
1
—————— = 3.289×1015 s-1
*
第三章 原子结构
3.1 微观粒子的运动规律
3.2 原子的量子力学模型
3.3 原子核外电子排布和元素周期系
3.4 元素基本性质的周期性
p47页
3.0 氢原子光谱和玻尔理论
*
3.0 氢原子光谱和玻尔理论 p47-49页
氢原子光谱
什么是 线状光谱?
当气体或蒸气用火焰、电弧等方法灼热时, 发出由不同波长组成的光, 通过棱镜分光后, 得到不同波长的谱线称为线状光谱, 又称原子光谱。不同元素的原子光谱图不同。
根据 x · p ≥ h/2 ,则有:
*
3.2 原子的量子力学模型
3.2.1 波函数和原子轨道
3.2.2 电子云和几率密度
3.2.3 原子轨道及电子云的角度分布图
3.2.4 四个量子数
p59-80页
*
3.2.1 波函数和原子轨道 p59页
薛定锷方程(描述微观粒子运动的波动方程)
o
x
2.179 ×10-18
h
与前面“里德堡常数”比较: R = 3.289×1015 s-1 (实验值)
(计算值)
玻尔氢原子结构理论成功地解释了氢原子光谱的规律性, 但是用于解释多电子原子光谱或磁场内的光谱却遇到了困难, 其主要原因是没有完全冲破经典物理的束缚, 后来, 微观粒子二象性的发现, 导致了现代原子结构理论的产生。
原子结构和元素周期律单元小结

范 围 宏观概念,如 举 碳元素、硫元 素 例
性质通过存 特 在形式---单 征 质、化合物 体现
微观概念,如 微观概念,如 宏观概念,如金 氢元素的三种 11H、21H、31H 刚石与石墨;O2 与O3;红磷与白 核素 互为同位素 1 H、2 H、3 H 磷;晶体硅与无 1 1 1 定性硅化Βιβλιοθήκη 几乎相同,不完全周期 第7周期
三长三短一不全
周期序数 = 电子层数
ⅠA
1 H Ⅱ He A 2 Li Be B
元素周期表的编制原则 92U B C
C 金属 N O F
元素周期表 He
铀
Ne
○
ⅢA ⅣA ⅤA ⅥA ⅦA
He
N O F Ne 如何编排才合理? 非金属
Na Mg Mg Ⅲ Al Si P S Cl Ar Al Si P SB Ⅶ Cl 3 Na B Ⅳ B Ⅴ B Ⅵ B Ar Ⅷ ⅠB ⅡB 根据元素周期律,把已知的一百多种元 Ca Ti Ni 电子层数目相同 4 K K素中 Ca Sc Sc Ti V V Cr Cr Mn Mn Fe Fe Co Co 的各种元素,按原子 Ni Cu Cu Zn Zn Ga Ga Ge Ge As As Se Se Br Br Kr Kr
物性不同;天然
存在的各种同位 素所占的原子百
不同核素的 质量不同
化性相似,但 物性相差很大
分数一般不变
4、核外电子排布
(1)、排布规律 ①、电子总是尽先排布在能量最低的电子层里。 ②、每个电子层最多只能排布2n2个电子。 ③、最外层最多只能容纳8个电子,K层为最外层 时,最多只能容纳2个电子。 ④、次外层最多不超过18个电子,倒数第三层不超 过32个电子。
原子结构与元素周期律的深入理解

原子结构与元素周期律的深入理解原子结构与元素周期律是化学领域中两个基础概念,对于理解化学现象和性质具有重要的意义。
本文将从原子结构和元素周期律的角度对这两个概念进行深入理解和探讨。
一、原子结构的基本组成原子结构的基本组成由原子核和电子云两部分构成。
原子核位于原子的中心,由质子和中子组成。
质子带有正电荷,中子不带电荷。
电子云则包围着原子核,其中电子带有负电荷。
原子核中的质子数量决定了原子的原子序数,也即元素的周期表位置。
中子的数量可以变化,称为同位素。
电子的数量则与质子数量相等,保持了原子整体电荷的中性。
二、电子的能级和轨道电子云可以分为不同能级,每个能级可以容纳一定数量的电子。
在基态下,电子首先填充低能级,然后逐渐填充高能级。
根据能级理论,第一能级最低,依次为第二、第三能级等等。
每个能级又可进一步细分为不同的轨道。
最常见的是s、p、d和f轨道。
s轨道是最基础的轨道,可以容纳最多两个电子。
p轨道可以容纳最多六个电子,分为三个组合,即px、py和pz。
d轨道可以容纳最多十个电子,分为五个组合,而f轨道可以容纳最多十四个电子,分为七个组合。
三、电子的填充规则根据泡利不相容原理,即每个轨道最多只能容纳两个电子,并且电子的自旋方向相反。
在填充电子时,按照能级由低到高的顺序填充。
在同一能级下,先填充s轨道,再填充p轨道,依次类推。
四、元素周期表的构成与特点元素周期表是根据原子的原子序数和性质将元素有序地排列而成的表格。
根据周期表的特点,我们可以发现以下规律:1. 周期性规律:元素周期表中,横向排列的行称为“周期”,纵向排列的列称为“族”。
元素周期性地重复出现在周期表中。
这意味着具有相似化学性质的元素往往出现在同一族中。
例如,第一周期中的元素都是最简单的元素,而第二周期中的元素具有相似的化学性质。
2. 周期性趋势:在周期表中,原子序数逐渐增加,而元素的性质也呈现出周期性的变化。
这些性质包括原子半径、离子半径、电离能和电负性等。
高中化学《第一章 原子结构与元素周期律》知识总结

煌敦市安放阳光实验学校第二中学高一化学《第一章原子结构与元素周期律》知识总结必修2
一原子结构:
原子的构成:
相关知识点:原子的构成、核素、同位素、质量数、原子核外电子排布、10电子微粒、18电子微粒
2. 元素周期表和周期律
二、元素周期律与元素周期表
相关知识点:元素周期律、粒子半径大小比较、元素周期表结构、位-构-性关系。
(1)元素周期表的结构
A. 周期序数=电子层数
B. 原子序数=质子数
C. 主族序数=最外层电子数=元素的最高正价数
D. 主族非金属元素的负化合价数=8-主族序数
E. 周期表结构
(2)元素周期律()
A. 元素的金属性和非金属性强弱的比较(难点)
a. 单质与水或酸反置换氢的难易或与氢化合的难易及气态氢化物的稳性
b. 最高价氧化物的水化物的碱性或酸性强弱
c. 单质的还原性或氧化性的强弱
(注意:单质与相离子的性质的变化规律相反)B. 元素性质随周期和族的变化规律
a. 同一周期,从左到右,元素的金属性逐渐变弱
b. 同一周期,从左到右,元素的非金属性逐渐增强
c. 同一主族,从上到下,元素的金属性逐渐增强
d. 同一主族,从上到下,元素的非金属性逐渐减弱
C. 第三周期元素的变化规律和碱金属族和卤族元素的变化规律(包括物理、化学性质)
D. 微粒半径大小的比较规律:
a. 原子与原子
b. 原子与其离子
c. 电子层结构相同的离子
(3)元素周期律的用(重难点)
A. “位,构,性”三者之间的关系
a. 原子结构决元素在元素周期表中的位置
b. 原子结构决元素的化学性质
c. 以位置推测原子结构和元素性质
B. 预测元素及其性质。
原子结构与元素周期律的关系

原子结构与元素周期律的关系
(纵)族
原
位
子
置
序
数 (横)周期
结 构 性质
最外层电子数 电子层数
相似性
递变性
原子结构与元素周期律的关系
1.主要化合价
2.最高价氧化物及其水 化物的组成
3.氢化物组成
1.金属性与非金属性
2.“最高价氧化物的水化 物”的酸碱性
3.氢化物的稳定性
原子结构与元素周期律的关系
知识点——原子结构与 元素周期律的关系
原子结构与元素周期律的关系
概念: 元素的性质(原子半径、主要化合价)随着
元 原子序数的 递增而呈周期性的变化
素 规律:原子半径同周期从左到右渐小,同族从上到下
周 渐大。
期
主要化合价:+1 +2 +3 +4 +5 +6 +7 0
律
-4 -3 -2 -1
原因:核外电子排布随着原子序数的递增而呈周期性 的变化 (1~8)
质 找催化剂、耐高温、耐腐蚀材料:
过渡元素 Fe Ni Pt Pd Rh
原子结构与元素周期律的关系
1.下面的判断,错误的是( AD ) A.稳定性:HF<HCl<HBr<HI B.砹是一种固体,HAt很不稳定,AgAt是难溶于 水且感光性很强的固体 C.硫酸锶(SrSO4)是一种难溶于水的白色固体 D.硒化氢(H2Se)是比H2S稳定的气体
比
最高价氧化物的水化物的酸碱性
较
KOH>NaOH>LiOH
或 推 断 一
氢化物的稳定性 CH4>SiH4 比较同周期元素及其化合物的性质
碱性: NaOH>Mg(OH)2>Al(OH)3 稳定性: HF>H2O>NH3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长度相当于多少个波长),RH 称为里德堡常数,其值为 1.097105 cm-1,n1 和 n2 为正整数,且 n2 n1。后来在紫 外区发现的 Lyman 线系,在近红外区发现的 Paschen 线
系和在远红外区发现的 Bracket 线系等谱线的波数也都很
好地符合 Rydberg 公式。
可编辑ppt
将分别给出这几条谱线的波长。可见区的这几条谱线被命
名为 Balmer 线系。
可编辑ppt
12
1913 年瑞典物理学家 Rydberg 找出了能概括谱线的 波数之间普遍联系的经验公式
11 σ= RH ( - )
n12 n22
(6-2)
式(6-2)称为 Rydberg 公式,式中σ为波数(指 1 cm的
• 化学反应只是改变了原子的结合方式,是使反应前
的物质变成了反应后的物质可编。辑ppt
3
Dalton 的原子论解释了一些化学现象,极大地推动 了化学的发展,特别是他提出了原子量的概念,为化学进 入定量阶段奠定了基础。
但是这一理论不能解释同位素的发现,没有说明原子 与分子的区别,不能阐明原子的结构与组成。
英国物理学家 G. J. Mosley 在 1913 年证实了原子核 的正电荷数等于核外电子数,也等于该原子在元素周期表 中的原子序数。
可编辑ppt
8
虽然早在 1886 年德国科学家 E. Goldstein 在高压放 电实验中发现了带正电粒子的射线,直到 1920 年人们才 将带正电荷的氢原子核称为质子。
可编辑ppt
14
6-1-3 玻尔理论
1900 年,德国科学家 Planck 提出了著名的量子论。 Planck 认为在微观领域能量是不连续的,物质吸收或放 出的能量总是一个最小的能量单位的整倍数。这个最小的 能量单位称为能量子。
1905 年瑞士科学家 Einstein 在解释光电效应时,提 出了光子论。Einstein 认为能量以光的形式传播时,其最 小单位称为光量子,也叫光子。光子能量的大小与光的频
图 6-1 氢原子光谱实验示氢原子光谱的特点是在可见区有四条比较明显的谱线, 通常用 H,H,H,H 来表示,见图 6-2。
图 6-2 氢原子的线状光谱
可编辑ppt
11
1883 年瑞士物理学家 Balmer 提出了下式
n2 =B
n2 -4
(6-1)
作为 H,H,H,H 四条谱线的波长通式。式中 为波 长,B 为常数,当 n 分别等于3,4,5,6 时,式(6-1)
1932 年英国物理学家 J. Chadwick 进一步发现穿透性 很强但不带电荷的粒子流,即中子。后来在雾室中证明, 中子也是原子核的组成粒子之一。由此,才真正形成了经 典的原子模型。
可编辑ppt
9
6-1-2 氢原子光谱
用如图 6-1 所示的实验装置,可以得到氢的线状光 谱,这是最简单的一种原子光谱。
可编辑ppt
4
19 世纪末和 20 世纪初,在电子、质子、放射性等一 批重大发现的基础上,建立了现代原子结构模型。
虽然人类很早就从自然现象中了解了电的性质,但对 电的本质认识是从 18 世纪末叶对真空放电技术的研究开 始的。
可编辑ppt
5
1879 年,英国物理学家 W.Crookes 发现了阴极射线。 随后,在 1897 年英国物理学家 J. J. Thomson 进行了测定 阴极射线荷质比的低压气体放电实验,证实阴极射线就是 带负电荷的电子流,并得到电子的荷质比
可编辑ppt
2
直到 18 世纪末和 19 世纪初,随着质量守恒定律、当 量定律、倍比定律等的发现,人们对原子的概念有了新的 认识。1805 年,英国化学家 J. Dalton 提出了化学原子论。 其主要观点为:
• 每一种元素有一种原子;
• 同种元素的原子质量相同,不同种元素的原子质量 不相同; • 物质的最小单位是原子,原子不能再分;一种原子 不会转变成为另一种原子;
第 6章 原子结构与元素周期律
可编辑ppt
1
6-1 近代原子结构理论的确立 6-1-1 原子结构模型
古希腊哲学家 Democritus 在公元前 5 世纪指出,每 一种物质是由一种原子构成的;原子是物质最小的、不可 再分的、永存不变的微粒。 原子 atom 一词源于希腊语, 原义是“不可再分的部分”。
1896 年法国物理学家 A. H. Becquerel 对几十种荧光
物质进行实验,意外地发现了铀的化合物放射出一种新型
射线。法国化学家 M. S. Curie以铀的放射性为基础进行
研究,陆续发现了放射性元素镭、钋等,发现了放射过程
中的α 粒子、β 粒子和γ 射线。
可编辑ppt
7
1911 年,Rutherford 根据α粒子散射的实验,提出了 新的原子模型,称为原子行星模型或核型原子模型。该模 型认为原子中有一个极小的核,称为原子核,它几乎集中 了原子的全部质量,带有若干个正电荷。而数量和核电荷 相等的电子在原子核外绕核运动,就像行星绕太阳旋转一 样,是一个相对永恒的体系。
e∕m = 1.7588×108 Cg-1。
1909年美国科学家 R. A. Millikan 通过他的有名的油 滴实验,测出了一个电子的电量为 1.602×10-19 C,通过 电子的荷质比得到电子的质量 m = 9.11×10-28 g。
可编辑ppt
6
放射性的发现是 19 世纪末自然科学的另一重大发现。 1895 年德国的物理学家 W. C. Rongen 首先发现了 X-射 线。这种射线最初是由真空放电管中高能量的阴极射线撞 击玻璃管壁而产生的,用高速电子流轰击阳极靶也可产生 X射线。X-射线能穿过一定厚度的物质,能使荧光物质发 光,感光材料感光,空气电离等。
13
任何原子被激发时,都可以给出原子光谱,而且每种 原子都有自己的特征光谱。这使人们意识到原子光谱与原 子结构之间势必存在着一定的关系。当人们试图利用 Rutherford 的有核原子模型从理论上解释氢原子光谱时, 这一原子模型受到了强烈的挑战。
1913 年,丹麦物理学家 Bohr 提出了新的原子结构理 论,解释了当时的氢原子线状光谱,既说明了谱线产生的 原因,也说明了谱线的波数所表现出的规律性。