抛物线中的直角三角形存在性问题一对一教案
直角三角形的存在性问题(教案)

直角三角形的存在性问题(教案)学习目标:1、经历探索直角三角形存在性问题的过程,熟练掌握解题技巧。
2、体会分类讨论的数学思想,体验解决问题方法的多样性。
一、课前准备1.已知直角三角形的两边长分别是3和4,则第三边的长为 .2.如图,A (0,4),C (4,0),点P 是线段OC 的中点,AP ⊥BP ,BC ⊥PC ,则BC 的长度为 .【设计意图】通过两个简单的关于直角三角形的练习,检测学生对勾股定理、M 型相似的应用情况,同时引出课题——直角三角形的存在性问题.二、我们一起来探究如图,A (0,1),B (4,3)是直线121+=x y 上的两点,点P 是x 轴上一个动点. 问:是否存在这样的点P ,使得△ABP 为直角三角形?如果存在,请求出满足条件的点P 的坐标.yxBA OyxBA OyxBAO(备用图1) (备用图2)提问:(1)这样的问题,你怎么思考的? 需要针对直角顶点进行分类. (2)一般会有几种情况? 三种. (3)分类之后需要做什么? 画图.(4)解题有哪些方法?(5)当直角顶点在点P 的时候,如何精确地找到点P ? 以AB 为直径的圆与x 轴的交点.变式跟进:将上述直线向上平移a 个单位,A 、B 两点也同时向上平移到相应的位置,x 轴上存在唯一的点P ,使得∠APB=90°. 求a 的值.【小结】直角三角形的存在性问题解题策略: . 【设计意图】通过这个环节,探究直角三角形存在性问题解题策略:分类——画图——解题,重在让学生了解这类题的的三种解法:几何法、解析法、代数法,从而为后面的练习做好铺垫.三、反馈练习1.如图,点O (0,0),A (1,2),若存在格点P ,使△APO 为直角三角形,则点P 的个数有 个.2.在△ABC 中,∠C=90°,AC=8cm ,BC=6cm ,动点P 、Q 分别同时从A 、B 出发,其中点P 在线段AB 上向点B 移动,速度是2cm/s. 点Q 在线段BC 上向点C 运动,速度为1cm/s.设运动时间为t s ,当t= 时,△BPQ 是直角三角形.3.如图,已知A 、B 是线段MN 上的两点,4=MN ,1=MA ,1>MB .以A 为中心顺时针旋转点M ,以B 为中心逆时针旋转点N ,使M 、N 两点重合成一点C ,构成△ABC ,设x AB =角形,求x 的值;追问:x 的取值范围如何?【设计意图】通过这三个题的练习,让学生了解尽管题目的背景不同,但是方法是一样的,旨在检测学生对分类讨论思想的应用,学会针对直角顶点进行分类画图,并采用合适的方法予以解答.四、链接中考(2011 济南)如图,矩形OABC 中,点O 为原点,点A 的坐标为(0,8),点C 的坐标为(6,0). 抛物线834942++-=x x y 经过A 、C 两点,与AB 边交于点D ,Q 是AC 上一点,且AQ =5. 请问在抛物线对称轴l 上是否存在点F ,使得△FDQ 为直角三角形?若存在,请直接写出所有符合条件的点F 的坐标,若不存在,请说明理由。
抛物线与直角三角形说课稿

抛物线与直角三角形说课稿讲解抛物线三条围成的三角形(一般称为抛物线的外切三角形)与圆综合的几个的有趣而深刻的性质,以及四条切线围成的图形性质。
39 求证:FA*FB*FC=FA’*FB’*FC’,40 △A’B’C’的外接圆是否经过某个定点?41 求△A’B’C’垂心H的轨迹。
42 证明斯坦纳定理:△ABC外接圆上任一点关于三边对称点与△ABC 垂心共线。
43 抛物线的四条切线,每两条切线交点与另两条切线交点连线中点共线(牛顿线定理)44 对于一般的四条直线,交成四个三角形,证明这四个三角的外接圆交于一点。
这四个三角形的垂心在同一条直线上。
39 求证:FA*FB*FC=FA’*FB’*FC’,思路:这显然和性质27有关。
以上三式相乘并开方即得FA*FB*FC=FA’*FB’*FC’。
注:本题是性质27的推论,当然也可以直接计算证明。
40 △A’B’C’的外接圆是否经过某个定点?思路分析一:切线的关键是切点,所以可以设出三条切线的切点为A,B,C,求出切线的交点坐标,然后设出外接圆的一般方程,将坐标代入,求出系数的表达式。
最后让变量系数为0,即可求出定点坐标。
△A’B’C’的外接圆是否经过某个定点?解答一:思路分析二:如果此圆过定点,此定点一定关于抛物线对称,因此最可疑的就是焦点F了。
下面只需证明A’B’FC’共圆即可,只需利用到角公式算出一个角的正切值,对称得到另一个,说明其相等即可。
解答二:思路分析三:纯几何证明想到了前面性质9,从而得到∠FPB=∠FQC=∠FQA=90°,可以得到共圆,倒角即得结果。
解法三:由前面性质9得∠FPB=∠FQC=∠FQA=90°,故A'PQF共圆,则∠FA'P=∠FQR,同理∠FB'A=∠FQR,故∠FB'A=∠FA'P,故A'C'B'F共圆。
即△A’B’C’外接圆恒过抛物线焦点F。
抛物线中角的存在性问题

202!年第2期抛物我中角的存在性问题■罗峻\段利芳2摘要:在数学学习中,不少同学实行“题海”战,通 过做大量的习题,来掌握所学的数学定理,巩固解题技 能.虽然学生学得辛苦,但是数学知识掌握得并不好, 缺乏系统性和逻辑性,解题能力并没有发生实质性的 提升.为打破这一僵局,本文通过一道典型习题的“一 题五问”来设置问题,破解抛物线中角的存在性问题, 让学生了解抛物线存在性问题的题目设置特点及解答 策略,培养学生逻辑思维能力和综合运用几何知识构 造基本图形,运用函数、方程思想解决问题的能力,从 而领悟解题方法,提高解题效益.关键词:二次函数;角的存在性;一题多问函数与几何是初中数学的重点知识和核心内容, 将这两方面的内容结合在同一题目中,难度及综合性 有所增大,这类题目可以考查学生灵活运用知识的能 力,创新意识和数学素养.下面通过一个问题的五问来 破解函数与几何相结合的角的存在性问题,供大家参 考⑴.图1题目:如图1,二次函数;K = -2* -6与坐标轴交于4、B 、C ,Z)为顶点•1. 75°角存在问题问题1:如图2,P 是下方抛物线上一动点,若 乙P C B = 75。
,求点P 的坐标•图2图3分析:由=易发现乙OCfi =45°,构造平行线,将75°分成45°和30°角之和,出现30°的特殊角, 利用30°的条件,构造直角三角形并运用含30°角的直 角三角形的三边之比,用某一字母表示点P 坐标,代入 函数解析式则问题获解.解:易求/l(-2,0),B(6,0),C (0,-6),如图3,过点C 作C £ // /1B交抛物线于点£,过点 户作^^的垂线,垂足为F.易求乙=乙 0B C = 45。
,则乙 E C /5 = 30。
.设 P F =爪,则 C F =,一 6 - m ),- 6 - m) i X A y - -^-x 2 - 2x - 6,作者简介:罗峻(1973 -),男,湖北省黄石人,本科,中学一级教师,主要从事初中数学教学研究 段利芳(1976 -),女,湖北省武汉人,本科,中学高级教师,主要从事初中数学教学研究•41•-数理化学习 —--------------—_-_—_-_—_______________________:____________________;____;____________解得m =4j 3 - 2所以尸(2. 45。
抛物线与直角三角形结合的解题方法

抛物线与直角三角形结合的解题方法在数学中,抛物线和直角三角形是两个常见且重要的概念。
它们在解决实际问题和理论推导中都扮演着重要的角色。
本文将探讨如何将抛物线与直角三角形结合起来,以更全面地解决一些数学问题。
一、基本概念1. 抛物线抛物线是一种特殊的曲线,其定义可以是平面内到定点和一条定直线的距离相等的点的轨迹。
抛物线在物理学、工程学和数学等领域都有着广泛的应用。
2. 直角三角形直角三角形是一种特殊的三角形,其中包含一个90度的直角。
直角三角形的性质和定理在几何学中具有重要意义,也是解决三角函数和特殊角度问题的基础。
二、抛物线与直角三角形的关系在实际问题中,抛物线与直角三角形常常会相互联系,特别是在物体的抛体运动和轨迹分析中。
当我们需要分析一个抛体运动的轨迹时,通常会涉及到抛物线的方程和直角三角形的性质。
当我们需要求解一个物体从抛出到落地的时间、速度和位置等问题时,我们可以通过解析几何的方法,将抛物线的轨迹和直角三角形的性质结合起来,从而得到更加全面和深入的解答。
三、抛物线与直角三角形结合的解题方法1. 利用抛物线方程构建直角三角形在解决与抛物线和直角三角形相关的问题时,可以先利用抛物线的方程构建出相关的直角三角形。
当我们需要分析抛体运动的轨迹时,可以通过抛物线的方程构建出相关的直角三角形,从而推导出物体的运动规律和轨迹特性。
2. 利用直角三角形的性质求解抛物线方程另一种常见的方法是利用直角三角形的性质来求解抛物线的方程。
在一些特殊的问题中,可以通过构建直角三角形、利用三角函数和三角恒等式等方法,从而简化抛物线方程的求解过程,使问题得到更加清晰和简化的解答。
四、个人观点和总结在数学问题的解决过程中,抛物线与直角三角形的结合是一种常见且有效的方法。
通过将抛物线的特性和方程与直角三角形的性质相结合,不仅可以更全面地理解和分析问题,也可以从不同角度和方法解决问题,使解题过程更灵活和丰富。
抛物线与直角三角形的结合在解决实际问题和理论推导中具有重要的意义。
数学人教版九年级上册二次函数图像中直角三角形的存在性问题

课题:二次函数图像中直角三角形的存在性问题一、教学目标1、掌握求二次函数表达式的方法。
2、掌握判断直角三角形可以从边和角两个角度入手。
3、掌握二次函数与直角三角形结合的动点问题的解决方法。
二、重、难点重点:线段的表示与分类讨论难点:分类讨论三、教学过程情境创设:存在性问题是中考中的热点问题,所涉知识点多,难度较大,也是学生比较荆手的问题,但它也是有解题方法可循的。
比如我们本节课将复习的直角三角形存在性问题,就可利用坐标系中两点的距离公式,正确得到所求三角形三边长的平方的代数式;根据勾股定理的逆定理得到方程,并解方程即可。
知识梳理:1、二次函数的表达式有哪些?一般式:对轴称为顶点坐标(,)项点式:对轴称为顶点坐标(,)交点(两根)式:对轴称为顶点坐标(,)(设计意图:让学生能根据所给条件选用恰当的表达式求二次函数解析式)2、直角三角形的判定方法有哪些?(设计意图:让学生知道判断一个三角形是直角三角形可从边和角两个角度入手,重点是对勾股定理逆定理的运用)3、已知点P(x,y),则点P到x轴的距离为,到y轴的距离为。
(设计意图:让学生知道点的坐标的实际意义)4、两点间的距离公式:用A,B两点的坐标来表示线段AB的长。
(设计意图:让学生知道用两点坐标来表示该两点的线段长)习题展示:oy B( x2,y2)A( x1,y1)x如图,已知抛物线y=-x 2+bx+c 与x 轴交于点A 、B (3,0),与y 轴交于点C (0,3),直线l 经过点B 、C 两点,抛物线的顶点为D 。
(1)求此抛物线和直线l 的解析式;(2)判断ΔBCD 的形状并说明理由;(3)如图,在抛物线的对称轴上求点P ,使ΔPBC 为直角三角形;思考题:如图,在对称轴右侧的抛物线上,是否存在点P ,使ΔPDC 为等腰三角形。
若存在,请求出符合条件点P 的坐标,若不存在,请说明理由;C B A O y xD CBDA yLO C B A O y xD 思路分析:将B (3,0),C (0,3)代入y=-x 2+bx+c 中,得关于b ,c 的二元一次方程组,解出b ,c 的值,从而得到抛物线的解析式;设y=kx+z,将B (3,0),C (0,3)代入y=kx+z ,得关于k ,z 的二元一次方程组,解出k ,z 的值,从而得到直线l 的解析式。
抛物线中直角三角形存在性问题(勾股定理与K值法)

抛物线中直角三角形存在性问题(勾股定理与K值法)[例]已知二次函数y=ax2+bx+c(a>0)的图象与x轴交于A(x1,0)、B(x2,0)(x1<x2)两点,与y轴交于点C,x1,x2是方程x2+4x﹣5=0的两根.(1)若抛物线的顶点为D,求S△ABC:S△ACD的值;(2)若∠ADC=90°,求二次函数的解析式.【解答】解:(1)解方程x2+4x﹣5=0,得x=﹣5或x=1,由于x1<x2,则有x1=﹣5,x2=1,∴A(﹣5,0),B(1,0).抛物线的解析式为:y=a(x+5)(x﹣1)(a>0),∴对称轴为直线x=﹣2,顶点D的坐标为(﹣2,﹣9a),令x=0,得y=﹣5a,∴C点的坐标为(0,﹣5a).依题意画出图形,如右图所示,则OA=5,OB=1,AB=6,OC=5a,过点D作DE⊥y轴于点E,则DE=2,OE=9a,CE=OE﹣OC=4a.S△ACD=S梯形ADEO﹣S△CDE﹣S△AOC=(DE+OA)•OE﹣DE•CE﹣OA•OC=(2+5)•9a﹣×2×4a﹣×5×5a=15a,而S△ABC=AB•OC=×6×5a=15a,∴S△ABC:S△ACD=15a:15a=1:1.注:作铅垂线求S△ACD也是可以的(2)方法一:如解答图,过点D作DE⊥y轴于E在Rt△DCE中,由勾股定理得:CD2=DE2+CE2=4+16a2,在Rt△AOC中,由勾股定理得:AC2=OA2+OC2=25+25a2,设对称轴x=﹣2与x轴交于点F,则AF=3,在Rt△ADF中,由勾股定理得:AD2=AF2+DF2=9+81a2.∵∠ADC=90°,∴△ACD为直角三角形,由勾股定理得:AD2+CD2=AC2,即(9+81a2)+(4+16a2)=25+25a2,化简得:a2=,∵a>0,∴a=,∴抛物线的解析式为:y=(x+5)(x﹣1)=x2+x﹣.方法二:(K 值法)结论1:直线1111:l y k x b =+与直线2222:l y k x b =+垂直⇔121k k =-; 结论2:点11(,)A x y 、22(,)B x y (12x x ≠)分别是直线:l y kx b =+上两个不同的点,则2121y y k x x -=-.(证明:11y kx b =+……①22y kx b =+……②, ②-①得,2121()y y k x x -=-,2121y y k x x -=-) 解:90932(5)3AD a a k a ---===----,9(5)42202CD a a a k a ----===---, ∵∠ADC =90°,∴1AD CD k k =-,即23261a a a -⨯=-=-,12a a ==. ∴抛物线的解析式为:y =(x +5)(x ﹣1)=x 2+x ﹣. 练习.已知抛物线c bx x y ++-=221与y 轴交于点C ,与x 轴的两个交点分别为A (﹣4,0),B (1,0).(1)求抛物线的解析式; (2)已知点P 在抛物线上,连接PC ,PB ,若△PBC 是以BC 为直角边的直角三角形,求点P 的坐标;(3)已知点E 在x 轴上,点F 在抛物线上,是否存在以A ,C ,E ,F 为顶点的四边形是平行四边形?若存在,请直接写出点E 的坐标;若不存在,请说明理由.。
中考专题讲解:直角三角形的存在性问题解题策略

中考专题讲解:直角三角形的存在性问题解题策略有关直角三角形的存在性问题,一般都是放在平面直角坐标系中和抛物线结合起来考察,这种题的解法套路一般都是固定的,在学习的过程中只需要牢固掌握直角三角形存在的基本模型:两线一圆,多加练习,这类问题就可以轻松掌握。
一、模型讲解“两线一圆”模型:在平面直角坐标系中遇到直角三角形的相关问题时,通常是以直角顶点作为分类标准,如下图,分别以点A、点B、点M为直角定点来构造直角三角形,然后根据相关条件来进行求解即可。
已知:定点A(2,1)、B(6,4)和动点M(m,0),存在直角三角形。
具体有以下三种情况:(1)过点A作直线AM垂直AB,交x轴于点M;(2)过点B作直线BM垂直AB,交x轴于点M;(3)根据直径所对的圆周角为90度,以AB为直径作圆,交x轴的点即为满足条件的点M(一般情况下有两个交点,特殊情况下只有一个交点),然后根据相关条件来进行求解即可。
作出图形后,具体求解方法有三种:方法一:“K型”图(有的叫“一线三等角”),三角形相似易得△ACM∽△BEA,求得CM,从而求出点M的坐标。
易得△AEB ∽△BFM求得BF,从而得M的坐标方法二:勾股定理∵BH²=BG²-GH² ∵AC²+CM²=AM²BH²=BM²-HM² MD²+BD²=BM²∴BG²-GH² =BM²-HM² AM²+BM²=AB²∴AC²+CM²+MD²+BD²=AB²方法三:解析法(来源于高中的解析几何,虽然有点超纲,但是很多老师都教学生这种方法)K AB ·K AM =-1,直线BM 与x 轴的交点即为M 。
K AB ·K BM =-1,直线A 与x 轴的交点即为M 。
抛物线中的直角三角形存在性问题一对一教案

年级九科目数学班型一对一学生第次课课题名称抛物线中的直角三角形存在性问题授课老师授课时间2018年3月20日8:00——10:00教学目标经历探索直角三角形存在性问题的过程,熟练掌握解题技巧;体会分类讨论的数学思想,体验解决问题方法的多样性。
教学重点.能够正确的分析问题、转化问题,合理利用条件解决问题2.确定动点位置的方法及数形结合、分类讨论思想和方程思想的培养教学难点能够正确的分析问题、转化问题,合理利用条件解决问题教学过程:一、课前小测:1.直角三角形的两边长分别是3和4,则第三边的长是2.已知Rt△ABC中,∠C=90°,AC=8,BC=6,动点P、Q分别同时从A、B出发,其中点P在线段AB上向点B移动,速度是2单位每秒;点Q在线段BC上向点C运动,速度是1单位每秒。
设运动时间为t〔秒〕,当t= 秒时,△BPQ是直角三角形。
二、新课学习:〔一〕经典模型模型再现:已知:定点A(2, 1) 、B(6, 4)和动点M〔m, 0〕, 存在直角三角形ABM,求点M的坐标。
两线一圆找直角模型:在平面直角坐标系中遇到直角三角形的相关问题时,通常是以直角顶点作为分类标准,如下列图,分别以点A、点B、点M为直角定点来构造直角三角形,然后根据相关条件来进行求解即可。
具体有以下三种情况:比方:〔1〕当以点A为直角顶点时,过点A作AB的垂线交x轴的点即为所求;〔2〕当以点B为直角顶点时,过点B 作AB的垂线交x轴的点即为所求;〔3〕当以点M为直角顶点时,只需要以AB为直径作辅助圆与x轴的交点〔一般情况下有两个交点,特殊情况下只有一个交点〕即为所求。
〔二〕解法:1.“K型相似”〔一线三直角〕提示:竖直型,上减下;水平型,右减左。
遇直角,构矩形,得相似,求结果。
2.勾股定理〔暴力法---两点间距离公式〕利用两点间距离公式.勾股定理及其逆定理的应用进行求解。
其基本解题思路是列点.列线.列式。
第一步,列出构建所求直角三角形的三个点,定点找到后,动点用参数表示其坐标;第二步,采用分类讨论思想,列出构建所求直角三角形的三个边,并分类讨论两两垂直的三种可能性;第三步,把定点坐标及参数点坐标代入两点间距离公式,利用勾股定理的逆定理列出等式求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
年级九科目数学班型一对一学生姓名第次课
课题名称抛物线中的直角三角形存在性问题授课老师授课时间2018年3月20日8:00——10:00
教学目标经历探索直角三角形存在性问题的过程,熟练掌握解题技巧;体会分类讨论的数学思想,体验解决问题方法的多样性。
教学重点.能够正确的分析问题、转化问题,合理利用条件解决问题2.确定动点位置的方法及数形结合、分类讨论思想和方程思想的培养
教学难点能够正确的分析问题、转化问题,合理利用条件解决问题
教学过程:
一、课前小测:
1.直角三角形的两边长分别是3和4,则第三边的长是
2.已知Rt△ABC中,∠C=90°,AC=8,BC=6,动点P、Q分别同时从A、B出发,其中点P在线段AB上向点B移动,速度是2单位每秒;点Q在线段BC上向点C运动,速度是1单位每秒。
设运动时间为t(秒),当t =秒时,△BPQ是直角三角形。
二、新课学习:
(一)经典模型
模型再现:
已知:定点A(2, 1) 、B(6, 4)和动点M(m,0), 存在直角三角形ABM,求点M的坐标。
两线一圆找直角模型:
在平面直角坐标系中遇到直角三角形的相关问题时,通常是以直角顶点作为分类标准,如下图,分别以点A、点B、点M为直角定点来构造直角三角形,然后根据相关条件来进行求解即可。
具体有以下三种情况:比如:(1)当以点A为直角顶点时,过点A作AB的垂线交x轴的点即为所求;(2)当以点B为直角顶点时,过点B作AB 的垂线交x轴的点即为所求;(3)当以点M为直角顶点时,只需要以AB为直径作辅助圆与x轴的交点(一般情况下有两个交点,特殊情况下只有一个交点)即为所求。
(二)解法:1.“K型相似”(一线三直角)
提示:竖直型,上减下;水平型,右减左。
遇直角,构矩形,得相似,求结果。
2.勾股定理(暴力法---两点间距离公式)
利用两点间距离公式.勾股定理及其逆定理的应用进行求解。
其基本解题思路是列点.列线.列式。
第二步,采用分类讨论思想,列出构建所求直角三角形的三个边,并分类讨论两两垂直的三种可能性;
第三步,把定点坐标及参数点坐标代入两点间距离公式,利用勾股定理的逆定理列出等式求解。
注意:解出点的坐标应结合已知进行检验,若出现三点共线或出现不合题意得点均要舍去。
(请学生完成做题过程)
注意:有时根据直角三角形斜边上的中线等于斜边的一半列方程更简单,在一些综合题中一般要结合“K型相似”去做更简单一些。
2
2
2
2
2
2
2
2
2
2,
HM
BN
GH
BG
HM
BM
BH
GH
BG
BH
-
=
-
-
=
-
=
2
2
2
2
2
2
2
2
2
2
2
2
2
2,
AB
BD
MD
CM
AC
AB
BM
AM
BM
BD
MD
AM
CM
AC
=
+
+
+
∴
=
+
=
+
=
+
又
3.解析法:两直线互相垂直,两直线的解析式为
1
1
b
x
k
y+
=与
2
2
b
x
k
y+
=→1
2
1
-
=
⋅k
k,通过求垂线的解析式再求其与x轴的交点即可。
KAB·K AM=-1 K AB·KBM=-1
(三)典例讲解
例1. 如图,直线与抛物线2
1
2
y x bx c
=++交于点A(0,1),B(4,3)两点。
与x轴交于点D。
⑴求直线和抛物线的解析式;
⑵动点P在x轴上移动,当△PAB是直角三角形时,求点P的坐标P
y
x
D O
B
A
例2.如图,在平面直角坐标系中,二次函数y=ax2+bx+c的图象经过点A(3,0),B(−1,0),C(0,−3),顶点为D. (1)求这个二次函数的解析式及顶点坐标;
(2)在y轴上找一点P(点P与点C不重合),使得∠APD=90°,求点P坐标;
(3)在(2)的条件下,将△APD沿直线AD翻折,得到△AQD,求点Q坐标。
例3.如图,在平面直角坐标系中,已知点A的坐标是(4,0),并且OA=OC=4OB,动点P在过A,B,C三点的抛物线上。
(1)求抛物线的解析式;
(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;
(3)过动点P作PE垂直于y轴于点E,交直线AC于点D,过点D作x轴的垂线。
垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标。
三、课堂练习:
1. 如图,抛物线y=ax2+bx+c经过点A(−3,0),B(1,0),C(0,−3).
(1)求抛物线的解析式;
(2)若点P为第三象限内抛物线上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标; (3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由。
2.如图,直角梯形OABC中,OC∥AB,C(0,3),B(4,1),以BC为直径的圆交x轴于E,D两点(D点在E
点右方).
(1)求点E,D的坐标;
(2)求过B,C,D三点的抛物线的函数关系式;
(3)过B,C,D三点的抛物线上是否存在点Q,使△BDQ是以BD为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q的坐标。
3. 如图,抛物线y=ax2+bx+c经过A(-3,0)、C(0,4),点B在抛物线上,CB∥x轴,且AB平分∠CAO.(1)求抛物线的解析式;
(2)线段AB上有一动点P,过点P作y轴的平行线,交抛物线于点Q,求线段PQ的最大值;
(3)抛物线的对称轴上是否存在点M,使△ABM是以AB为直角边的直角三角形?如果存在,求出点M的坐标;如果不存在,说明理由.
4.在平面直角坐标系中,现将一块等腰直角三角板ABC放在第二象限,斜靠在两坐标轴上,点C为(-1,0) .如图所示,B点在抛物线y=错误!x2+错误!x-2图象上,过点B作BD⊥x轴,垂足为D,且B点横坐标为-3.(1)求证:△BDC≌△COA;(2)求BC所在直线的函数关系式;
(3)抛物线的对称轴上是否存在点P,使△ACP是以AC为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.
四、小结:
(1)几何法三部曲:先分类;再画图,构造相似;列比例式求解。
(2)勾股定理三部曲:线罗列三边;再分类列方程;后解方程、检验。
(3)解析法三部曲:分类画图;K1·K2=-1;求直线解析式、交点坐标。
五、作业布置(另附):
课后
反思
检查人:日期:
家庭作业(要求:字迹清楚、过程规范)学生姓名
1. 如图,抛物线322
-+=x x y 经过点A(-3,0)B(1,0)C(0,-3).设抛物线的顶点为D,在y 轴上是否存在点M,使得△ADM 是直角三角形?若存在,满足条件在M 点有几个?
2.如图,抛物线2
y x bx 5=--与x 轴交于A .B 两点(点A在点B 的左侧),与y轴交于点C,点C 与点F 关于抛物线的对称轴对称,直线AF 交y 轴于点E ,|OC|:|OA|=5:1. (1)求抛物线的解析式; (2)求直线AF的解析式;
(3)在直线AF 上是否存在点P ,使△CFP 是直角三角形?若存在,求出P 点坐标;若不存在,说明理由.
2.抛物线y =x 2+bx +c 与x 轴交于A (−1,0)、B两点,与y 轴交于C (0,−3),顶点为D ,点M 是抛物线上任意一点。
(1)求抛物线解析式;
(2)在抛物线对称轴右侧的图象上是否存在点M,使∠A MC =∠MCD ?若存在,求出点M的坐标;若不存在,请说明理由;
(3)点N 为抛物线对称轴上一动点,若以B. N 、C 为顶点的三角形为直角三角形,求出所有相应的点N 的坐标。