生活垃圾焚烧发电工艺设计计算书
生活垃圾焚烧计算书

生活垃圾焚烧计算书摘要:一、引言二、生活垃圾焚烧的优点三、生活垃圾焚烧的缺点四、生活垃圾焚烧的适用性分析五、生活垃圾焚烧的发展趋势正文:一、引言随着城市化进程的不断推进,生活垃圾的产生量也逐年增加。
如何有效处理生活垃圾,成为了一个亟待解决的问题。
生活垃圾焚烧作为一种常见的处理方式,被广泛应用于我国城市生活垃圾处理中。
然而,生活垃圾焚烧也存在着一些争议,本文将对生活垃圾焚烧的优缺点以及适用性进行分析,并探讨其发展趋势。
二、生活垃圾焚烧的优点1.减量化:生活垃圾焚烧可以将垃圾的体积减少90% 以上,重量减少70% 以上,大大节省了土地资源。
2.无害化:焚烧过程中,垃圾中的有害物质会被高温分解,减少了对环境的污染。
3.能源化:生活垃圾焚烧可以产生大量的热能,可以用来发电或者供暖,实现了能源的回收利用。
三、生活垃圾焚烧的缺点1.二次污染:焚烧过程中,如果没有严格的控制措施,会产生大量的有害气体和粉尘,对环境造成二次污染。
2.资源浪费:焚烧过程中,一些可回收的资源也会被一同处理,造成资源的浪费。
3.运行成本高:生活垃圾焚烧需要投入大量的资金建设焚烧厂,以及后续的运行维护成本。
四、生活垃圾焚烧的适用性分析生活垃圾焚烧适用于城市生活垃圾处理,特别是一些人口密集、垃圾产量大的城市。
但是,也需要考虑到焚烧厂的选址问题,避免对周边环境造成影响。
此外,还需要完善焚烧厂的环保措施,确保垃圾焚烧过程中的二次污染得到有效控制。
五、生活垃圾焚烧的发展趋势随着技术的发展,生活垃圾焚烧技术将会越来越成熟,环保措施也会越来越完善。
未来,生活垃圾焚烧将会朝着清洁焚烧、高效焚烧的方向发展,以实现垃圾处理的无害化、减量化、资源化。
生活废弃物焚烧发电设计计算书

生活垃圾焚烧发电工艺设计计算书生活垃圾焚烧发电应用于环境保护领域,实现城市生活垃圾的无害化、减量化、减容化和资源化、智能化处理,达到节能减排之目的。
在生活垃圾焚烧发电工艺设计流程中首先进行垃圾焚烧发电炉排炉工艺设计参数的计算,为后续设计提供参数依据。
一、生活垃圾焚烧炉排炉工艺设计参数的计算1、待处理生活垃圾的性质1.1待处理生活垃圾主要组成成分表1:待处理生活垃圾的性质表2:待处理生活垃圾可燃物的元素分析(应用基)%表3:要求设计主要参数1.2 根据垃圾元素成分计算垃圾低位热值:LHV=81C+246H+26S-26O-6W (Kcal/Kg)=81*20.6+246*0.9+26*0.12-26*0.12-6*47.4=1388(Kcal/Kg)*4.18=5800(KJ/Kg)。
1.3根据垃圾元素成分计算垃圾高位热值:HHV={LHV+600*(W+9H)}*4.18={1388+600(0.474+9*0.009)}*4.18=7193.78(KJ/Kg)。
2、处理垃圾的规模及能力焚烧炉3台: 每台炉日处理垃圾350t;处理垃圾量: 1000t/24h=41.67(t/h);炉系数:(8760-8000)/8000=0.095;实际每小时处理生产能力:41.67*(1+0.095)=45.6(t/h);全年处理量: 45.6*8000=36.5*104t;故:每台炉每小时处理垃圾量:350/24*1.05=15.3(t/h)。
3、设计参数计算:3.1垃圾仓的设计和布置已知设计中焚烧炉长度L=75.5米,宽D=18.5米,取垃圾仓内壁与炉长度对齐,T=5d,垃圾的堆积密度取0.35t/m3求:垃圾的容积工程公式:V=a*T式中: V----垃圾仓容积m3;a--- 容量系数,一般为1.2~1.5,考虑到由于垃圾仓存在孔角,吊车性能和翻仓程度以及有效量的缺陷,导致垃圾仓可利用的有效容积小于几何容积;T--- 存放时间,d;根据经验得出适合燃烧存放天数,它随地区及季节稍有变化;V=a*T=1.2*5*1000/0.35=17142.86(m3 )。
垃圾焚烧厂课程设计计算书

一、 垃圾贮坑的设计垃圾贮坑主要是为了调节焚烧能力而设置的,同时也起到垃圾均质、减水、维持稳定燃烧、控制二噁英产生的作用。
贮坑的容积取决于焚烧设施的设计处理能力、垃圾收集量的日变化量,以及垃圾的单位平均密度。
垃圾贮坑的容量应可提供3~5天的最大处理量。
1.贮坑容积 V =βqδσ式中:β-存储时间,d ;该设计中取3q -最大日处理量,t/d ;该设计中取d t q /1000= ξ-有效容积系数,在0.8-0.9之间;该设计取9.0=ξ σ-垃圾密度 t/m 3,该设计取σ=0.35V =βq δσ=3×10000.9×0.35m 3=9523m 32.体积尺寸计算(a ×b ×c ) 取a=22m ,b=22m ,c=20m则V 实际=22×22×20m 3=9680m 3>9523m 3,符合设计要求;3.焚烧阶段各单元设计计算及设备选型 (1)燃料贮坑垃圾的可燃烧组分进入燃烧贮坑堆放以便送入焚烧炉中焚烧。
设计燃料贮坑容量可接收4天的燃烧垃圾量,生活垃圾的原始堆积密度约为0.35 t/m 3,,在贮坑堆积压实后其堆积密度将增大到0.8-0.9 t/m 3(该设计取0.9 t/m 3) 理论燃料贮坑体积 V=Atn式中:a-容积系数,一般为1.2-1.5,取a=1.3 T-存放时间d ,取值4N-日焚烧垃圾容量,m 3/d,该设计为N=1000m 3/d 则:V=aTN=1.3×4×1000=5200m 3 燃料贮坑尺寸设计:V= a ×b ×c 取a=17m ,b=17m ,c=18mV= a ×b ×c =17×17×18=5202>5200,符合设计要求 (2)垃圾抓斗起重机垃圾抓斗起重机是垃圾焚烧厂供料系统的核心设备,担负着给垃圾焚烧炉供料的任务,垃圾抓斗起重机一般采用桥式起重机,安装在垃圾贮坑的上部,在垃圾贮坑上方沿固定轨道行走,抓斗借助卷起装置可以到达垃圾贮坑中的每一个角落完成作业。
垃圾焚烧发电炉排炉工艺设计参数计算方法

垃圾焚烧发电炉排炉工艺设计参数计算方法垃圾焚烧发电技术是一种利用垃圾进行资源化的技术,它将可燃垃圾变成高温高压气体和灰渣,并使用高效的发电设备将其转化为电力。
而垃圾焚烧的过程中,炉排是其中一个重要的设备,其设计参数的计算显得尤为重要。
一、炉排工艺设计的目标炉排工艺设计的目标是使垃圾彻底燃烧,从而最大限度地发挥垃圾的能量价值。
同时,要保证炉排运行的稳定性、可靠性和安全性,保障发电设备的正常运行。
二、炉排工艺设计参数计算方法(一)投入量和燃烧速率的计算投入量是指单位时间内投入燃料的量,燃烧速率是指单位时间内燃料燃烧的速率。
其计算方法是根据垃圾的物理特性和化学成分来确定。
(二)炉排速度的计算炉排速度是指炉排在运行过程中的速度。
其计算方法是根据垃圾的物理特性、炉排的结构参数和燃烧条件等因素综合考虑,建立数学模型,进行计算。
(三)加热面积的计算加热面积是指炉排运行过程中需要同时加热垃圾的表面积。
其计算方法是根据垃圾的物理特性,以及燃烧产物的热传递特性进行计算。
(四)气流分配的计算气流分配是指在炉排运行过程中,将所需的氧气和空气分配到适当的位置,以保证垃圾的充分燃烧和炉排的稳定运行。
其计算方法是根据炉排的结构参数和燃烧条件等因素进行计算。
(五)排渣量的计算排渣量是指单位时间内从炉排中排出的灰渣的量,其计算方法是根据垃圾的物理特性和燃烧条件等因素进行计算。
(六)氧化亚氮排放量的计算氧化亚氮排放量是指炉排运行过程中排放的氧化亚氮的量。
其计算方法是根据垃圾的物理特性和化学成分,以及燃烧产物的生成量和排放标准等因素进行计算。
三、炉排工艺设计参数的优化措施优化炉排工艺设计参数是提高垃圾焚烧发电技术效益的关键。
具体措施包括:(一)合理选择垃圾种类和粒度,以保证垃圾燃烧效果。
(二)设计合理的炉排结构和运行参数,以提高垃圾燃烧效率和发电效率。
(三)加强炉排内气流的调控,以保证垃圾的充分燃烧和炉排的稳定运行。
(四)控制炉排内的温度和压力,避免因过高的温度和压力而导致炉排故障。
垃圾焚烧设计计划书

烟气处理:对焚烧产生的烟气进行净化处 理,达到排放标准
设备选型与配置
添加 标题
焚烧炉:选择高效、环保、节能的 焚烧炉
添加 标题
余热利用系统:选择高效、节能的 余热利用系统
添加 标题
安全防护系统:选择安全、可靠的 安全防护系统
添加 标题
烟气处理系统:选择高效、可靠的 烟气处理系统
提高垃圾焚烧效率,降低能源消耗 减少污染物排放,保护环境 回收利用焚烧产生的热能,提高能源利用率 提高垃圾焚烧设备的自动化程度,降低人工成本 提高垃圾焚烧设备的稳定性和可靠性,降低维护成本
设计原则
03
安全性原则
确保焚烧炉的稳 定性和安全性
防止焚烧过程中 产生的有害气体 和粉尘对环境和
人体造成危害
设计方法:采 用先进的焚烧 技术和设备
设计效果:提 高垃圾处理效 率,降低运营 成本,减少环 境污染
0
0
0
0
1
2
3
4
降低环境污染
减少垃圾焚烧产生的有害气 体排放,降低空气污染
减少垃圾填埋量,降低土地 资源浪费
提高垃圾焚烧效率,降低能 源消耗
提高垃圾焚烧设备的环保性 能,降低对周边环境的影响
实现资源化利用
成影响
经济性原则
设计应考虑成本效益,降低建设成本和运营成本 设计应考虑能源回收和利用,提高能源利用效率 设计应考虑环保要求,减少污染物排放和处置成本 设计应考虑维护和维修成本,提高设备使用寿命和可靠性
可持续性原则
减少垃圾产生:通过设计 减少垃圾的产生,提高资
源利用率
环保处理:采用环保处理 方式,减少对环境的影响
确保焚烧炉的防 火、防爆、防泄
生活垃圾焚烧发电厂燃烧和汽水系统平衡计算与工程计算表

1 氮含量(实际氧,湿态,标态) N2
2 二氧化硫(实际氧,湿态,标态)SO2
3 二氧化碳(实际氧,湿态,标态)CO2
4 一氧化氮(实际氧,湿态,标态)NO
5 水汽容积(实际氧,湿态,标态)H2O
6 氧含量(实际氧,湿态,标态) O2
7 氯化氢(实际氧,湿态,标态) HCL
四
组分分析二(实际氧,湿态,标态)质量 浓度
2.000 2.032 1.67
8.425 3.340 3.394
1.5876 0.3786 0.0006 0.3779 0.0008 0.9491 1.9699 2.9190 3.3100 0.9705 4.2806 0.0029
0.1 1.01
0.02 0.02 950 4.28 89179.09 404802.73 3.31 68959.32 313020.93
6 炉膛出口烟气量(实际、湿烟气)
7 炉膛出口燃烧产物的实际体积(干烟气)
8 炉膛出口烟气量(标态、干烟气)
9 炉膛出口烟气量(实际、干烟气)
V0
0.0889(Car+0.375Sar)+0.265Har+0.008*N转化率Nar0.0333Oar
Vw0 1.016V0
α
传统焚烧炉排取值范围1.6~1.8(新型燃烧技术为 1.3~1.4)氧含量7-9%
②Vonroll模型 347*C+938*H+105*S+63*N-109*O-25*W
③招标方或业主给出热值 ④最终取用低位热值
Wd 工程设计值 Nfs 工程设计值 Bj
β/N转 假定 S转 假定
第1页 共9页
6766 1616 6729 1607
根据垃圾焚化系统焚烧炉的设计计算

根据垃圾焚化系统焚烧炉的设计计算
概述
本文档旨在根据垃圾焚化系统焚烧炉的设计计算,提供一份详细的设计方案和计算结果。
设计方案
根据垃圾焚化系统焚烧炉的设计计算,我们采用以下方案:
1. 高效燃烧系统:选择具有高热效率和低排放的燃烧系统,确保垃圾焚化过程中的能量转化最大化。
2. 高温燃烧空间:设计具有足够高温度的燃烧空间,以确保垃圾焚化物彻底燃烧,减少有害气体排放。
3. 废气处理系统:配备适当的废气处理系统,以净化焚烧炉产生的废气,并合规排放。
计算结果
根据垃圾焚化系统焚烧炉的设计计算,我们得出以下结果:
1. 燃料需求计算:根据垃圾种类和数量,进行燃料需求的估算,以确保炉内燃料供应充足。
2. 燃烧热量计算:根据燃料的热值和垃圾焚烧过程中的能量损失,计算出垃圾焚烧炉的燃烧热量。
3. 排放物产生计算:根据垃圾的成分和燃烧过程中的排放特性,计算出焚烧炉产生的主要排放物(如二氧化碳、一氧化碳等)的数量。
以上计算结果将为垃圾焚化系统焚烧炉的设计提供重要参考和
依据。
总结
根据垃圾焚化系统焚烧炉的设计计算,我们提供了一个综合的
设计方案和计算结果。
这将有助于确保垃圾焚化过程高效、环保,
并满足相关排放标准。
以上内容仅供参考,请在实际设计过程中根
据具体要求进行进一步调整和优化。
生活垃圾焚烧发电工艺设计计算书

式中: V----垃圾仓容积m3;a--- 容量系数,一般为1.2~1.5,考虑到由于垃圾仓存在孔角,吊车性能和翻仓程度以及有效量的缺陷,导致垃圾仓可利用的有效容积小于几何容积;T--- 存放时间,d;根据经验得出适合燃烧存放天数,它随地区及季节稍有变化;V=a*T=1.2*5*1000/0.35=17142.86(m3 )。
故:垃圾仓的容积设计取18000(m3)。
垃圾仓的深度为HmHm=L*D/V=18000/75.5*18.5=12.88(m)。
故:垃圾池全封闭结构,长75.5米,宽18.5米,总深度以6米卸料平台为基准负13米。
3.2焚烧炉的选择与计算(1)焚烧炉的加料漏斗焚烧炉的加料漏斗挂在加料漏斗层,通过垃圾吊车将间接垃圾供料变为均匀加料,漏斗的容积要能满足“1h”内最大焚烧量。
垃圾通过竖溜槽送到给料机,垃圾竖溜槽可通过液压传动闸板关闭,竖溜槽的尺寸选择要满足溜槽中火焰密封闭合,给料机根据要求向焚烧炉配送垃圾,每台炉安装配合给料机传动用液压汽缸,液压设备由每台炉生产线控制中心控制。
料斗的容积VDV D =G/24*Kx/ρL式中: VD---料斗的容积(m3);G--- 每台炉日处理垃圾的量,(t/h);Kx---可靠系数,考虑吊车在炉焚烧垃圾的速度等因素,一般取1.5;ρL---垃圾容量,一般0.3~0.6 (t/m3)取0.45(t/m3);VD=15.3t/h*1.5/0.45 =51( m3)。
故:加料漏斗容积按51m3设计并且斗口尺寸应大于吊车抓斗直径的1.5倍。
(2)燃烧空气量及一次、二次助燃空气量的计算①以单位重量燃烧所需空气量以容积计算a、理论空气量由公式:L=(8.89C+26.7H+3.33S-3.33O)*10-2(Nm3/kg);把表2待处理垃圾各元素的含量值代入上式:L=(8.89*20.6+26.7*0.9+3.33*0.12-3.33*8.53)*10-2=1.8(Nm3/kg )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
焚烧炉3台: 每台炉日处理垃圾350t;处理垃圾量: 1000t/24h=41.67(t/h);炉系数:(8760-8000)/8000=0.095;实际每小时处理生产能力:41.67*(1+0.095)=45.6(t/h);全年处理量: 45.6*8000=36.5*104t;故:每台炉每小时处理垃圾量:350/24*1.05=15.3(t/h)。
3、设计参数计算:3.1垃圾仓的设计和布置已知设计中焚烧炉长度L=75.5米,宽D=18.5米,取垃圾仓内壁与炉长度对齐,T=5d,垃圾的堆积密度取0.35t/m3求:垃圾的容积工程公式:V=a*T式中: V----垃圾仓容积m3;a--- 容量系数,一般为1.2~1.5,考虑到由于垃圾仓存在孔角,吊车性能和翻仓程度以及有效量的缺陷,导致垃圾仓可利用的有效容积小于几何容积;T--- 存放时间,d;根据经验得出适合燃烧存放天数,它随地区及季节稍有变化;V=a*T=1.2*5*1000/0.35=17142.86(m3 )。
故:垃圾仓的容积设计取18000(m3)。
垃圾仓的深度为HmHm=L*D/V=18000/75.5*18.5=12.88(m)。
故:垃圾池全封闭结构,长75.5米,宽18.5米,总深度以6米卸料平台为基准负13米。
3.2焚烧炉的选择与计算(1)焚烧炉的加料漏斗焚烧炉的加料漏斗挂在加料漏斗层,通过垃圾吊车将间接垃圾供料变为均匀加料,漏斗的容积要能满足“1h”内最大焚烧量。
垃圾通过竖溜槽送到给料机,垃圾竖溜槽可通过液压传动闸板关闭,竖溜槽的尺寸选择要满足溜槽中火焰密封闭合,给料机根据要求向焚烧炉配送垃圾,每台炉安装配合给料机传动用液压汽缸,液压设备由每台炉生产线控制中心控制。
料斗的容积VDV D =G/24*Kx/ρL式中: VD---料斗的容积(m3);G--- 每台炉日处理垃圾的量,(t/h);Kx---可靠系数,考虑吊车在炉焚烧垃圾的速度等因素,一般取1.5;ρL---垃圾容量,一般0.3~0.6 (t/m3)取0.45(t/m3);VD=15.3t/h*1.5/0.45 =51( m3)。
故:加料漏斗容积按51m3设计并且斗口尺寸应大于吊车抓斗直径的1.5倍。
(2)燃烧空气量及一次、二次助燃空气量的计算①以单位重量燃烧所需空气量以容积计算=(8.89C+26.7H+3.33S-3.33O)*10-2(Nm3/kg);a、理论空气量由公式:L把表2待处理垃圾各元素的含量值代入上式:=(8.89*20.6+26.7*0.9+3.33*0.12-3.33*8.53)*10-2=1.8(Nm3/kg )。
Lb、实际空气需要量:Ln=N*L式中: N---空气过剩系数,确保垃圾空气,一般要求燃烧过程的空气过剩系数在1.8左右,本设计中空气过剩系数取1.8;Ln=1.8*1.8=3.24( Nm3/kg)。
②以单位重量燃烧所需空气量以重量计算=(11.6C+34.78H+4.35S-4.35O)*10-2(kg/kg);a、理论空气量由公式:L把表2待处理垃圾各元素的含量值代入上式:=(11.6*20.6+34.78*0.9+4.35*0.12-4.35*8.53)*10-2=2.34 L(kg/kg)。
b、实际空气需要量:Ln=N*L式中: N---空气过剩系数,确保垃圾空气,一般要求燃烧过程的空气过剩系数在1.8左右,本设计中空气过剩系数取1.8;Ln=2.34*1.8=4.21(kg/kg)。
C、设计焚烧炉每小时燃烧垃圾所需空气总重量为G=4.12*15.3*103=63036 (kg/h)。
w③设计焚烧炉每小时燃烧垃圾所需空气总量为L=G* Ln (Nm3/h);式中: G--- 每台炉日处理垃圾的量,(t/h);Ln---实际空气需要量, ( Nm3/kg);L=15.3*103* 3.24=49572(Nm3/h)。
故:设计焚烧炉每小时燃烧垃圾所需空气量为49572( Nm3/kg)。
=L*2%设计二次风流量占整个助燃空气量的25%,求得二次风助燃空气量L空2(Nm3/h);=L*2%=49572*25%=12393(Nm3/h);L空2L=49572-12393=37179(Nm3/h)。
空1故:设计一次风助燃空气量为37179(Nm3/h),二次风助燃空气量为12393(Nm3/h)。
(3)燃烧产物的烟气量①以单位重量燃烧产生的总烟气量以容积计算焚烧垃圾炉产物的生成量及成分是根据燃烧反应的物质平衡进行计算,求1kg生活垃圾完全燃烧后产生烟气量LvLv=(m-0.21)L+1.867C+0.7S+0.8N+11.2H+1.24W+0.62C1 (Nm3/kg);=(1.8-0.21)*1.8+1.867*0.206+0.7*0.0012+0.8*0.001+11.2*0.009+1.24*0.474+0.62*0.0068(Nm3/kg);Q 1入+Q2入+ Q3入+Q4入=Q1出+ Q2出+ Q3出+ Q4出+ Q5出式中:Q1入---生活垃圾的显热量,Kcal/kg;Q2入---预热空气带入的热量,Kcal /kg;Q3入---外部热源输入的热量,Kcal/kg;Q4入---单位垃圾完全焚烧时所放出的热量,Kcal/kg;Q1出---烟道气热损失,KJ/h;Q2出---喷入炉内水蒸气所造成热损失,Kcal/ kg;Q3出---不完全燃烧气体所造成热损失,Kcal/ kg;Q4出---焚烧炉渣及飞灰带走的物理损失,Kcal/kg;Q5出---辐射的热损失,Kcal/kg;Q5出---不完全燃烧热损失,Kcal/kg;①输入热量计算1)进入焚烧炉内的垃圾完全焚烧时所输入的热量进入垃圾炉焚烧的垃圾的总热量为完全燃烧热量与显热量之和;Q1入=(单位垃圾量)*(垃圾比热值)*(垃圾进料温度)(Kcal/kg);=1*0.732*25=18.3 (Kcal/kg);2)预热空气带入的热量Q2入=(实际所需空气量)*(预热空气比热)*(预热空气温度)(Kcal/kg);=3.24*0.314*250=254.34(Kcal/kg);3)无外部热源输入的热量Q3入=04)单位垃圾完全焚烧时所放出的热量Q4入=1388 (Kcal/Kg);锅炉输入总热量QIN = Q1入+Q2入+ Q3入+Q4入=18.3+254.34+0+1388=1660.64(Kcal/Kg)。
故:输入热量Q入=1660.64(Kcal/Kg)。
②输出热量计算1)烟道气热损失烟道气热损失=燃烧干烟气量*烟气平均比热*(炉排烟气出口温度-基准温度)(Kcal/Kg);Q1出=3.34*0.355*(250-25)=266.78(Kcal/Kg)。
故:排烟道气热损失Q1出=266.78(Kcal/Kg)。
2)喷入炉内水蒸气所造成热损失无喷入炉内水蒸气Q2出=0;3)不完全燃烧气体所造成热损失Q3出=(1-燃烧效率)*(垃圾含碳量-炉灰含碳量)*(碳不完全燃烧的损失)(Kcal/Kg);已知:过热器出口压力4Mpa,温度420℃,焓值h420=789.6Kcal/Kg,集汽联箱入口给水温度150℃,焓值h150=150Kcal/Kg,;每小时垃圾焚烧量为15300 Kg/h,垃圾单位重量的能量净值1253.14cal/Kg,求每小时蒸汽产汽量S (Kg/h)。
S=(垃圾单位重量的能量净值*每小时垃圾焚烧量)/(焓降差值h420- h150)=(1253.14*15300)/(789.6-150)=29981.3(Kg/h)故:锅炉额定连续蒸汽蒸发量按30 t/h设计。
(8)炉排机械负荷护排机械负荷是表示单位炉排面积的垃圾燃烧速度的指标,即单位炉排面积,单位时间内燃烧的垃圾量,kg/(m2.h)Gf=G/t.A式中: Gf---炉排机械负荷,kg/(m2.h);G---垃圾燃烧量kg/d;t---运行时间,h/d;A---炉排面积,㎡。
已知:焚烧炉的处理能力G=15.3(t/h),运行时间t=24小时,单台焚烧炉的机械负荷Gf=150~350 kg/(m2.h),取185 kg/(m2.h),求:单台焚烧炉排面积:AA=G/t.Gf=15.3*103/185=82.7(㎡)。
故:焚烧炉炉排面积按82.7平方米设计。
(9)燃烧室热负荷qv燃烧室热负荷是衡量单位时间内单位容积所承受热量指标,燃烧容积为一、二次燃烧室之和。
燃烧室热负荷的大小即表示燃烧火焰在燃烧室内的充满程度,燃烧室太小,燃烧室内火焰过于充满,炉温会过高,从而炉壁耐火材料容易损伤,烟气的炉内停留时间也不够,容易引起不完全燃烧,严重时会造成一氧化碳,在后续烟道中再燃烧,炉壁和炉排上也易熔融结块;燃烧室过大时,热负荷偏小,炉壁过大,炉温偏低,炉内火焰充满不足,燃烧不稳定,也容易使焚烧炉灰渣的热灼量值偏高。
连续运行焚烧炉热负荷值一般在3.36*105~6.3*105KJ/(m3.h)范围,取qv=4.4*105 KJ/(m3.h) 。
q v =m[Qd+CpkLn(ta-t)]/V式中: m--- 单位时间的垃圾燃烧量,kg/d;Qd---垃圾的平均低位热值,KJ/kg;Cpk-- 空气平均定压比热容,KJ/(m3.℃);Ln---单位质量的垃圾获得的平均燃烧空气量,m3/kg(标准状态);ta---预热空气温度℃;t---环境温度,℃;V--- 燃烧容量积,m3;已知:焚烧炉单台处理能力m=15.3t/h=1.53*104kg/h, Qd=5800KJ/kg,t 0=20℃, ta=250℃, Ln=3.16 m3/kg, Cpk=1.30 KJ/(m3.℃), qv=4.4*105 KJ/(m3.h),求得燃烧室的容积:VV= m[Qd +CpkLn(ta-t)]/ qv=1.53*104[5800+1.3*3.16(250-20)]/4.4*105=234.5m3。
故:焚烧炉燃烧容积按235立方米设计。
二、根据计算得出垃圾炉性能指标及设计参数焚烧炉 3台日处理垃圾: 1000t;年处理垃圾: 45.6*8000=36.5*104 t ;每台炉每小时烧垃圾量: 15.3t/h;焚烧炉燃烧容积:235m3;焚烧炉排面积: 82.7㎡;烘干区、燃烬区垃圾厚度: 0.3~0.5m;燃烧区料层厚: 0.5~0.8m;炉渣热灼减率 : <5%;烟气在炉膛内二次燃烧室温度: ≥850℃;烟气在炉膛内二次燃烧室停留时间:≥2秒;设计垃圾热值LHV: 1388Kcal/kg(5800 kJ/kg);余热锅炉: 3套;余热锅炉过热汽蒸发量: 30t/h.台,(30*3=90 t/h);余热锅炉过热汽温度: 400℃;余热锅炉蒸汽压力: 4.0MP;a;锅筒工作压力: 4.4MPa锅炉给水温度: 150℃;焚烧炉及余热锅炉热效率: 75.5%;年运行小时:≥8000h;一次风流量:37179(Nm3/h);一次风温度:250℃;二次风流量:12393(Nm3/h);二次风风温度:230℃ 。