t检验与单因素方差分析学习资料
T检验及其与方差分析的区别

T检验及其与方差分析的区别假设检验是通过两组或多组的样本统计量的差别或样本统计量与总体参数的差异来推断他们相应的总体参数是否相同。
t 检验:1.单因素设计的小样本(n<50)计量资料2.样本来自正态分布总体3.总体标准差未知4.两样本均数比较时,要求两样本相应的总体方差相等?根据研究设计t检验可由三种形式:–单个样本的t检验–配对样本均数t检验(非独立两样本均数t检验)–两个独立样本均数t检验(1)单个样本t检验?又称单样本均数t检验(one sample t test),适用于样本均数与已知总体均数μ0的比较,其比较目的是检验样本均数所代表的总体均数μ是否与已知总体均数μ0有差别。
?已知总体均数μ0一般为标准值、理论值或经大量观察得到的较稳定的指标值。
?单样t检验的应用条件是总体标准未知的小样本资料( 如n<50),且服从正态分布。
(2)配对样本均数t检验?配对样本均数t检验简称配对t检验(paired t test),又称非独立两样本均数t检验,适用于配对设计计量资料均数的比较,其比较目的是检验两相关样本均数所代表的未知总体均数是否有差别。
?配对设计(paired design)是将受试对象按某些重要特征相近的原则配成对子,每对中的两个个体随机地给予两种处理。
?应用配对设计可以减少实验的误差和控制非处理因素,提高统计处理的效率。
?配对设计处理分配方式主要有三种情况:①两个同质受试对象分别接受两种处理,如把同窝、同性别和体重相近的动物配成一对,或把同性别和年龄相近的相同病情病人配成一对;②同一受试对象或同一标本的两个部分,随机分配接受两种不同处理,如例 5.2资料;③自身对比(self-contrast)。
即将同一受试对象处理(实验或治疗)前后的结果进行比较,如对高血压患者治疗前后、运动员体育运动前后的某一生理指标进行比较。
(3)两独立样本t检验两独立样本t 检验(two independent samples t-test),又称成组t 检验。
医学统计学-8-方差分析

第二节 单因素方差分析
单因素方差分析
单因素方差分析:研究的是一个处理因素的 不同水平间效应的差别。
处 理 因 素
水平1 水平2 水平1 水平2 水平c
单因素方差分析
例1、某地用A、B和C三种方案治疗血红蛋 白含量不满10g的婴幼儿贫血患者,A方案 为每公斤体重每天口服2.5%硫酸亚铁1ml, B方案为每公斤体重每天口服2.5%硫酸亚 铁0.5ml,C方案为每公斤体重每天口服3g 鸡肝粉,治疗一月后,记录下每名受试者血 红蛋白的上升克数,资料见下表,问三种治 疗方案对婴幼儿贫血的疗效是否相同?
A、B、C三种方案治疗婴幼儿贫血的疗效观察表
治疗方案 A n=20
血红蛋白增加量(g) 1.8 1.4 0.5 1.2 2.3 2.3 3.7 0.7 2.4 0.5 2.0 1.4 1.5 1.7 2.7 3.0 1.1 3.2 0.9 2.5
B
n=19
0.2
0.0 2.1 -0.7
0.5
1.6 1.9 1.3
q XA XB
MSe 1 1 2 nA nB
ν=νe
一、q检验
例、在前面对某地用A、B和C三种方案治疗 血红蛋白含量不满10g的婴幼儿贫血患者的 例题(完全随机设计方差分析例1)进行了 方差分析,我们得出三组总体不等的结论。 究竟哪些总体均数之间存在着差别,我们需 要在前方差分析基础之上,再对该资料作两 两比较的q检验。
随机因素是无法避免的,而实质性差异是我们 需要得到的。 如何排除随机因素的干扰,利用样本信息对总 体均数间是否存在差异作出推断?
方差分析的基本思想
按照设计类型将总变异分解为处理因素引 起的变异和随机因素造成的变异; 以处理因素变异与随机因素变异之比来构 造检验统计量F。
检验多组独立样本均值的差异—单因素方差分析

二、操作方法
(2)此时弹出【单因素方差分析】 对话框,从左侧列表框中选定所要分析 的变量,单击中间上方的 按钮,将 其移到【因变量列表】列表框中;再从 左侧列表框中选定所要分析的类别变量, 并单击中间下方的 按钮,将其移到 【因子】列表框中,如图6-3所示。
7
图6-3 【单因素方差分析】对话框
——
组和一个对照组的比较,选择此项可激活下方的【控制类别】下拉列表框,可设定第 一个或最后一个作为对照组,系统默认的是最后一个作为对照组。此外,下方激活的 【检验】栏中有【双侧】、【<控制】和【>控制】3个选项。其中,【双侧】表示双 侧t检验;【<控制】表示比较组的各组均值均小于对照组均值的单侧t检验;【>控制】 表示比较组的各组均值均大于对照组均值的单侧t检验。
11
——
任 务
检 验 单多 因组 素独 方立 差样 分本 析均 值 的 差 异
12
二、操作方法
➢ 【R-E-G-W F】复选框:用基于F检验的逐步缩小的多重比较显示一致性子集表。 ➢ 【R-E-G-W Q】复选框:用基于学生化极差分布(Student-Range)的逐步缩小的多
元统计过程进行子集一致性检验。 ➢ 【S-N-K】复选框:用学生化极差分布进行子集一致性检验。 ➢ 【Tukey】复选框:用学生化极差分布进行所有组间均值的配对比较,用所有配对比较
的累计误差率作为实验误差率,同时还进行子集一致性检验。该方法设定的临界值也 是恒定的,但也比Scheffe方法的临界值低。 ➢ 【Tukey s-b】复选框:用Tukey的交替过程检验进行组间均值的配对比较,其精确性 为S-N-K和Tukey两种检验相应值的平均值。 ➢ 【Duncan】复选框:指定一系列的极差值,逐步进行计算比较得出结论,显示一致性 子集检验结果。
统计学0715单因素方差分析

18名员
μ1=总体1的平均考分
μ2=总体2的平均考分
μ3=总体3的平均考分
尽管并不知道μ1、μ2、μ3的实际值,但仍可通过样本资料来检验如下假设:
H0:μ1=μ2=μ3
H1:μ1,μ2,μ3不全相等
如果检验结果发现三个样本均值的差异足够大,这时就有理由拒绝原假设,接受备择假设,即认为三个分厂的平均考分不相同,也就是说三个分厂的全面质量管理效果不一样。
从例1中可以看出,进行方差分析需要满足以下三个假定:
1、对每个总体而言,各变量因素服从正态分布。
具体到此例题,要求三个分厂的考试分数服从正态分布。
2、要求各变量因素的方差对所有总体都相同。
3、观察值是独立的。
如此例,意味着每个员工的考分都与其他员工的考分独立。
均值是否相等时的假
分析数据的一种重要后通过比较这些平方验方法。
标。
影响试验指标的因素A有r个不同水平试验中如果只有一差分析。
如果多于一因素方差分析。
若在。
有多少员工了解全面量意识考核。
18名员。
管理者想利用这些
,三个分厂的位置就员工,总体3为广州分
厂的考试分数服从正立。
:
接受备择假设,即认。
t检验和方差

炼的中学生心脏功能是否与一般的中学生相同,现收集了某地区中学常年
参加体育锻炼的16名男生的心率资料,问能否认为常年参加体育锻炼的男 生心率次数低于一般男生?(xinlv.sav)
29
综合练习
4.18名黑热病兼贫血患者被随机分成两组各9名,分别用葡萄糖锑钠(A) 和复方葡萄糖锑钠(B)治疗,观察治疗前后血色素(%)的变化,测定 结果如下。试评价①这两种药是否都有效。②A,B两药的疗效是否有差
分变量
分组变量
19
三、两独立样本t检验 Independent-Samples T Test 过程
结果解释
结果分为两部分,第一部分为Levene’s方差齐性检验结果,用于判断两总体方差是否 齐。本例, F=0.440 , P=0.514 ,方差齐;第二部分则分别给出两组所在总体方差齐和不齐
时的t检验结果:第一行代表方差齐的结果,第二行代表方差不齐时的t’检验结果。
病人
健康人
2.90 5.41 5.48 4.60 4.03 5.10 4.97 4.24 4.36 2.72 2.37 2.09 7.10 5.92
5.18
8.79
3.14
6.46
3.72
6.64
5.60
4.57
7.71
4.99
4.01
18
三、两独立样本t检验 Independent-Samples T Test 过程
36
一、单因素方差分析 One-Way ANOVA
1、Statistics复选框: Descriptive:输出常用统计描述指标
Homogeneity of variance test:方差齐性检验
2、Means plot:用各组均数作均数图
T检验及单因素方差分析

T检验及单因素方差分析T检验是一种用于比较两个样本均值是否具有统计学意义的方法,而单因素方差分析则是一种用于比较三个或更多个样本均值是否具有统计学意义的方法。
本文将详细介绍T检验和单因素方差分析的基本原理、假设条件、计算公式以及实际应用。
一、T检验的基本原理T检验是由英国统计学家威廉·塞吉威德·高斯特及学生威廉·赖斯·格斯特发展而来的。
T检验基于样本均值与总体均值的比较,通过计算差异的标准误差来判断这种差异是否具有统计学意义。
T检验的基本原理是假设样本的均值服从正态分布,通过计算样本均值与总体均值之间的标准差来估计差异的大小。
二、T检验的假设条件T检验的假设条件包括正态分布假设、独立性假设和方差齐性假设。
1.正态分布假设:样本来自正态分布总体或样本容量足够大时,可以近似看作来自正态分布总体。
2.独立性假设:样本之间是相互独立的,即一个样本的观察值与另一个样本的观察值之间没有关联。
3.方差齐性假设:不同样本的方差相等,即总体的方差是相同的。
三、T检验的计算公式T检验的计算公式包括两种情况:独立样本T检验和配对样本T检验。
1.独立样本T检验:适用于两个独立的样本均值比较。
计算公式为:t = (X1 - X2) / se其中,X1和X2分别为两个样本的均值,se为标准误差,t为检验统计量。
2.配对样本T检验:适用于两个相关的样本均值比较。
计算公式为:t=(X1-X2)/(s/√n)其中,X1和X2分别为两个样本的均值,s为差异的标准差,n为样本容量,t为检验统计量。
四、单因素方差分析的基本原理单因素方差分析是用于比较三个或更多个样本均值是否具有统计学意义的方法。
它基于样本之间的差异和样本内的差异,通过计算组间方差和组内方差的比值来判断这种差异是否显著。
单因素方差分析的基本原理是假设总体均值相等,通过计算组间方差和组内方差的比值来检验这一假设。
五、单因素方差分析的假设条件单因素方差分析的假设条件包括正态分布假设、独立性假设和方差齐性假设。
STATA第四章t检验和单因素方差分析命令输出结果说明
第四章 t检验和单因素方差分析命令与输出结果说明·单因素方差分析单因素方差分析又称为Oneway ANOVA,用于比较多组样本的均数是否相同,并假定:每组的数据服从正态分布,具有相同的方差,且相互独立,则无效假设。
原假设:H0:各组总体均数相同。
在STATA中可用命令:oneway 观察变量分组变量[, means bonferroni]其中子命令bonferroni是用于多组样本均数的两两比较检验。
例:测定健康男子各年龄组的淋巴细胞转化率(%),结果见表,问:各组的淋巴细胞转化率的均数之间的差别有无显著性?健康男子各年龄组淋巴细胞转化率(%)的测定结果:11-20 岁组:58 61 61 62 63 68 70 70 74 7841-50 岁组:54 57 57 58 60 60 63 64 6661-75 岁组:43 52 55 56 60用变量x 表示这些淋巴细胞转化率以及用分组变量group=1,2,3分别表示11-20岁组,41-50岁组和61-75岁组,即:数据表示为:x 58 61 61 62 63 68 70 70 74 78 54 57 group 1 1 1 1 1 1 1 1 1 1 2 2x 57 58 60 60 63 64 66 43 52 55 56 60 group 2 2 2 2 2 2 2 3 3 3 3 3则用 STATA 命令:oneway x group, mean bonferroni| Summary of xgroup | Mean ①-------------+------------1 | 66.52 | 59.8888893 | 53.2------+------------Total | 61.25 ②Analysis of VarianceSource SS df MS F Prob > F-------------------------------------------------------------------------------Between groups 616.311111③ 2 ④ 308.155556⑤ 9.77⑥ 0.0010⑦Within groups 662.188889⑧ 21⑨ 31.5328042⑴-------------------------------------------------------------------------------Total 1278.50 23 55.586956(2)Bartlett's test for equal variances:chi2(2) = 2.1977 (3)Prob>chi2=0.333Comparison of x by group(Bonferroni)Row Mean- |Col Mean | 1 2-------------- --|--------------------------------------2 | -6.61111 (4)| 0.054 (5)|3 | -13.3 (6) -6.68889(8)| 0.001 (7) 0.134 (9)①对应三个年龄组的淋巴细胞转化率的均数;②三组合并在一起的总的样本均数;③组间离均差平方和;④组间离均差平方和的自由度;⑤组间均方和(即:⑤=③/④);⑧组内离均差平方和;⑨组内离均差平方和的自由度;(1)组内均方和(即:(1)=⑧/⑨);⑥为F 统计值(即为⑤/(1));⑦为相应的p值;(2)为方差齐性的Bartlett检验;(3)方差齐性检验相应的p值;(4)第二组的淋巴细胞转化率样本均数—第一组的淋巴细胞转化率的样本均数的差;(5)第二和第一组均数差的显著性检验所对应p 值;(6)第三组的淋巴细胞转化率样本均数—第一组的淋巴细胞转化率的样本均数的差;(7)第三和第一组均数差的显著性检验所对应的 p 值;(8)第三组的淋巴细胞转化率样本均数—第二组的淋巴细胞转化率的样本均数的差;(9)第三和第二组均数差的显著性检验所对应的p 值。
t检验与方差分析
• 注意
• 主效应显著,而交互作用不显著。交互作用显著, 而主效应不显著都是正常的。
• 避免只有统计的显著性而没有实用的显著性
– 解释量或效应量effect size, ajusted R2
• 因变量由自变量解释的百分比,6%,16%
几种方差分析的区别
• 组间,被试间
– ANOVA
• 单因素方差分析,如只有两个水平也可以做t检验
-Univariate
• 单因素或多因素方差分析 • 如交互作用显著,做简单效应比较
• 组内(被试内)混合实验设计
– Repeated measures
Post hoc
• 当某个因素的水平多于2个时,做事后多重 比较
– 季节对植物生长率的影响
• Test of sphericity(球形检验)
– Assumed: tests of within-subjects effects
– Not assumed: tests of within-subjects effects greenhouse or mutivariate(多元分析)
结果描述
• 对射击成绩进行2(枪支类型,手枪与步枪)*2 (靶子类型,移动靶与固定靶)两因素重复测量 方差分析。
• 结果发现:枪支类型主效应显著, F(1,29)=592.173, p= <0.001,步枪射击成绩显著 高于手枪射击成绩。靶子类型主效应显著, F(1,29)=69.781, p <0.001 ,移动靶的成绩显著 高于固定靶的成绩。两因素交互作用不显著, F(1,29)=1.384,p=0.249。
3步
3-SPSSt检验与单因素方差分析
5.18
8.79
3.14
6.46
3.72
6.64
5.60
4.57
7.71
4.99
4.01
2013-8-15
Page17
SPSS统计软件操作
Independent-Sample t test 过程
Group Statistics
分 组 支管人 气病 健人 康
N 14 11 Mean 4.3 779 5.5 282 Std . Deviation 1.4 498 9 1.7 354 0 Std . Error Mean .38 750 .52 324
• 是指采用统计图、统计表、统计指标等形式来对资 料的数量特征和分布规律作出测定和描述的一种方
法。
statistical inference统计推断 • 统计推断包括研究如何抽样,如何由样本信息来推 断总体特征。
2013-8-15
Page3
SPSS统计软件操作
理论回顾
假设检验 Hypothesis test
Page19
SPSS统计软件操作
Paired-sample t test
操作提示:Analyze →Compare Means →Paired-Sample T Test …
待选变量 配对变量
2013-8-15
Page20
SPSS统计软件操作
Paired-sample t test
【例4】
10例患者治疗前后的血红蛋白见数据“血红蛋白.sav”。问
差相等
优点: 不受比较组数的限制,可比较多组均数 可同时分析多个因素的作用 可分析因素间的交互作用
2013-8-15
Page24SPSS统计软件操作One-way ANOVA
(预防医学课件)05t检验与方差分析
1.00
195 (d2)
28
1. 建立检验假设,确定检验水准
H0: μd = 0 ,即两种结果相同 H1: μd ≠ 0 ,即两种结果不同
2. 计算检验统计量
α=0.05(双侧检验)
已知: Σd=39 Σd2 =195
dd393.25
n 12
Sd
d2( d)2/n19 (3 5)2 9 /1 22.4909
19
检验步骤
•首先假定H0是成立的, α=0.05 •在此前提下计算统计量
•根据其分布函数,通过查该分布的界 值表,得到大于或等于此统计量值的 概率P
二、配对设计的差值均数与总体均数0的比较
配对的主要形式有: 同源配对
①同一受试对象处理前后的数据; ②同一受试对象两个部位的数据; ③同一样品用两种方法(仪器)检验的结果;
<u0.05 >0.05
≥ u0.05
≤0.05
结论 接受H0,差别无统计学意义 拒绝H0,接受H1,差别有 统计学意义
13
本例 u=1.792,u0.05 =1.96,u=1.792< u0.05 =1.96。 因此P>0.05,说明在 a=0.05 水准上,接受H0, 根据现有样本信息,尚不能认为该市 2 岁男孩的 平均体重与全国的同期水平不同。
结论:在 a = 0.05 水准上不拒绝 H0,可认为 服用该减肥药前后体重差异无统计学意义。
34
三、完全随机设计两个样本均数的比较
两种类型:
选择一定数量的观察单位,将它们随机分为两组或 多组,分别给予不同处理;
从两组或多组具有不同特征的人群中,分别随机抽 取一定 数量的样本,比较某一指标在不同特征人群 中是否相等。
统计学意义
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.样本小,但总体标准差已知
➢t检验 • 样本均数与总体均数比较的t检验 • 配对设计资料比较的t检验 • 两独立样本均数比较的t检验 ➢方差分析 • 完全随机设计的单因素方差分析 • 多个样本均数间的多重比较
➢样本均数与总体均数的比较的t检验,亦 称单样本t检验(one sample t test) 。
查表,t与自由度为9(10-1)时的t界值进行 比较,得到0.01<p<0.05。
• P=2*[1-CDF.T(2.434,9)]
CDF.T(quant, df)。数值。返回 t 分布(指定自由度为 df)中的 值将小于 quant 的累积概率。
SPSS软件操作
• 第一步:以“血尿素氮” 为变量名,建立变量
• t检验(n较小时)的计算公式:
• U检验(n较大时)的计算公式:
【例1】已知一般无肝肾疾患的健康人群血尿素氮 均值为 4.882 (mmol/L),10名脂肪肝患者的血尿素 氮 (mmol/L)测定值为 6.24,4.26,5.36,8.13, 6.96,11.8,5.74,4.37,5.18,8.68。 问:脂肪肝患者血尿素氮含量是否不同于健康人?
• 2.选择检验方法、计算统计量
➢假设检验的方法应针对不同研究目的、设 计及资料的类型选定,并计算相应的检验 统计量。
➢如在总体方差已知的情况下,进行两均数 的比较用z检验或u检验;在总体方差未知 情况下,进行两均数的比较用 t 检验等。
• 3.确定P值、作出推论
➢根据计算的检验统计量,确定P值,P值是 在H0成立的情况下随机抽样,获得大于及 等于或(和)小于及等于现有样本资料求得的 检验统计量的概率。
• 结果解读2
• t:统计量t=2.434 • Sig(双侧):p值=0.038 • 均值差值:两个均数的差值=1.79 • 差值的95%CI:0.1267~3.4533
➢用于从正态总体中获得含量为n的样本, 算得均数和标准差,判断其总体均数μ 是否与某个已知总体均数μ0相同。
➢已知的总体均数一般为公认的理论数值、 经验数值、期望数值或经过大量观察所得 的稳定值,如人的正常生理指标(红细胞数、 身高、血压等)。
➢样本均数与总体均数比较的 t 检验,其应用 条件是资料服从正态分布或近似正态分布。
➢t检验(t test)是以t分布为理论
基础,对一个或两个样本的数值变 量资料进行假设检验常用的方法, 属于参数检验。
正态分布的公式
总体均数
f ( X ) 1 e , ( X -)2 / 2 2 ∞ X ∞
2
总体标准差
μ和σ是正态分布的两个参数,μ和σ决定了x 的概率分布;习惯上用 N (μ, σ2)表示均数为μ,标 准差为σ的正态分布。
季聪华 2012.10.18
假设检验步骤
• 1.建立假设、确定检验水准
➢(1)零假设或无效假设: H0:μ=μ0,即两 总体均数相同。
➢(2)备择假设或有统计学意义假设H1:
μ≠μ0,即两总体均数不同。根据专业知
识及数据特征,备择假设H1 也有单侧形式:
μ<μ0 ,μ>μ0 。
➢选择双侧检验,还是单侧检验需依据数据 特征和专业知识进行确定。
1. 位置参数:μ
当σ固定不变时,μ越大,曲线沿横轴 越向右移动;反之, μ越小,则曲线沿横轴越向左移 动,所以μ叫正态曲线N(μ, σ2)的位置参数, 。
正态分布位置随参数μ变换示意图
2. 形状参数:σ
当μ固定不变时,σ越大,曲线越平阔; σ越小,曲线越尖峭,σ 叫正态曲线N(μ, σ2)的形 状参数。
f(X)
0.9
0.8
σ=1
0.7
0.6
0.5
0.4
0.3
σ=1.5
0.2
0.1 0
σ=2
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
X
正态分布形态随参数σ变换示意图
t分布
2.58 1.96
t 检验和 u 检验
应用条件: t 检验:1.单因素设计的小样本(n<50)计
量资料 2.样本来自正态(近似正态)分布总体 3.总体标准差未知 4.两样本均数比较时,要求两样本相
• 第二步:将10个数据依次 录入SPSS,形成10行1列的 数据集。
• 第三步:选择分析→比较均值→单样本T检验
• 第四步:在单样本T检验对话框中,检验变 量处移入血尿素氮,检验值处填上4.882。
• 第五步:点确定后产生结果,结果解读。
• 结果解读1
• N:总的样本例数=10 • 均值:算术平均数=6.6720 • 标准差:标准差=2.32515 • 均值的标准误:标准误=0.73528
假设检验的分类
➢根据是否正态分布:分参数检验和非参数 检验
➢根据处理因素:分单因素分析和多因素分 析
➢根据比较类型:分优效性、等效性和非劣 效性。
常用假设检验方法的选择(1)
两均数Байду номын сангаас比较
多组均 数比较
样本与总体比较
两样本 比较
配对 资料
非配对 资料
完全随机设计资 料
配伍组设计资料
拉丁方设计资料 正交设计
单因素方差分析,理论上若不满足方差齐性及正态分布(哪怕有一 条不符合也算),则用秩和检验。
正态分布的检验,首先先将资料进行分组处理 ,然后-非参数检验-旧对话框-1-样本 (看最后
出来的p>0.05则为正态分布) 但一般来说,多直接只看方差齐性,不用看是
否满足正态分布
医学统计学(04) ——t检验与单因素方差分析
➢t检验 • 样本均数与总体均数比较的t检验 • 配对设计资料比较的t检验 • 两独立样本均数比较的t检验 ➢方差分析 • 完全随机设计的单因素方差分析 • 多个样本均数间的多重比较
➢t检验 • 样本均数与总体均数比较的t检验 • 配对设计资料比较的t检验 • 两独立样本均数比较的t检验 ➢方差分析 • 完全随机设计的单因素方差分析 • 多个样本均数间的多重比较
样本均数与总体均数比较的t检验 配对t检验
符号秩和检验 两独立样本比较的t检验
两组资料的秩和检验 中位数检验
单因素方差分析 H检验,多个样本两两比较的秩和检验
两因素方差分析 M检验
三向方差分析 多向方差分析
《中华医学杂志》对来稿统计学处理的有关要求
《中华医学杂志》对来稿统计学处理的有关要求
单因素均数比较