初三数学圆典型难题及标准答案

合集下载

人教版初中数学圆的难题汇编附答案

人教版初中数学圆的难题汇编附答案

下列说法中错误的是( ) A.勒洛三角形是轴对称图形
B.图 1 中,点 A 到 BC 上任意一点的距离都相等
C.图 2 中,勒洛三角形上任意一点到等边三角形 DEF 的中心 O1 的距离都相等
D.图 2 中,勒洛三角形的周长与圆的周长相等 【答案】C 【解析】
【分析】
根据轴对称形的定义,可以找到一条直线是的图像左右对着完全重合,则为轴对称图形.鲁 列斯曲边三角形有三条对称轴. 鲁列斯曲边三角形可以看成是 3 个圆心角为 60°,半径为 DE 的扇形的重叠,根据其特点可以进行判断选项的正误. 【详解】
A.
【分析】
作 OM⊥AB 于 M,ON⊥CD 于 N,连接 OP,OB,OD,首先利用勾股定理求得 OM 的长,
然后判定四边形 OMPN 是正方形,求得正方形的对角线的长即可求得 OP 的长.
【详解】
作 OM⊥AB 于 M,ON⊥CD 于 N,连接 OP,OB,OD,
考点:圆的基本性质.
12.如图,点 A、B、C、D、E、F 等分⊙O,分别以点 B、D、F 为圆心,AF 的长为半径画 弧,形成美丽的“三叶轮”图案.已知⊙O 的半径为 1,那么“三叶轮”图案的面积为( )
A. + 3 3 2
B. - 3 3 2
C. 3 3 2
D. 3 3 2
【答案】B
【解析】
了圆的认识及等腰三角形的性质及三角形外角的性质,熟练掌握等腰三角形的性质和三角
形外角性质是关键.
5.下列命题错误的是( ) A.平分弦的直径垂直于弦 B.三角形一定有外接圆和内切圆 C.等弧对等弦 D.经过切点且垂直于切线的直线必经过圆心 【答案】C 【解析】 【分析】 根据垂径定理、三角形外接圆、圆的有关概念判断即可. 【详解】 A、平分弦的直径一定垂直于弦,是真命题; B、三角形一定有外接圆和内切圆,是真命题; C、在同圆或等圆中,等弧对等弦,是假命题;

(word完整版)初三数学圆所有经典难题

(word完整版)初三数学圆所有经典难题

圆所有经典难题一,选择题1.下列命题中正确的有( )个(1) 平分弦的直径垂直于弦(2)经过半径一端且与这条半径垂直的直线是圆的切线 (3)在同圆或等圆中,圆周角等于圆心角的一半 (4)平面内三点确定一个圆(5)三角形的外心到各个顶点的距离相等 (A) 1个 (B) 2个 (C) 3个 (D) 4个2.AC 平分∠BAD 且交BD 于F 点.若∠ADE =19°,则∠AFB 的度数为何?( )A .97°B .104°C .116°D .142°3.下列说法正确的是 ( ) A 、三点确定一个圆。

B 、一个三角形只有一个外接圆。

C 、和半径垂直的直线是圆的切线。

D 、三角形的内心到三角形三个顶点距离相等。

4.在半径等于5cm 的圆内有长为35cm 的弦,则此弦所对的圆周角为( )A 、60º或120º B. 30º或120º C. 60º D. 120º5.如图4,⊙O 的半径为5,弦AB的长为8,M是弦AB上的动点,则线段OM长的最小值为( )A、2 B、3 C、4 D、56.与三角形三个顶点距离相等的点,是这个三角形的 ( ) A 、 三条中线的交点, B 、三条角平分线的交点, C 、三条高的交点, D 、三边的垂直平分线的交点。

7.圆的半径为5cm ,圆心到一条直线的距离是7cm ,则直线与圆( ) A 、有两个交点, B 、有一个交点, C 、没有交点, D 、交点个数不定。

8.两圆的半径比为 2 cm 与3cm ,圆心距等于小圆半径的2倍,则两圆的关系为 ( ) A 、相离, B 、外切, C 、相交, D 、内切或内含9.若⊙O 所在平面内一点P 到⊙O 上的点的最大距离为a ,最小距离为b (a>b ),A BP O则此圆的半径为( )A .2b a +B .2b a -C .22b a b a -+或D .b a b a -+或10.如图24—A —6,两个同心圆,大圆的弦AB 与小圆相切于点P ,大圆的弦CD 经过点P ,且CD=13,PC=4,则两圆组成的圆环的面积是( )A .16πB .36πC .52πD .81π二.填空题1.已知圆锥的高是cm 30,母线长是cm 50,则圆锥的侧面积是2.一个扇形的圆心角为90°,半径为2,则这个扇形的弧长为__________(结果保留π)3.将半径为5,圆心角为144°的扇形围成一个圈锥的侧面,则这个圆锥的底面半径为 _____.4.如图AD 、AE 、CB 都是⊙O 的切线,AD=4,则ΔABC 的周长是 . E ACA F ·O PB ·O CBD5.已知一个圆锥的侧面展开图是半径为r 的半圆,则这个圆锥的全面积是__________.6.圆柱的底面半径是3 cm ,母线长为4 cm ,那么圆柱的侧面积为_______.7.在Rt △ABC 中,∠C=90゜,AC=5,BC=12,以C 为圆心,R 为半径作圆与斜边AB 相切,则R 的值为 。

初三数学圆典型难题及答案

初三数学圆典型难题及答案

2006年中考“圆” 热点题型分类解析1.(2006,泉州)如图1,△ABC 为⊙O 的内接三角形,AB 为⊙O 的直径,点D•在⊙O 上,∠BAC=35°,则∠ADC=_______BA(1) (2) (3) (4)2.(2006,哈尔滨市)在△ABC 中,AB=AC=5,且△ABC 的面积为12,则△ABC 外接圆的半径为________.3.(2006,南京市)如图2,矩形ABCD 与圆心在AB 上的⊙O 交于点G 、B 、F 、E ,•GB=8cm ,AG=1cm ,DE=2cm ,则EF=_______cm .4.(2006,旅顺口区)如图3,点D 在以AC 为直径的⊙O 上,如果∠BDC=20°,那么∠ACB=________.5.(2006,盐城)已知四边形ABCD 内接于⊙O ,且∠A :∠C=1:2,则∠BOD=______.6.(2006,大连)如图4,在⊙O 中,∠ACB=∠D=60°,AC=3,则△ABC•的周长为______.7.(2006,盐城)如图5,AB 是⊙O 的弦,圆心O 到AB 的距离OD=1,AB=4,•则该圆的半径是________.(5) (6) (7) (8) (9)8.如图6,⊙O 的直径AB=8cm ,C 为⊙O 上的一点,∠BAC=30°,则BC=_____cm .9.(2006,重庆)如图7,△ABC 内接于⊙O ,∠A 所对弧的度数为120°,∠ABC 、•∠ACB 的角平分线分别交AC 、AB 于点D 、E ,CE 、BD 相交于点F .①cos ∠BFE=12;②BC=•BD ;③EF=FD ;④BF=2DF .其中结论一定正确的序号是________. 10.(2006,海淀区)如图8,已知A 、B 、C 是⊙O 上,若∠COA=100°,则∠CBA 的度数是( )A .40°B .50°C .80°D .200°11.(2006,温州)如图9,AB 是⊙O 的直径,点C 在⊙O 上,∠B=70°,则∠A 的度数是( )A .20°B .25° C.30° D .35°(10) (11) (12) (13) (14)12.(2006,陕西)如图10,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,连接CD ,若⊙O 的半径r=32,AC=2,则cosB 的值是( )A .32BCD .2313.(2006,浙江)如图11,A 、B 、C 是⊙O 上的三点,∠BAC=45°,则∠BOC•的大小是( )A .90°B .60°C .45°D .22.5°14.(2006,浙江台州)我们知道,“两点之间线段最短”,“直线外一点与直线上各点连线的所有线段中,垂线段最短”.在此基础上,人们定义了点与点的距离,•点到直线的距离.类似地,如图12,若P 是⊙O 外一点,直线PO 交⊙O 于A 、B 两点,PC•切⊙O 于点C ,则点P 到⊙O 的距离是( )A .线段PO 的长度;B .线段PA 的长度;C .线段PB 的长度;D .线段PC 的长度15.(2006,绵阳)如图13,AB 是⊙O 的直径,BC 、CD 、DA 是⊙O 的弦,且BC=CD=•DA ,则∠BCD=( )A .100°B .110°C .120°D .135°16.(2006,重庆)如图14,⊙O 的直径CD 过弦EF 的中点G ,∠EOD=40°,•则∠DCF 等于( )A .80°B .50°C .40°D .20°17.(2006,广安)用一把带有刻度尺的直角尺,①可以画出两条平行的直线a•和b ,如 图(1);②可以画出∠AOB 的平分线OP ,如图(2);•③可以检验工件的凹面是否为半圆,如图(3);④可以量出一个圆的半径,如图(4).这四种说法正确的有( )A .4个B .3个C .2个D .1个18.(2006,攀枝花)图16中∠BOD 的度数是( )A .55°B .110°C .125°D .150°(16) (17) (18)19.(2006,攀枝花)如图17,AB是⊙O的直径,弦AC、BD相交于点E,则CDAB等于()A.tan∠AED B.cot∠AED C.sin∠AED D.cos∠AED20.(2006,浙江舟山)如图18已知A、B、C是⊙O上的三点,若∠ACB=44°,•则∠AOB的度数为()A.44° B.46° C.68° D.88°21.(2006,浙江台州)如图,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,•交边BC于点E,连结BD.(1)根据题设条件,请你找出图中各对相似的三角形;(2)请选择其中的一对相似三角形加以证明.22.(2006,黄冈)如图,AB,AC分别是⊙O的直径和弦,点D为劣弧AC上一点•弦ED分别交⊙O于点E,交AB于点H,交AC于点F,过点C的切线交ED的延长线于点P.(1)若PC=PF;求证:AB⊥ED.(2)点D在劣弧AC的什么位置时,才能使AD=DE.DF,为什么?23.(2006,广东课改区)如图所示,AB是⊙O的弦,半径OC、OD分别交AB于点E、F,且AE=BF,请你找出线段OE 与OF的数量关系,并给予证明.24.(2006,上海市)本市新建的滴水湖是圆形人工湖,为测量该湖的半径,小杰和小丽沿湖边选取A、B、C三根木柱,使得A、B之间的距离与A、C之间的距离相等,•并测得BC长为240米,A到BC的距离为5米,如图所示,•请你帮他们求出滴水湖的半径.1.(2006,温州)已知∠ABC=60°,点O在∠ABC的平分线上,OB=5cm,以O为圆心,•3cm为半径作圆,则⊙O与BC 的位置关系是________.2.(2006,大连)如图1,AB是⊙O的切线,OB=2OA,则∠B的度数是_______.(1)(2)(3)3.(2006,天津)已知⊙O中,两弦AB和CD相交于点P,若AP:PB=2:3,CP=2cm,DP=•12cm,则弦AB的长为_______cm.4.(2006,天津)如图2,已知直线CD与⊙O相切于点C,AB为直径,若∠BCD=•40°,则∠ABC的大小等于_______(度).5.(2006,上海市)已知圆O的半径为1,点P到圆心O的距离为2,过点P•作圆的切线,那么切线长是________.6.(2006,哈尔滨)如图3,PB为⊙O的切线,B为切点,连结PO交⊙O于点A,PA=2,PO=5,则PB的长为()A.4 B. D.7.(2006,旅顺口区)如图4,AB与⊙O切于点B,AO=6cm,AB=4cm,则⊙O•的半径为()A...(4)(5)(6)8.(2006,浙江绍兴)如图5,已知⊙O的直径AB与弦AC的夹角为35°,过C点的切线PC•与AB的延长线交于点P,那么∠P等于()A.15° B.20° C.25° D.30°9.(2006,浙江台州)如图6,已知⊙O中弦AB,CD相交于点P,AP=6,BP=2,CP=•4,则PD的长是()A.6 B.5 C.4 D.310.(2006,重庆)⊙O的半径为4,圆心O到直线L的距离为3,则直线L与⊙O•的位置关系是()A.相交 B.相切 C.相离 D.无法确定11.(2006,白云区)如图,A是⊙O外一点,B是⊙O上一点,AO•的延长线交⊙O 于点C,连结BC,∠C=22.5°,∠A=45°.求证:直线AB是⊙O的切线.12.(2006,陕西)如图,⊙O的直径AB=4,∠ABC=30°,D是线段BC•的中点.(1)试判断点D与⊙O的位置关系,并说明理由;(2)过点D作DE⊥AC,垂足为点E,求证直线DE是⊙O的切线.13.(2006,攀枝花)如图所示,PA、PB是⊙O的切线,A、B为切点,∠APB=•80°,点C是⊙O上不同于A、B的任意一点,求∠ACB的度数.14.(2006,绵阳)已知在Rt△ABC中,AD是∠BAC的角平分线,以AB上一点O•为圆心,AD为弦作⊙O.(1)在图中作出⊙O;(不写作法,保留作图痕迹)(2)求证:BC为⊙O的切线;(3)若AC=3,tanB=34,求⊙O的半径长.15.(2006,天津)如图,已知⊙O的割线PAB交⊙O于A、B两点,PO与⊙O•交于点C,且PA=AB=6cm,PO=12cm.(1)求⊙O的半径;(2)求△PBO的面积.(结果可带根号)16.(2006,海淀区)如图,在⊙O中,弦AC与BD交于E,AB=6,AE=8,ED=4,•求CD的长.17.(2006,盐城)如图,已知:C是以AB为直径的半圆O上一点,CH⊥AB•于点H,直线AC与过B点的切线相交于点D,E为CH中点,连接AE并延长交BD于点F,直线CF交直线AB于点G.(1)求证:点F是BD中点;(2)求证:CG是⊙O的切线;(3)若FB=FE=2,求⊙O的半径.1.(2006,攀枝花市)如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O 于B、C,则BC=_______.2.(2006,淄博市)要在一个矩形纸片上画出半径分别是4cm和1cm•的两个外切圆,该矩形长的最小值是_______.3.(2006,哈尔滨)已知⊙O与⊙O半径的长是方程x2-7x+12=0的两根,且O1O2=12,则⊙O1与⊙O2的位置关系是()A.相交 B.内切 C.内含 D.外切4.(2006,白云山区)已知两圆的半径分别为1和4,圆心距为3,则两圆的位置关系是()A.外离 B.外切 C.相交 D.内切5.(2006,南安市)已知⊙O1和⊙O2的半径分别为2cm和3cm,两圆的圆心距是1cm,则两圆的位置关系是() A.外离 B.外切 C.相交 D.内切6.(2006,烟台市)已知:关于x的一元二次方程x2-(R+r)x+14d2=0无实数根,其中R、•r分别是⊙O1、⊙O2的半径,d为此两圆的圆心距,则⊙O1,⊙O2的位置关系为()A.外离 B.相切 C.相交 D.内含7.(2006,哈尔滨市)下列命题中,正确命题的个数是()①垂直于弦的直径平分这条弦;②平行四边形对角互补;③有理数与数轴上的点是一一对应的;④相交两圆的公共弦垂直平分两圆的连心线.A.0个 B.1个 C.2个 D.3个8.(2006,浙江)如果两圆半径分别为3和4,圆心距为8,那么这两圆的位置关系是()A.内切 B.相交 C.外离 D.外切9.(2006,广安)若⊙A和⊙B相切,它们的半径分别为8cm和2cm,则圆心距AB为( • )A.10cm B.6cm C.10cm或6cm D.以上都不对10.(2006,攀枝花)在等边三角形、正五边形、正六边形、正七边形中,既是轴对称又是中心对称的图形是() A.等边三角形 B.正五边形 C.正六边形 D.正七边形11.(2006,哈尔滨市)已知:如图,⊙O1与⊙O2外切于点P,经过⊙O1上一点A•作⊙O1的切线交⊙O2于B、C两点,直线AP交⊙O2于点D,连结DC、PC.(1)求证:D C2=DP·DA;(2)若⊙O1与⊙O2的半径之比为1:2,连结BD,,PC=12,求AB的长.12.(2006,成都)已知:如图,⊙O与⊙A相交于C、D两点,A、O分别是两圆的圆心,△ABC内接于⊙O,弦CD交AB 于点G,交⊙O的直径AE于点F,连结BD.(1)求证:△ACG∽△DBG;(2)求证:AC2=AC·AB;(3)若⊙A、⊙O的直径分别为15,且CG:CD=1:4,求AB和BD的长.13.(2006,盐城)已知:AB为⊙O的直径,P为AB弧的中心.(1)若⊙O′与⊙O外切于点P(见图甲),AP、BP的延长线分别交⊙O′于点C、D,•连接CD,则△PCD是________.(2)若⊙O′与⊙O相交于点P、Q(见图乙),连接AQ、BQ并延长分别交⊙O•′于点E、F,请选择下列两个问题中的一个作答:问题1:判断△PEF的形状,并证明你的结论;问题2:判断线段AE与BF的关系,并证明你的结论.我选择问题______,结论:___________.证明:1.(2006,浙江)如图1,圆锥的底面半径为6cm,高为8cm,•那么这个圆锥的侧面积是________c m2.(1)(2)(3)(4)2.(2006,泉州)已知圆柱的底面半径为2cm,母线长为3cm,•则该圆柱的侧面展开图的面积为_____cm2.3.(2006,黄冈)如图2,将边长为8cm的正方形ABCD的四边沿直线L向右滚动(不滑动),当正方形滚动两周时,正方形的顶点A所经过的路线的长是_____cm.4.(2006,广州)如图3,从一块直径为a+b的圆形纸板上挖去直径分别为a•和b 的两个圆,则剩下的纸板面积为________.5.(2006,旅顺口)若圆锥的底面周长为20 ,•侧面展开后所得扇形的圆心角为120°,则圆锥的侧面积为________.6.(•2006,•晋江)•若圆锥的底面半径为3,•母线长为8,•则这个圆锥的全面积是_____平方单位.7.(2006,哈尔滨市)已知矩形ABCD的一边AB=5cm,另一边AD=3cm,则以直线AB•为轴旋转一周所得到的圆柱的表面积为______c m2.8.(2006,晋江)正十二边形的每一个外角等于______度.9.(2006,黄冈)已知圆锥的侧面展开图是一个半圆,则这个圆锥的母线长与底面半径长的比是________.10.(2006,广东课改实验区)如图4,已知圆柱体底面圆的半径为2π,高为2,•AB 、CD 分别是两底面的直径,AD 、BC 是母线.若一只小虫从A 点出发,从侧面爬地到C 点,则小虫爬行的最短路线的长度是_______(结果保留根式).11.(2006,广安)将一个弧长为12πcm ,半径为10cm 的扇形铁皮围成个圆锥形容器(不计接缝),那么这个圆锥形容器的高为_______cm .12.(2006,•重庆)•圆柱的底面周长为2π,•高为1,•则圆柱的侧面展开图的面积为______.13.(•2006,•浙江舟山)•已知正六边形的外接圆的半径是a ,•则正六边形周长是_____.14.(2006,浙江台州)如图5,已知圆锥的母线长为5cm ,底面半径为3cm ,则此圆锥的侧面积为( )A .15πcm 2B .20πcm 2C .12πcm 2D .30πcm 2(5) (6) (7)15.(2006,浙江)在△ABC 中,斜边AB=4,∠B=60°,将△ABC 绕点B 旋转60°,•顶点C 运动的路线长是( )A .24 (333)B C D ππππ 16.(2006,成都)如图6,小丽要制作一个圆锥模型,要求圆锥的母线长9cm ,•底面圆的直径为10cm ,•那么小丽要制作的这个圆锥模型的侧面展开扇形的纸片的圆心角度数是( )A .150°B .200°C .180°D .240°17.(2006,广州)一个圆柱的侧面展开图是相邻边长分别为10和16的矩形,•则该圆柱的底面圆半径是( )A .58581016...B C D ππππππ或或18.(2006,天津)若同一个圆的内接正三角形、正方形、正六边形的边心距分别为r 3,r 4,r 6,则r 3:r 4:r 6等于( )A .1:1 C .1:2:3 D .3:2:119.(2006,青岛市)如图7,在△ABC 中,BC=4,以点A 为圆心、2为半径的⊙A 与BC 相切于点D ,交AB 于E ,交AC 于F ,点P 是⊙A 上的一点,且∠EPF=40°,则图中阴影部分的面积是( )A .4-49πB .4-89πC .8-49πD .8-89π 20.(2006,南安)如图,半圆M 的直径AB 为20cm ,现将半圆M 绕着点A 顺时针旋转180°.(1)请你画出旋转后半圆M 的图形;(2)求出在整个旋转过程中,半圆M 所扫过区域的面积(结果精确到1c m 2)21.(2006,海淀区)如图,已知⊙O 的直径AB 垂直弦CD 于E ,连结AD ,BD ,OC ,•OD ,且OD=5,(1)若sin ∠BAD=35,求CD 的长; (2)若∠ADO :∠EDO=4:1,求扇形OAC (阴影部分)的面积(结果保留π).22.(2006,烟台市)如图a ,O 为圆柱形木块底面的圆心,过底面的一条弦AD ,•沿母线AB 剖开,得剖面矩形ABCD ,AD=24cm ,AB=25cm ,若AmD 的长为底面周长的23,•如图b 所示. (1)求⊙O 的半径;(2)求这个圆柱形木块的表面积.(结果可保留π和根号)(a ) (b )23.(2006,攀枝花市)如图,圆锥的底面半径r=3cm ,高h=4cm ,求这个圆锥的表面积(π取3.14).1.(2006,福建泉州)如图,已知O 为原点,点A 的坐标为(4,3),⊙A•的半径为2,过A 作直线L 平行于x 轴,点P 在直线L 上运动.(1)当点P 在⊙O 上时,请你直接写出它的坐标;(2)设点P的横坐标为12,试判断直线OP与⊙A的位置关系,并说明理由.2.(2006,广安市)已知:如图,AB是⊙O的直径,⊙O过AC的中点D,DE切⊙O于点D,交BC于点E.(1)求证:DE⊥BC;(2)如果CD=4,CE=3,求⊙O的半径.3.(2006,广安市)如图,已知AB是⊙O的直径,直线L与⊙O相切于点C且AC AD,弦CD交AB于E,BF⊥L,垂足为F,BF交⊙O于G.(1)求证:CE2=FG·FB;(2)若tan∠CBF=12,AE=3,求⊙O的直径.4.(2006,苏州市)如图①,△ABC内接于⊙O,且∠ABC=∠C,点D在弧BC•上运动,过点D作DE∥BC,DE交直线AB 于点E,连结BD.(1)求证:∠ADB=∠E;(2)求证:A D2=AC·AE;(3)当点D运动到什么位置时,△DBE∽△ADE.请你利用图②进行探索和证明.5.(2006,晋江)街道旁边有一根电线杆AB和一块半圆形广告牌.有一天,•小明突然发现,在太阳光照射下,电线杆的顶端A的影子刚好落在半圆形广告牌的最高处G,•而半圆形广告牌的影子刚好落在地面上一点E,已知BC=5米,半圆形的直径为6米,•DE=2米.(1)求电线杆落在广告牌上的影长(即CG的长度,精确到0.1米).(2)求电线杆的高度.6.(2006,深圳)如图①,在平面直角坐标系xOy中,点M在x轴的正半轴上,⊙M交x 轴于A、B两点,交y轴于C、D两点,且C为AE的中点,AE交y轴于G点.若点A•的坐标为(-2,0),AE=8.(1)求点C的坐标;(2)连结MG、BC,求证:MG∥BC;(3)如图②,过点D作⊙M的切线,交x轴于点P.动点F在⊙M的圆周上运动时,OFPF的比值是否发生变化,若不变,求出比值;若变化,请说明变化规律.①②7.(2006,烟台市)如图,从⊙O 外一点A 作⊙O 的切线AB 、AC ,切点分别为B 、C ,且⊙O 直径BD=6,连结CD 、AD . (1)求证:CD ∥AO ;(2)设CD=x ,AO=y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3)若AO+CD=11,求AB 的长.8.(2006,上海市)已知点P 在线段AB 上,点O 在线段AB 延长线上,以点O 为圆心,•OP 为半径作圆,点C 是圆O 的一点.(1)如图,如果AP=2PB ,PB=BO,求证:△CAO ∽△BCO ;(2)如果AP=m (m 是常数,且m>1),BP=1,OP 是OA 、OB 的比例中项,当点C 在圆O•上运动时,求AC :BC 的值(结果用含m 的式子表示);(3)在(2)的条件下,讨论以BC 为半径的圆B 和以CA 为半径的圆C 的位置关系,并写出相应m 的取值范围.1.(2006,浙江市)在平面直角坐标系xOy 中,直线L 1经过点A (-2,0)和点B (0),•直线L 2的函数表达式为y=-3x+3,L 1与L 2相交于点P .⊙C 是一个动圆,圆心C 在直线L 1上运动,设圆心C 的横坐标是a ,过点C 作CM ⊥x 轴,垂足是点M .(1)填空:直线L 1的函数表达式是________,交点P 的坐标是______,∠FPB•的度数是_______.(2)当⊙C 和直线L 2相切时,请证明点P 到直线CM 的距离等于⊙C 的半径R ,•并写出时a 的值.(3)当⊙C 和直线L 2不相离时,已知⊙C 的半径-2,记四边形NMOB 的面积为S (•其中点N 是直线CM 与L 2的交点),S 是否存在最大值?若存在,求出这个最大值及此时a 的值;若不存在,请说明理由.2.(2006,浙江舟山)如图10-62①,在直角坐标系中,点A 的坐标为(1,0),以OA•为边在第四象限内作等边△AOB ,点C 为x 轴的正半轴上一动点(OC>1),连结BC ,以BC 为边在第四象限内作等边△CBD ,直线DA 交y 轴于点E . (1)试问△OBC 与△ABD 全等吗?并证明你的结论.(2)随着点C 位置的变化,点E 的位置是否发生变化,若没有变化,求出点E 的坐标;若有变化,请说明理由. (3)如图10-62②,以OC 为直径作圆,与直线DE 分别交于点F 、G ,设AG=m ,AF=n ,•用含n 的代数式表示m .圆难题整理:爱我在春天1.如图,BC 是圆O 的直径,AD 垂直BC 于D ,弧BA 等于弧AF ,BF 与AD 交于E , 求证:(1)∠BAD=∠ACB ;(2)AE=BE . 证明:(1)∵BC 是圆O 的直径, ∴∠BAC=90°, ∴∠BAD+∠CAD=90°, 又AD ⊥BC , ∴∠ACB+∠CAD=90°, ∴∠BAD=∠ACB ; (2)∵弧BA 等于弧AF , ∴∠ACB=∠ABF , ∵∠BAD=∠ACB , ∴∠ABF=∠BAD ,∴AE=BE .N所以OC=OB=AC=AB。

2020年九年级数学典型中考压轴题:圆专项训练题(含答案)

2020年九年级数学典型中考压轴题:圆专项训练题(含答案)

2020年九年级数学典型中考压轴题:圆专项训练题1、如图,△ABC是⊙O的内接三角形,AB为直径,过点B的切线与AC的延长线交于点D,E是BD中点,连接CE.(1)求证:CE是⊙O的切线;(2)若AC=4,BC=2,求BD和CE的长.2、如图,在⊙O中,AB为直径,D、E为圆上两点,C为圆外一点,且∠E+∠C=90°.(1)求证:BC为⊙O的切线.(2)若sinA=,BC=6,求⊙O的半径.3、如图,AB是⊙O的直径,点P在BA的延长线上,弦CD⊥AB,垂足为E,且PC2=PE•PO.(1)求证:PC是⊙O的切线.(2)若OE:EA=1:2,PA=6,求⊙O的半径.4、如图,AB是⊙O的直径,点D是上一点,且∠BDE=∠CBE,BD与AE交于点F.(1)求证:BC是⊙O的切线;(2)若BD平分∠ABE,求证:DE2=DF•DB;(3)在(2)的条件下,延长ED、BA交于点P,若PA=AO,DE=2,求PD的长.5、如图,点A是⊙O直径BD延长线上的一点,C在⊙O上,AC=BC,AD=CD (1)求证:AC是⊙O的切线;(2)若⊙O的半径为2,求△ABC的面积.6、已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.(1)求证:AB=AC;(2)若AB=4,BC=2,求CD的长.7、如图,O是△AB C内一点,与BC相交于F、G两点,且与AB、AC分别相切于点D、E,DE∥BC。

连接DF、EG。

(1) 求证:AB=AC(2) 已知AB=10,BC=12,求四边形DFGE是矩形时的半径.8、如图,过⊙O上的两点A、B分别作切线,并交BO、AO的延长线于点C、D,连接CD,交⊙O于点E、F,过圆心O作OM⊥CD,垂足为M点.求证:(1)△ACO≌△BDO;(2)CE=DF.9、如图,AB是⊙O的直径,点C、D在圆上,且四边形AOCD是平行四边形,过点D作⊙O的切线,分别交OA延长线与OC延长线于点E、F,连接BF.(1)求证:BF是⊙O的切线;(2)已知圆的半径为1,求EF的长.10、如图,在△ABC中,E是AC边上的一点,且AE=AB,∠BAC=2∠CBE,以AB 为直径作⊙O交AC于点D,交BE于点F.(1)求证:BC是⊙O的切线;(2)若AB=8,BC=6,求DE的长.11、在图“书香八桂,阅读圆梦”读数活动中,某中学设置了书法、国学、诵读、演讲、征文四个比赛项目如图,在Rt△ABC中,∠C=90°,BD是角平分线,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E.(1)求证:AC是⊙O的切线;(2)若OB=10,CD=8,求BE的长.12、如图,在⊙O中,半径OA⊥OB,过点OA的中点C作FD∥OB交⊙O于D、F 两点,且CD=,以O为圆心,OC为半径作,交OB于E点.(1)求⊙O的半径OA的长;(2)计算阴影部分的面积.13、如图,△ABC中,∠ACB=90°,D为AB上一点,以CD为直径的⊙O交BC于点E,连接AE交CD于点P,交⊙O于点F,连接DF,∠CAE=∠ADF.(1)判断AB与⊙O的位置关系,并说明理由;(2)若PF:PC=1:2,AF=5,求CP的长.14、如图所示,在Rt△ABC与Rt△OCD中,∠ACB=∠DCO=90°,O为AB的中点.(1)求证:∠B=∠ACD.(2)已知点E在AB上,且BC2=AB•BE.(i)若tan∠ACD=,BC=10,求CE的长;(ii)试判定CD与以A为圆心、AE为半径的⊙A的位置关系,并请说明理由.15、如图,AB为⊙O的直径,直线CD切⊙O于点M,BE⊥CD于点E.(1)求证:∠BME=∠MAB;(2)求证:BM2=BE•AB;(3)若BE=,sin∠BAM=,求线段AM的长.16、如图,在Rt△ABC中,∠BAC=90°,O是AB边上的一点,以OA为半径的⊙O与边BC相切于点E.(1)若AC=5,BC=13,求⊙O的半径;(2)过点E作弦EF⊥AB于M,连接AF,若∠F=2∠B,求证:四边形ACEF是菱形.17、如图,AB为⊙O的直径,C是⊙O上一点,过点C的直线交AB的延长线于点D,AE⊥DC,垂足为E,F是AE与⊙O的交点,AC平分∠BAE.(1)求证:DE是⊙O的切线;(2)若AE=6,∠D=30°,求图中阴影部分的面积.18、如图,在Rt△ABC中,∠C=90°,点O在AB上,经过点A的⊙O与BC相切于点D,与AC,AB分别相交于点E,F,连接AD与EF相交于点G.(1)求证:AD平分∠CAB;(2)若OH⊥AD于点H,FH平分∠AFE,DG=1.①试判断DF与DH的数量关系,并说明理由;②求⊙O的半径.参考答案:1、【解答】(1)证明:连接OC,如图所示:∵BD是⊙O的切线,∴∠CBE=∠A,∠ABD=90°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACO+∠BCO=90°,∠BCD=90°,∵E是BD中点,∴CE=BD=BE,∴∠BCE=∠CBE=∠A,∵OA=OC,∴∠ACO=∠A,∴∠ACO=∠BCE,∴∠BCE+∠BCO=90°,即∠OCE=90°,CE⊥OC,∴CE是⊙O的切线;(2)解:∵∠ACB=90°,∴AB===2,∵tanA====,∴BD=AB=,∴CE=BD=.2、【解答】(1)证明:∵∠A与∠E所对的弧都是,∴∠A=∠E,又∵∠E+∠C=90°,∴∠A+∠C=90°,在△ABC中,∠ABC=180°﹣90°=90°,∵AB为直径,∴BC为⊙O的切线;(2)解:∵sinA=,BC=6,∴=,即=,解得AC=10,由勾股定理得,AB===8,∵AB为直径,∴⊙O的半径是×8=4.3、【解答】(1)证明:连结OC,如图,∵CD⊥AB,∴∠PEC=90°,∵PC2=PE•PO,∴PC:PO=PE:PC,而∠CPE=∠OPC,∴△PCE∽△POC,∴∠PEC=∠PCO=90°,∴OC⊥PC,∴PC是⊙O的切线;(2)解:设OE=x,则EA=2x,OA=OC=3x,∵∠COE=∠POC,∠OEC=∠OCP,∴△OCE∽△OPC,∴OC:OP=OE:OC,即3x:OP=x:3x,解得OP=9x,∴3x+6=9x,解得x=1,∴OC=3,即⊙O的半径为3.4、【解答】(1)证明:∵AB是⊙O的直径,∴∠AEB=90°,∴∠EAB+∠ABE=90°,∵∠EAB=∠BDE,∠BDE=∠CBE,∴∠CBE+∠ABE=90°,即∠ABC=90°,∴AB⊥BC,∴BC是⊙O的切线;(2)证明:∵BD平分∠ABE,∴∠1=∠2,而∠2=∠AED,∴∠AED=∠1,∵∠FDE=∠EDB,∴△DFE∽△DEB,∴DE:DF=DB:DE,∴DE2=DF•DB;(3)连结DE,如图,∵OD=OB,∴∠2=∠ODB,而∠1=∠2,∴∠ODB=∠1,∴OD∥BE,∴△POD∽△PBE,∴=,∵PA=AO,∴PA=AO=BO,∴=,即=,∴PD=4.5、【解答】解:(1)连接OC.∵AC=BC,AD=CD,OB=OC,∴∠A=∠B=∠1=∠2.∵∠ACO=∠DCO+∠2,∴∠ACO=∠DCO+∠1=∠BCD,又∵BD是直径,∴∠BCD=90°,∴∠ACO=90°,又C在⊙O上,∴AC是⊙O的切线;(2)由题意可得△DCO是等腰三角形,∵∠CDO=∠A+∠2,∠DOC=∠B+∠1,∴∠CDO=∠DOC,即△DCO是等边三角形.∴∠A=∠B=∠1=∠2=30°,CD=AD=2,在直角△BCD中,BC===2.又AC=BC,∴AC=2.作CE⊥AB于点E.在直角△BEC中,∠B=30°,∴CE=BC=,=AB•CE=×6×=3.∴S△ABC6、【解答】(1)证明:∵ED=EC,∴∠EDC=∠C,∵∠EDC=∠B,∴∠B=∠C,∴AB=AC;(2)解:连接AE,∵AB为直径,∴AE⊥BC,由(1)知AB=AC,∴BE=CE=BC=,∵CE•CB=CD•CA,AC=AB=4,∴•2=4CD,∴CD=.7、解析:(1)证明:∵⊙O 与AB、AC 分别相切于点D、E,∴AD=AE.∴∠ADE=∠AED.∵DE∥BC,∴∠B=∠ADE,∠C=∠AED.∴∠B=∠C.∴AB=AC.(2)解:如图,连接AO,交DE 于点M,延长AO 交BC 于点N,连接OE、DG.设⊙O 的半径为r.∵四边形DFGE 是矩形,[来源:学科网]∴∠DFG=90°.∴DG 是⊙O 的直径.∵⊙O 与AB、AC 分别相切于点D、E,∴OD⊥AB,OE⊥AC.又OD=OE,∴AN 平分∠BAC.又AB=AC,∴AN⊥BC,BN=12BC=6.在Rt△ABN 中,AN==8.∵OD⊥AB,AN⊥BC,∴∠ADO=∠ANB=90°.又∠OAD=∠BAN,∴△AOD∽△ABN..∵OD⊥AB,∴∠GDB=∠ANB=90°.又∠B=∠B,∴△GBD∽△ABN.∴四边形DFGE 是矩形时⊙O 的半径为60 17·8、【解答】证明:(1)∵过⊙O上的两点A、B分别作切线,∴∠CAO=∠DBO=90°,在△ACO和△BDO中∵,∴△ACO≌△BDO(ASA);(2)∵△ACO≌△BDO,∴CO=DO,∵OM⊥CD,∴MC=DM,EM=MF,∴CE=DF.9、【解答】(1)证明:连结OD,如图,∵四边形AOCD是平行四边形,而OA=OC,∴四边形AOCD是菱形,∴△OAD和△OCD都是等边三角形,∴∠AOD=∠COD=60°,∴∠FOB=60°,∵EF为切线,∴OD⊥EF,∴∠FDO=90°,在△FDO和△FBO中,∴△FDO≌△FBO,∴∠ODF=∠OBF=90°,∴OB⊥BF,∴BF是⊙O的切线;(2)解:在Rt△OBF中,∵∠FOB=60°,而tan∠FOB=,∴BF=1×tan60°=.∵∠E=30°,∴EF=2BF=2.10、【解答】(1)证明:∵AE=AB,∴△ABE是等腰三角形,∴∠ABE=(180°﹣∠BAC=)=90°﹣∠BAC,∵∠BAC=2∠CBE,∴∠CBE=∠BAC,∴∠ABC=∠ABE+∠CBE=(90°﹣∠BAC)+∠BAC=90°,即AB⊥BC,∴BC是⊙O的切线;(2)解:连接BD,∵AB是⊙O的直径,∴∠ADB=90°,∵∠ABC=90°,∴∠ADB=∠ABC,∵∠A=∠A,∴△ABD∽△ACB,∴=,∵在Rt△ABC中,AB=8,BC=6,∴AC==10,∴,解得:AD=6.4,∴DE=AE﹣AD=8﹣6.4=1.6.11、【解答】(1)证明:连接OD,∵BD为∠ABC平分线,∴∠1=∠2,∵OB=OD,∴∠1=∠3,∴∠2=∠3,∴OD∥BC,∵∠C=90°,∴∠ODA=90°,则AC为圆O的切线;(2)解:过O作OG⊥BC,∴四边形ODCG为矩形,∴GC=OD=OB=10,OG=CD=8,在Rt△OBG中,利用勾股定理得:BG=6,∴BC=BG+GC=6+10=16,∴△AOD∽△ABC,∴=,即=,解得:OA=,∴AB=+10=,连接EF,∵BF为圆的直径,∴∠BEF=90°,∴∠BEF=∠C=90°,∴EF∥AC,∴=,即=,解得:BE=12.12、【解答】解;(1)连接OD,∴∠AOB=90°,∵CD∥OB,∴∠OCD=90°,在RT△OCD中,∵C是AO中点,CD=,∴OD=2CO,设OC=x,∴x2+()2=(2x)2,∴x=1,∴OD=2,[来源:Z|xx|]∴⊙O的半径为2.(2)∵sin∠CDO==,∴∠CDO=30°,∵FD∥OB,∴∠DOB=∠ODC=30°,∴S圆=S△CDO+S扇形OBD﹣S扇形OCE=×+﹣=+.13、【解答】解:(1)AB是⊙O切线.理由:连接DE、CF.∵CD是直径,∴∠DEC=∠DFC=90°,∵∠ACB=90°,∴∠DEC+∠ACE=180°,∴DE∥AC,∴∠DEA=∠EAC=∠DCF,∵∠DFC=90°,∴∠FCD+∠CDF=90°,∵∠ADF=∠EAC=∠DCF,∴∠ADF+∠CDF=90°,∴∠ADC=90°,∴CD⊥AD,∴AB是⊙O切线.(2)∵∠CPF=∠CPA,PCF=∠PA C,∴△PCF∽△PAC,∴=,∴PC2=PF•PA,设PF=a.则PC=2a,∴4a2=a(a+5),∴a=,∴PC=2a=.14、【解答】解:(1)∵∠ACB=∠DCO=90°,∴∠ACB﹣∠ACO=∠DCO﹣∠ACO,即∠ACD=∠OCB,又∵点O是AB的中点,∴OC=OB,∴∠OCB=∠B,∴∠ACD=∠B,(2)(i)∵B C2=AB•BE,∴=,∵∠B=∠B,∴△ABC∽△CBE,∴∠ACB=∠CEB=90°,∵∠ACD=∠B,∴tan∠ACD=tan∠B=,设BE=4x,CE=3x,由勾股定理可知:BE2+CE2=BC2,∴(4x)2+(3x)2=100,∴解得x=2,∴CE=6;(ii)过点A作AF⊥CD于点F,∵∠CEB=90°,∴∠B+∠ECB=90°,∵∠ACE+∠ECB=90°,∴∠B=∠ACE,∵∠ACD=∠B,∴∠ACD=∠ACE,∴CA平分∠DCE,∵AF⊥CE,AE⊥CE,∴AF=AE,∴直线CD与⊙A相切.15、【解答】解:(1)如图,连接OM,∵直线CD切⊙O于点M,∴∠OMD=90°,∴∠BME+∠OMB=90°,∵AB为⊙O的直径,∴∠AMB=90°.∴∠AMO+∠OMB=90°,∴∠BME=∠AMO,∵OA=OM,∴∠MAB=∠AMO,∴∠BME=∠MAB;(2)由(1)有,∠BME=∠MAB,∵BE⊥CD,∴∠BEM=∠AMB=90°,∴△BME∽△BAM,∴,[来源:学科网]∴BM2=BE•AB;(3)由(1)有,∠BME=∠MAB,∵sin∠BAM=,∴sin∠BME=,在Rt△BEM中,BE=,∴sin∠BME==,∴BM=6,在Rt△ABM中,sin∠BAM=,∴sin∠BAM==,∴AB=BM=10,根据勾股定理得,AM=8.16、【解答】(1)解:连接OE,设圆O半径为人,在Rt△ABC中,BC=13,AC=5,根据勾股定理得:AB==12,∵BC与圆O相切,∴OE⊥BC,∴∠OEB=∠BAC=90°,∵∠B=∠B,∴△BOE∽△BCA,∴=,即=,解得:r=;(2)∵=,∠F=2∠B,∴∠AOE=2∠F=4∠B,∵∠AOE=∠OEB+∠B,∴∠B=30°,∠F=60°,∵EF⊥AD,∴∠EMB=∠CAB=90°,∴∠MEB=∠F=60°,CA∥EF,∴CB∥AF,∴四边形ACEF为平行四边形,∵∠CAB=90°,OA为半径,∴CA为圆O的切线,∵BC为圆O的切线,∴CA=CE,∴平行四边形ACEF为菱形.[来源:学|科|网]17、【解答】解:(1)连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠BAE,∴∠OAC=∠CAE,∴∠OCA=∠CAE,∴OC∥AE,∴∠OCD=∠E,∵AE⊥DE,∴∠E=90°,∴∠OCD=90°,∴OC⊥CD,∵点C在圆O上,OC为圆O的半径,∴CD是圆O的切线;(2)在Rt△AED中,∵∠D=30°,AE=6,∴AD=2AE=12,在Rt△OCD中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC,∴DB=OB=OC=AD=4,DO=8,∴CD===4,∴S△OCD===8,∵∠D=30°,∠OCD=90°,∴∠DOC=60°,∴S扇形OBC=×π×OC2=,∵S阴影=S△COD﹣S扇形OBC∴S阴影=8﹣,∴阴影部分的面积为8﹣.18、【解答】解:(1)如图,连接OD,∵⊙O与BC相切于点D,∴OD⊥BC,∵∠C=90°,∴OD∥AC,∴∠CAD=∠ODA,∵OA=OD,∴∠OAD=∠ODA,∴∠CAD=∠BAD,∴AD平分∠CAB.(2)①DF=DH,理由如下:∵FH平分∠AFE,∴∠AFH=∠EFH,又∠DFG=∠EAD=∠HAF,∴∠DFG=∠EAD=∠HAF,∴∠DFG+∠GFH=∠HAF+∠HFA,即∠DFH=∠DHF,∴DF=DH.②设HG=x,则DH=DF=1+x,∵OH⊥AD,∴AD=2DH=2(1+x),∵∠DFG=∠DAF,∠FDG=∠FDG,∴△DFG∽△DAF,∴,∴,∴x=1,∵DF=2,AD=4,∵AF为直径,∴∠ADF=90°,∴AF=∴⊙O的半径为.。

初三数学圆试题答案及解析

初三数学圆试题答案及解析

初三数学圆试题答案及解析1.已知⊙O的周长为9π,当PO= 时,点P在⊙O上.【答案】4.5【解析】根据圆上点,圆内点和圆外点到圆心的距离与圆的半径的大小关系,可以确定点P的位置.解:∵⊙O的周长为9π,∴⊙O的半径为4.5,∵圆上点到圆心的距离等于半径,所以当PO=4.5时,P点在圆上.故答案为:4.5.点评:本题考查的是点与圆的位置关系,把点到圆心的距离与圆的半径进行大小比较,得到点与圆的位置关系.2.如图所示:在平面直角坐标系中,△OCB的外接圆与y轴交于A(0,),∠OCB=60°,∠COB=45°,则OC= .【答案】1+【解析】连接AB,由圆周角定理知AB必过圆心M,Rt△ABO中,易知∠BAO=∠OCB=60°,已知了OA=,即可求得OB的长;过B作BD⊥OC,通过解直角三角形即可求得OD、BD、CD的长,进而由OC=OD+CD求出OC的长.解:连接AB,则AB为⊙M的直径.Rt△ABO中,∠BAO=∠OCB=60°,∴OB=OA=×=.过B作BD⊥OC于D.Rt△OBD中,∠COB=45°,则OD=BD=OB=.Rt△BCD中,∠OCB=60°,则CD=BD=1.∴OC=CD+OD=1+.故答案为:1+.点评:此题主要考查了圆周角定理及解直角三角形的综合应用能力,能够正确的构建出与已知和所求相关的直角三角形是解答此题的关键.3.△ABC中,∠C=90°,AC=5,BC=8,以C为圆心,r为半径作圆,使点A在圆内,点B在圆外,则半径r的取值范围为.【答案】5<r<8【解析】当点A在圆内时点A到点C的距离小于圆的半径,点B在圆外时点B到圆心的距离应该大于圆的半径,据此可以得到半径的取值范围.解:当点A在圆内时点A到点C的距离小于圆的半径,即:r>5;点B在圆外时点B到圆心的距离应该大于圆的半径,即:r<8;故答案为:5<r<8点评:本题考查了点与圆的位置关系,解题的关键是明确半径的大小与位置关系的关系.4.在△ABC中,∠ACB=90°.AC=2cm,BC=4cm,CM是斜边中线,以C为圆心以cm长为半径画圆,则A、B、M三点在圆的外是,在圆上的是.【答案】点B,点M【解析】先求出AB的长,根据直角三角形斜边上的中线等于斜边的一半,求得CM的长;再由点与圆的位置关系,确定出点三点与⊙C的位置关系.解:∵∠ACB=90°,AC=2cm,BC=4cm,∴AB==2,∵CM是中线,∴CM=AB=,∵2<<4∴在圆外的是点B,在圆上的是点M.故答案为:点B,点M.点评:本题考查了点与圆的位置关系:①点P在⊙O上;②点P在⊙O内;③点P在⊙O外,及勾股定理的运用.5.一点到圆周上点的最大距离为18,最短距离为2,则这个圆的半径为.【答案】10或8【解析】分点在圆内和圆外两种情况,当点在圆内时,最大距离与最小距离的和等于直径,然后求出半径;当点在圆外时,最大距离与最小距离的差等于直径,然后求出半径.解:当点在圆内时,圆的直径为18+2=20,所以半径为10.当点在圆外时,圆的直径为18﹣2=16,所以半径为8.故答案是:10或8.点评:本题考查的是点与圆的位置关系,根据点到圆的最大距离和最小距离,求出圆的直径,然后得到圆的半径.6.两个圆的直径比是2:5,这两个圆的周长之比是,面积比是.【答案】2:5;4:25【解析】利用所有的圆都相似得到直径比为2:5的两圆的相似比为2:5,据相似多边形的性质可以求得其周长之比和面积之比.解:∵直径比是2:5的两个圆相似,∴相似比为2:5,∵相似多边形周长的比等于相似比,面积的比等于相似比的平方,∴两圆的周长之比为2:5,面积的比等于4:25,故答案为2:5;4:25.点评:本题考查了圆的认识,解题的关键是判定两圆相似并利用相似多边形的性质得到面积之比和周长之比.7.一副斜边相等的直角三角板(∠DAC=45°,∠BAC=30°),按如图所示的方式在平面内拼成一个四边形.A,B,C,D四点在同一个圆上吗?请说明理由.【答案】A、B、C、D能在同一个圆上【解析】取AC的中点O,连接OB,OD,根据直角三角形斜边上中线性质得出OB=OD=AC=OA=OC,根据对圆的认识得出答案.解:A、B、C、D能在同一个圆上,理由是:取AC的中点O,连接OB,OD,∵∠B=∠D=90°,∴OD=AC=OA=OC,BO=AC=OA=OC,∴OA=OB=OC=OD,∴A、B、C、D在以O为圆心,以OA为半径的圆上,即A、B、C、D能在同一个圆上.点评:本题考查了直角三角形斜边上中线性质和对圆的认识的应用,注意:直角三角形斜边上中线等于斜边的一半.8.如何在操场上画出一个很大的圆?说一说你的方法.作图说明:已知点AB=4cm,到点A的距离小于2cm,到点B的距离小于3cm的所有点组成的图形.【答案】【解析】根据圆的定义解答即可.解:在操场上用一根很长的绳子,固定一头,拉紧后另一头旋转一周即可得到一个很大的圆.阴影部分就是到点A的距离小于2cm,到点B的距离小于3cm的所有点组成的图形点评:本题考查了圆的认识,关键是了解圆的定义.9.如图,△ABC和△ABD都为直角三角形,且∠C=∠D=90゜.求证:A、B、C、D四点在同一个圆上.【答案】见解析【解析】取弦AB的中点O,利用直角三角形斜边上的中线等于斜边的一半证得OA=OB=OC=OD后即可求证A、B、C、D四点在同一个圆上.证明:取弦AB的中点O,连接OC,OD,∵△ABC和△ABD都为直角三角形,且∠C=∠D=90゜∴DO,CO分别为Rt△ABD和Rt△BCD斜边上的中线,∴OA=OB=OC=OD.∴A、B、C、D四点在同一个圆上.点评:本题考查了圆的认识,求证几个点在同一个圆上就是证明这几个点到一个点的距离相等.10.如图所示,在△ABC中,AB=AC,任意延长CA到P,再延长AB到Q,使AP=BQ,求证:△ABC的外心O与点A、P、Q四点共圆.【答案】见解析【解析】先作△ABC的外接圆⊙O,并作OE⊥AB于E,OF⊥AC于F,连接OP、OQ、OB、OA,证出BE=AF,OE=OF,再证Rt△OPF≌Rt△OQE,得到∠P=∠Q即可得到答案.证明:作△ABC的外接圆⊙O,并作OE⊥AB于E,OF⊥AC于F,连接OP、OQ、OB、OA,∵O是△ABC的外心,∴OE=OF,OB=OA,由勾股定理得:BE2=OB2﹣OE2,AF2=OA2﹣OF2,∴BE=AF,∵AP=BQ,∴PF=QE,∵OE⊥AB,OF⊥AC∴∠OFP=∠OEQ=90°,∴Rt△OPF≌Rt△OQE,∴∠P=∠Q,∴O、A、P、Q四点共圆.即:△ABC的外心O与点A、P、Q四点共圆.点评:本题主要考查了四点共圆,勾股定理,全等三角形的性质和判定,确定圆的条件等知识点,作辅助线构造全等三角形证∠P=∠Q是解此题的关键.11.(2009•武汉模拟)如图,已知△ABC的外接圆⊙O的半径为1,D,E分别为AB,AC的中点,则sin∠BAC的值等于线段()A.BC的长B.DE的长C.AD的长D.AE的长【答案】B【解析】本题需将∠BAC构建到直角三角形中求解,过B作⊙O的直径,交⊙O于点F,由圆周角定理,知∠F=∠A;在Rt△BCF中,易求得sin∠F==,而DE是△ABC的中位线,即DE=,由此得解.解:过B作⊙O的直径BF,交⊙O于F,连接FC,则∠BCF=90°,Rt△BCF中,sin∠F==,∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,即DE=,∴sin∠A=sin∠F==DE.故选B.点评:本题主要考查的是三角形中位线定理、圆周角定理等知识点.12.下列命题中,真命题的个数是()①经过三点一定可以作圆;②任意一个圆一定有一个内接三角形,并且只有一个内接三角形;③任意一个三角形一定有一个外接圆,并且只有一个外接圆;④三角形的外心到三角形的三个顶点距离相等.A.4个B.3个C.2个D.1个【答案】C【解析】在同一直线上三点不能作圆,即可判定①;一个圆可以作无数个圆,判断②即可;每个三角形都有一个外接圆,外接圆的圆心是三角形三边的垂直平分线的交点,该点到三角形的三个顶点距离相等,即可判断③④.解:经过不在同一条直线上三点可以作一个圆,∴①错误;任意一个圆一定有内接三角形,并且有多个内接三角形,∴②错误;任意一个三角形一定有一个外接圆,并且只有一个外接圆,∴③正确;三角形的外心是三角形三边的垂直平分线的交点,到三角形的三个顶点距离相等,∴④正确.故选C.点评:本题考查了确定圆的条件和三角形的外接圆与外心的应用,主要考查学生运用性质进行说理的能力,题目比较好,但是一道比较容易出错的题目.13.已知点P到⊙O的最长距离是3,最短距离是2,则⊙O的半径是()A.2.5B.0.5C.2.5或0.5D.无法确定【答案】C【解析】分两种情况进行讨论:①点P在圆内;②点P在圆外,进行计算即可.解:①点P在圆内;如图,∵AP=2,BP=3,∴AB=5,∴OA=2.5;②点P在圆外;如图,∵AP=3,BP=2,∴AB=1,∴OA=0.5.故选C.点评:本题考查了点和圆的位置关系,分类讨论是解此题的关键.14.已知⊙O的圆心在坐标原点,半径为5,点P的坐标为(﹣2,﹣4),则点P与⊙O的位置关系是()A.点P在⊙O内B.点P在⊙O外C.点P在⊙O上D.不能确定【答案】A【解析】根据两点间的距离公式求出OP的长,再与半径比较确定点A的位置.解:OP==2<5,所以点P在⊙O内.故选A.点评:本题考查的是点与圆的位置关系,知道O,P的坐标,求出OP的长,与圆的半径进行比较,确定点P的位置.15.⊙O的半径R=5cm,点P与圆心O的距离OP=3cm,则点P与⊙O的位置关系是()A.点P在⊙O外B.点P在⊙O上C.点P在⊙O内D.不确定【答案】C【解析】已知圆的半径是r,点到圆心的距离是d,点和圆的位置关系有三种:当r=d时,点在圆上,当r>d时,点在圆内,当r<d时,点在圆外,根据进行判断即可.解:∵⊙O的半径R=5cm,点P与圆心O的距离OP=3cm,5>3,∴点P与⊙O的位置关系是点P在圆内,故选C.点评:本题考查了点与圆的位置关系的应用,注意:当圆的半径是r,点到圆心的距离是d时,点和圆的位置关系有三种:①当r=d时,点在圆上,②当r>d时,点在圆内,③当r<d时,点在圆外.16.直角三角形两直角边长分别是,,那么它的外接圆的直径是()A.B.4C.2D.【答案】D【解析】首先根据勾股定理求得该直角三角形的斜边是2,再根据其外接圆直径就是斜边的长度进行计算即可.解:∵直角三角形两直角边长分别是,,∴该直角三角形的斜边长是:=2,∴该直角三角形的外接圆的直径是2.故选D.点评:本题综合考查了勾股定理、三角形外接圆圆心.解决此题的关键在于理解直角三角形的外接圆是以斜边中点为圆心,斜边长是圆的直径.17.已知⊙O的半径为4cm,A为线段OP的中点,当OP=6cm时,点A与⊙O的位置关系是()A.A在⊙O内B.A在⊙O上C.A在⊙O外D.不能确定【答案】A【解析】知道OP的长,点A是OP的中点,得到OA的长与半径的关系,求出点A与圆的位置关系.解:因为OP=6cm,A是线段OP的中点,所以OA=3cm,小于圆的半径,因此点A在圆内.故选A.点评:本题考查的是点与圆的位置关系,根据OP的长和点A是OP的中点,得到OA=3cm,与圆的半径相等,可以确定点A的位置.18.已知点A的坐标为A(3,4),⊙A的半径为5,则原点O与⊙A的位置关系是()A.点O在⊙A内B.点O在⊙A上C.点O在⊙A外D.不能确定【答案】B【解析】本题可先由勾股定理等性质算出点与圆心的距离d,再根据点与圆心的距离与半径的大小关系,即当d>r时,点在圆外;当d=r时,点在圆上;点在圆外;当d<r时,点在圆内;来确定点与圆的位置关系.解:∵点A的坐标为A(3,4),∴OA==5,∴根据点到圆心的距离等于半径,则知点在圆上.故选B.点评:本题考查了点与圆的位置关系及坐标与图形性质,能够根据勾股定理求得点到圆心的距离,根据数量关系判断点和圆的位置关系.19.①直径是弦;②过三点一定可以作圆;③三角形的外心到三个顶点的距离相等;④半径相等的两个半圆是等弧.以上四种叙述正确的有()个.A.1B.2C.3D.4【答案】C【解析】根据直径、弦的定义即可判断①,根据不在同一直线上的三点一定可以作圆即可判断②,根据三角形外接圆的定义即可判断③;根据等弧的定义即可判断④.解:直径是弦,①正确;过不在同一直线上的三点一定可以作圆,②错误;三角形的外心到三个顶点的距离相等,③正确;半径相等的两个半圆是等弧,④正确;即正确的有3个,故选C.点评:本题考查了三角形的外接圆,圆的有关概念,确定圆的条件的应用,主要考查学生的理解能力和辨析能力,题目比较典型,但是比较容易出错.20.已知AB为⊙O的直径P为⊙O上任意一点,则点关于AB的对称点P′与⊙O的位置为()A.在⊙O内B.在⊙O外C.在⊙O上D.不能确定【答案】C【解析】圆是轴对称图形,直径所在的直线就是对称轴,从而得到圆上的点关于对称轴对称的点都在圆上求解.解:∵圆是轴对称图形,直径所在的直线就是对称轴,∴点P关于AB的对称点P′与⊙O的位置为:在⊙O上,故选C.点评:本题考查了点与圆的位置关系,利用了圆的对称性求解.。

初中数学圆的难题汇编附答案解析

初中数学圆的难题汇编附答案解析
初中数学圆的难题汇编附答案解析
一、选择题
1.如图,在 中, .将 绕点 按顺时针方向旋转 度后得到 ,此时点 在 边上,斜边 交 边于点 ,则 的大小和图中阴影部分的面积分别为()
A. B.
C. D.
【答案】C
【解析】
试题分析:∵△ABC是直角三角形,∠ACB=90°,∠A=30°,BC=2,
∴∠B=60°,AC=BC×cot∠A=2× =2 ,AB=2BC=4,
A.50°B.60°C.80°D.90°
【答案】C
【解析】
【分析】
根据圆内接四边形的性质得:∠GBC=∠ADC=50°,由垂径定理得: ,则∠DBC=2∠EAD=80°.
【详解】
如图,∵四边形ABCD为⊙O的内接四边形,∴∠GBC=∠ADC=50°.
∵AE⊥CD,∴∠AED=90°,∴∠EAD=90°﹣50°=40°,延长AE交⊙O于点M.
∴S阴影=S扇形−S△ODC= − ×3×3= − .
故答案选B.
【点睛】
本题考查的知识点是扇形面积的计算,解题的关键是熟练的掌握扇形面积的计算.
5.如图, 是 的直径, 是 上一点( 、 除外), ,则 的度数是()
A. B. C. D.
【答案】D
【解析】
【分析】
根据平角得出 的度数,进而利用圆周角定理得出 的度数即可.
故选C.
考点:1.旋转的性质2.含30度角的直角三角形.
2.在Rt△ABC中,∠ACB=90°.AC=8,BC=3,点D是BC边上动点,连接AD交以CD为直径的圆于点E,则线段BE长度的最小值为( )
A.1B. C. D.
【答案】A
【解析】
【分析】
根据直径所对的圆周角为直角可知∠CED=90°,则∠AEC=90°,设以AC为直径的圆的圆心为O,若BE最短,则OB最短,根据直角三角形斜边上的中线等于斜边的一半可得OE= AC=4,在Rt△OBC中,根据勾股定理可求得OB=5,即可得解.

初三数学圆精选练习题及答案

初三数学圆精选练习题及答案1.正确答案为C。

圆的切线垂直于圆的半径。

2.正确答案为A。

AB>2CD。

3.图中能用字母表示的直角共有4个。

4.正确答案为B。

CD-AB=4cm,根据勾股定理可得AB与CD的距离为14cm。

5.正确答案为120°。

圆周角等于弧所对圆心角的两倍,2×60°=120°。

6.正确答案为130°。

圆周角等于圆心角的两倍,2×100°=200°,而∠ACB为圆周角减去弧所对圆心角,200°-70°=130°。

7.正确答案为B。

根据正弦定理可得S AOB=(1/2)×20×20×sin120°=503cm2.8.正确答案为D。

由于OA=AB,所以∠OAB=∠OBA=30°,而∠BCO=90°-∠OAB=60°,所以∠BOC=2∠BCO=120°。

又因为∠XXX∠OCA=30°,所以∠AOC=120°,所以∠BOD=60°-∠OAB=30°,∠XXX∠OED=∠XXX°。

9.正确答案为A。

根据勾股定理可得d=20√3,所以R2=(d/2)2+202=400,r2=(d/2)2+102=100,所以R=20,r=10,两圆内切。

10.正确答案为225°。

圆锥的侧面展开图为一个扇形,圆心角为360°-2arctan(5/3),约为225°。

11.若一条弦把圆分成1:3两部分,则劣弧所对的圆心角的度数为 $120^\circ$。

12.在圆 $\odot O$ 中,若直径 $AB=10$ cm,弦$CD=6$ cm,则圆心 $O$ 到弦 $CD$ 的距离为 $2\sqrt{19}$ cm。

13.在圆 $\odot O$ 中,弦 $AB$ 所对的圆周角等于其所在圆周的一半。

初三数学圆试题答案及解析

初三数学圆试题答案及解析1.如图,AB是⊙O的直径,点C,D是半圆O的三等分点,过点C作⊙O的切线交AD的延长线于点E,过点D作DF⊥AB于点F,交⊙O于点H,连接DC,AC.(1)求证:∠AEC=90°;(2)试判断以点A,O,C,D为顶点的四边形的形状,并说明理由;(3)若DC=2,求DH的长.【答案】(1)证明见解析;(2)四边形AOCD为菱形;(3)DH=2.【解析】(1)连接OC,根据EC与⊙O切点C,则∠OCE=90°,由题意得,∠DAC=∠CAB,即可证明AE∥OC,则∠AEC+∠OCE=180°,从而得出∠AEC=90°;(2)四边形AOCD为菱形.由(1)得,则∠DCA=∠CAB可证明四边形AOCD是平行四边形,再由OA=OC,即可证明平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.根据四边形AOCD为菱形,得△OAD是等边三角形,则∠AOD=60°,再由DH⊥AB于点F,AB为直径,在Rt△OFD中,根据sin∠AOD=,求得DH的长.试题解析:(1)连接OC,∵EC与⊙O切点C,∴OC⊥EC,∴∠OCE=90°,∵点CD是半圆O的三等分点,∴,∴∠DAC=∠CAB,∵OA=OC,∴∠CAB=∠OCA,∴∠DAC=∠OCA,∴AE∥OC(内错角相等,两直线平行)∴∠AEC+∠OCE=180°,∴∠AEC=90°;(2)四边形AOCD为菱形.理由是:∵,∴∠DCA=∠CAB,∴CD∥OA,又∵AE∥OC,∴四边形AOCD是平行四边形,∵OA=OC,∴平行四边形AOCD是菱形(一组邻边相等的平行四边形是菱形);(3)连接OD.∵四边形AOCD为菱形,∴OA=AD=DC=2,∵OA=OD,∴OA=OD=AD=2,∴△OAD是等边三角形,∴∠AOD=60°,∵DH⊥AB于点F,AB为直径,∴DH=2DF,在Rt△OFD中,sin∠AOD=,∴DF=ODsin∠AOD=2sin60°=,∴DH=2DF=2.【考点】1.切线的性质2.等边三角形的判定与性质3.菱形的判定与性质4.解直角三角形.2.如图,AB是⊙O的直径,点C是圆上一点,,则 °.【答案】20.【解析】∵AB是⊙O的直径,∴.∵OA=OC,,∴.∴.【考点】1.圆周角定理;2.等腰三角形的性质.3.已知一个圆锥的底面半径为3 cm,母线长为10 cm,则这个圆锥的侧面积为 ()A.15π cm2B.30π cm2C.60π cm2D.3cm2【答案】B【解析】圆锥的侧面积=π×3×10=30π cm2.故选B.4.如图,⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AB的长是A.4cm B.6cm C.8cm D.10cm【答案】C.【解析】连接OB;∵CD=10cm,∴OC=5cm;∵OM:OC=3:5,∴OM=3cm;Rt△OCP中,OC=OA=5cm,OM=3cm;由勾股定理,得:所以AB=2AM=8cm,故选C.考点: 1.垂径定理;2.勾股定理.5.如图,点A是半圆上一个三等分点,点B是的中点,点P是直径MN上一动点,若⊙O的半径为1,则AP+BP的最小值是.【答案】.【解析】本题是要在MN上找一点P,使PA+PB的值最小,设A′是A关于MN的对称点,连接A′B,与MN的交点即为点P.此时PA+PB=A′B是最小值,可证△OA′B是等腰直角三角形,从而得出结果.试题解析:作点A关于MN的对称点A′,连接A′B,交MN于点P,则PA+PB最小,连接OA′,AA′.∵点A与A′关于MN对称,点A是半圆上的一个三等分点,∴∠A′ON=∠AON=60°,PA=PA′,∵点B是弧AN^的中点,∴∠BON=30°,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=1,∴A′B=.∴PA+PB=PA′+PB=A′B=.考点: 1.垂径定理;2.勾股定理;3.圆心角、弧、弦的关系;4.轴对称-最短路线问题.6.如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s的速度从A点出发沿着A→B→A方向运动,设运动时间为t(秒)(0≤t<3),连结EF,当t值为________秒时,△BEF是直角三角形.【答案】t=1或或.【解析】∵AB是⊙O的直径,∴∠C=90°.∵∠ABC=60°,∴∠A=30°.又BC=3cm,∴AB=6cm.则当0≤t<3时,即点E从A到B再到O(此时和O不重合).若△BEF是直角三角形,则当∠BFE=90°时,根据垂径定理,知点E与点O重合,即t=1;当∠BEF=90°时,则BE=BF=,此时点E走过的路程是或,则运动时间是s或s.故答案是t=1或或.【考点】圆周角定理.7.如图,边长为1的小正方形构成的网格中,⊙O的半径为1,则图中阴影部分两个小扇形的面积之和为(结果保留π)【答案】.【解析】如图,根据正方形和圆的对称性,上方的小扇形与下方的红色小扇形面积相等,所以图中阴影部分两个小扇形的面积之和为四分之一半径为1的圆的面积,即.【考点】1.网格问题;2. 正方形和圆的对称性;3. 扇形的面积;4.转换思想的应用.8.如图,从A地到B地有两条路可走,一条路是大半圆,另一条路是4个小半圆.有一天,一只猫和一只老鼠同时从A地到B地.老鼠见猫沿着大半圆行走,它不敢与猫同行(怕被猫吃掉),就沿着4个小半圆行走.假设猫和老鼠行走的速度相同,那么下列结论正确的是A.猫先到达B地;B.老鼠先到达B地;C.猫和老鼠同时到达B地;D.无法确定.【答案】C.【解析】以AB为直径的半圆的长是:•AB;设四个小半圆的直径分别是a,b,c,d,则a+b+c+d=AB.则老鼠行走的路径长是:a+b+c+d=(a+b+c+d)=•AB.故猫和老鼠行走的路径长相同.故选C.【考点】弧长公式.9.如图,已知在⊙O中,弦AB的长为8cm,半径为5 ㎝,过O作OC AB求点O与AB的距离.【答案】3cm.【解析】连接OA.根据垂径定理求得AC的长,再进一步根据勾股定理即可求得OC的长.试题解析:连接OA.如图:∵OC⊥AB,弦AB长为8cm,∴AC=4(cm).根据勾股定理,得OC=考点: 1.垂径定理;2.勾股定理.10.如图所示,内接于,,,则______.【答案】.【解析】由圆周角定理知:,由于,得到,所以:.故答案是.【考点】圆周角定理.11.如图,已知直线PA交⊙O于A、B两点,AE是⊙O的直径,点C为⊙O上一点,且AC平分∠PAE,过C作CD⊥PA,垂足为D.(1)求证:CD为⊙O的切线;(2)若DC+DA=6,⊙O的直径为10,求AB的长度.【答案】(1)详见解析;(2)6【解析】(1)连接OC,根据题意可证得∠CAD+∠DCA=90°,再根据角平分线的性质,得∠DCO=90°,则CD为⊙O的切线;(2)过O作OF⊥AB,则∠OCD=∠CDA=∠OFD=90°,得四边形OCDF为矩形,设AD=x,在Rt△AOF中,由勾股定理得(5-x)2+(6-x)2=25,从而求得x的值,由勾股定理得出AB的长.试题解析:(1)连接OC,∵OA=OC,∴∠OCA=∠OAC,∵AC平分∠PAE,∴∠DAC=∠CAO,∴∠DAC=∠OCA,∴PB∥OC,∵CD⊥PA,∴CD⊥OC,CO为⊙O半径,∴CD为⊙O的切线;(2)过O作OF⊥AB,垂足为F,∴∠OCD=∠CDA=∠OFD=90°,∴四边形DCOF为矩形,∴OC=FD,OF=CD.∵DC+DA=6,设AD=x,则OF=CD=6-x,∵⊙O的直径为10,∴DF=OC=5,∴AF=5-x,在Rt△AOF中,由勾股定理得AF2+OF2=OA2.即(5-x)2+(6-x)2=25,化简得x2-11x+18=0,解得x1=2,x2=9.∵CD=6-x大于0,故x=9舍去,∴x=2,从而AD=2,AF=5-2=3,∵OF⊥AB,由垂径定理知,F为AB的中点,∴AB=2AF=6.【考点】1.切线的判定和性质;2.勾股定理;3.矩形的判定和性质4.垂径定理12.如图MN=10是⊙O的直径,AE⊥MN于E,CF⊥MN于F,AE=4,CF=3,(1)在MN上找一点P,使PA+PC最短;(2)求出PA+PC最短的距离。

初三数学圆试题答案及解析

初三数学圆试题答案及解析1.已知:如图,P是⊙O外一点,过点P引圆的切线PC(C为切点)和割线PAB,分别交⊙O 于A、B,连接AC,BC.(1)求证:∠PCA=∠PBC;(2)利用(1)的结论,已知PA=3,PB=5,求PC的长.【答案】(1)证明见解析;(2).【解析】(1)连接OC,OA,先根据等腰三角形的性质得出∠ACO=∠CAO,再由PC是⊙O 的切线,C为切点得出∠PCO=90°,∠PCA+∠ACO=90°,应用三角形内角和定理和圆周角定理可得出∠ACO+∠PBC=90°,再根据∠PCA+∠ACO=90°即可得出结论.(2)根据相似三角形的判定定理得出△PAC∽△PCB,由相似三角形的对应边成比例即求得出结论.试题解析:解:(1)证明:如答图,连接OC,OA,∵OC=OA,∴∠ACO=∠CAO.∵PC是⊙O的切线,C为切点,∴PC⊥OC.∴∠PCO=90°,∠PCA+∠ACO=90°,在△AOC中,∠ACO+∠CAO+∠AOC=180°,∵∠AOC=2∠PBC,∴2∠ACO+2∠PBC=180°.∴∠ACO+∠PBC=90°.∵∠PCA+∠ACO=90°,∴∠PCA=∠PBC.(2)∵∠PCA=∠PBC,∠CPA=∠BPC,∴△PAC∽△PCB.∴.∵PA=3,PB=5,∴,解得.【考点】1.等腰三角形的性质;2.切线的性质;3.三角形内角和定理;4.圆周角定理;5.相似三角形的判定与性质.2.图①是电子屏幕的局部示意图,4×4网格的每个小正方形边长均为1,每个小正方形顶点叫做格点,点A,B,C,D在格点上,光点P从AD的中点出发,按图②的程序移动(1)请在图①中用圆规画出光点P经过的路径;(2)在图①中,所画图形是轴对称图形(填“轴对称”或“中心对称”),所画图形的周长是(结果保留π).【答案】(1)图形见解析(2)【解析】(1)根据旋转度数和方向分别作出弧即可;(2)根据图形的轴对称性解答;求出四次旋转的度数之和,然后根据弧长公式列式计算即可得解试题解析:(1)如图所示;(2)所画图形是轴对称图形;旋转的度数之和为270°+90°×2+270°=720°,所画图形的周长=.【考点】旋转变换3.已知在△ABC中,AB=AC=13,BC=10,如果以A为圆心r为半径的⊙A和以BC为直径的⊙D相交,那么r的取值范围()A.3<r<13B.5<r<17C.7<r<13D.7<r<17【答案】D.【解析】由题意得:BD=DC=5,AB=AC=13,由勾股定理得:AD=12,设⊙A的半径为r,根据两圆相交得:r-5<12<r+5,解答:7<r<17,故选D.【考点】圆与圆的位置关系.4. Rt△ABC中,∠C=90°,AC=5,BC=12,如果以点C为圆心,r为半径,且⊙C与斜边AB仅有一个公共点,那么半径r的取值范围是【答案】r=或5<r≤12.【解析】因为要使圆与斜边只有一个公共点,所以该圆和斜边相切或和斜边相交,但只有一个交点在斜边上.若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.试题解析:根据勾股定理求得直角三角形的斜边是=13.当圆和斜边相切时,则半径即是斜边上的高,等于;当圆和斜边相交,且只有一个交点在斜边上时,可以让圆的半径大于短直角边而小于长直角边,则5<r≤12.故半径r的取值范围是r=或5<r≤12.【考点】直线与圆的位置关系.5.半径为4cm,圆心角为60°的扇形的面积为 cm2.【答案】.【解析】直接利用扇形面积公式求出即可:半径为4cm,圆心角为60°的扇形的面积为:(cm2).【考点】扇形面积的计算.6.如图,已知⊙O上依次有A,B,C,D四个点,,连接AB,AD,BD,弦AB不经过圆心O.延长AB到E,使BE=AB,连接EC,F是EC的中点,连接BF.(1)若⊙O的半径为3,∠DAB=120°,求劣弧的长;(2)求证:BF=BD;(3)设G是BD的中点,探索:在⊙O上是否存在点P(不同于点B),使得PG=PF?并说明PB与AE的位置关系【答案】(1);(2)证明见解析;(3)在⊙O上存在点P(不同于点B),使得PG=PF,此时PB⊥AE.【解析】(1)要求劣弧BD的长,根据弧长公式,只需求圆心角∠BOD的度数,所以,需要连接OB、OD.由同弧所对的圆周角等于圆心角的一半,可得所对的圆心角为2400,所以∠BOD=1200.利用弧长公式直接计算可解.(2)连接AC,则BF是△ACE的中位线,再根据弧弦关系定理,证得AC=BD即可.(3)作∠DBF的平分线交⊙O于点P,连接PG,PB,则由SAS可证△PBG≌△PGB,从而得到PG-PF,此时,由∠FBE=∠CAE和∠DBA=∠FBE可得∠PBA=∠PBE=900,即 PB⊥AE.试题解析:解:(1)如答图1,连接OB、OD,∵∠DAB=1200,∴所对的圆心角为2400.∴∠BOD=1200.∵⊙O的半径为3,∴劣弧的长为.(2)证明:如答图2,连接AC,∵AB=BE,∴B是AE的中点.∵F是EC的中点, ∴BF是△EAC的中位线.∴BF=.∵,∴,即.∴BD=AC.∴BF=.(3)在⊙O上存在点P(不同于点B),使得PG=PF,此时PB⊥AE.理由如下:如答图3,作∠DBF的平分线交⊙O于点P,连接PG,PB,则∵G是BD的中点,由(2)BF=,∴BG=BF.又∵PB=PB,∠PBG=∠PBF,∴△PBG≌△PGB(SAS).∴PG-PF.由(2)BF是△EAC的中位线,∴BF∥AC.∴∠FBE=∠CAE.∴,∴∠CAB=∠DBA.∴∠DBA=∠FBE.∴∠PBA=∠PBE=900,即 PB⊥AE.【考点】1.圆周角定理;2.弧长计算;3.三角形的中位线的性质;4.弧弦关系定理;5.全等三角形的判定和性质;6.垂直的判定.7.如图,点A、B、C都在圆O上,如果∠AOB+∠ACB=84°,那么∠ACB的大小是.【答案】28°.【解析】根据圆周角定理即可推出∠AOB=2∠ACB,再代入∠AOB+∠ACB=84°通过计算即可得出结果.试题解析:∵∠AOB=2∠ACB,∠AOB+∠ACB=84°∴3∠ACB=84°∴∠ACB=28°.【考点】圆周角定理.8.如图,AB是⊙O的直径,点C是圆上一点,,则 °.【答案】20.【解析】∵AB是⊙O的直径,∴.∵OA=OC,,∴.∴.【考点】1.圆周角定理;2.等腰三角形的性质.9.如图,在等腰梯形ABCD中,AD∥BC.O是CD边的中点,以O为圆心,OC长为半径作圆,交BC边于点E.过E作EH⊥AB,垂足为H.已知⊙O与AB边相切,切点为F.(1)求证:OE∥AB;(2)求证:;(3)若,求的值.【答案】(1)证明见解析;(2)证明见解析;(3).【解析】(1)根据等腰梯形的等腰三角形的性质,可得∠B=∠C=∠OEC.,从而判定OE∥AB. (2)要证明,只需证明四边形OEHF是平行四边形,要证明OEHF是平行四边形,已知它有一组对边平行,只需再说明另一组对边平行,由已知EH⊥AB和圆切线的性质即可得到. (3)要求,只要证明△EHB∽△DEC,再根据相似三角形的性质来求即可.(1)在等腰梯形ABCD中,AB=DC,∴∠B=∠C.∵OE=OC,∴∠OEC=∠C. ∴∠B=∠OEC.∴OE∥AB.(2)如图,连接OF.∵⊙O与AB切于点F,∴OF⊥AB.∵EH⊥AB,∴OF∥EH.又∵OE∥AB,∴四边形OEHF为平行四边形.∴EH=OF,∴.(3)如图,连接DE.∵CD是直径,∴∠DEC=90°.∴∠DEC=∠EHB.又∵∠B=∠C,∴△EHB∽△DEC. ∴.∵,设,则,∴. ∴.【考点】1.等腰梯形和等腰三角形的性质;2.平行的判定;3.圆切线的性质;4.圆周角定理;5.相似三角形的判定和性质;6.勾股定理.10.已知圆锥的底面直径和母线长都是10cm,则圆锥的侧面积为.【答案】50πcm2【解析】∵底面圆的半径为5cm,则底面周长为10πcm,∴圆锥的侧面积为×10π×10=50πcm2.11.如图,AB是⊙O的直径,若∠BDC=40°,则∠AOC的度数为()A.80°B.100°C.140°D.无法确定【答案】B.【解析】根据同弧所对圆心角是圆周角的2倍,先求得∠BOC=2∠BDC=80°,再进一步求得∠AOC的度数.∵∠BOC=2∠BDC=80°,∴∠AOC=180°-∠BOC=180°-80°=100°.故选:B.考点:圆周角定理.12.如图,经过原点的⊙P与两坐标轴分别交于点A(2,0)和点B(0,2), C是优弧上的任意一点(不与点O,B重合),则tan∠BCO的值为()A.B.C.D.【答案】A.【解析】连结AB,根据正切的定义得到tan∠A=,再根据圆周角定理得∠C=∠A,所以tan∠BCO=.故选A.【考点】圆周角定理.13.如图,圆锥的母线长是3,底面半径是1,A是底面圆周上一点,从点A出发绕侧面一周,再回到点A的最短的路线长是A.B.C.D.3【答案】C.【解析】圆锥的侧面展开图是扇形,从A点出发绕侧面一周,再回到A点的最短的路线即展开得到的扇形的弧所对直径,转化为求直径的长的问题.∵图扇形的弧长是2π,根据弧长公式得到2π=,∴n=120°即扇形的圆心角是120°,∴弧所对的弦长AA′=2×3sin60°=3,故选C.考点:1.圆锥的计算;2.平面展开-最短路径问题.14.如图,圆心B在y轴的负半轴上,半径为5的⊙B与y轴的正半轴交于点A(0,1).过点P(0,-7)的直线l与⊙B相交于C、D两点,则弦CD长的所有可能的整数值有_______个;它们是 .【答案】3个;8,9,10.【解析】∵点A的坐标为(0,1),圆的半径为5,∴点B的坐标为(0,﹣4),又∵点P的坐标为(0,﹣7),∴BP=3,①当CD垂直圆的直径AE时,CD的值最小,连接BC,在Rt△BCP中,CP= =4;故CD=2CP=8,②当CD经过圆心时,CD的值最大,此时CD=直径AE=10;所以,8≤CD≤10,综上可得:弦CD长的所有可能的整数值有:3个,分别是:8,9,10.【考点】垂径定理.15.操作与探究我们知道:过任意一个三角形的三个顶点能作一个圆,探究过四边形四个顶点作圆的条件。

(完整版)初三数学有关圆的经典例题

初三数学 有关圆的经典例题1. 在半径为的⊙中,弦、的长分别为和,求∠的度数。

132O AB AC BAC分析:根据题意,需要自己画出图形进行解答,在画图时要注意AB 与AC 有不同的位置关系。

解:由题意画图,分AB 、AC 在圆心O 的同侧、异侧两种情况讨论, 当AB 、AC 在圆心O 的异侧时,如下图所示,过O 作OD ⊥AB 于D,过O 作OE ⊥AC 于E , ∵,,∴,AB AC AD AE ====323222∵,∴∠,OA OAD AD OA ===132cos cos ∠OAE AE OA ==22∴∠OAD=30°,∠OAE=45°,故∠BAC=75°,当AB 、AC 在圆心O 同侧时,如下图所示,同理可知∠OAD=30°,∠OAE=45°, ∴∠BAC=15°点拨:本题易出现只画出一种情况,而出现漏解的错误。

例2。

如图:△ABC 的顶点A 、B 在⊙O 上,⊙O 的半径为R,⊙O 与AC 交于D ,如果点既是的中点,又是边的中点,D AB AC ⋂(1)求证:△ABC 是直角三角形;()22求的值AD BC分析:()1由为的中点,联想到垂径定理的推论,连结交于,D AB OD AB F ⋂则AF=FB ,OD ⊥AB ,可证DF 是△ABC 的中位线;(2)延长DO 交⊙O 于E ,连接AE ,由于∠DAE=90°,DE ⊥AB,∴△ADF∽△,可得·,而,,故可求DAE AD DF DE DF BC DE R AD BC22122===解:(1)证明,作直径DE 交AB 于F ,交圆于E∵为的中点,∴⊥,D AB AB DE AF FB ⋂=又∵AD=DC∴∥,DF BC DF BC =12∴AB ⊥BC ,∴△ABC 是直角三角形。

(2)解:连结AE ∵DE 是⊙O 的直径 ∴∠DAE=90°而AB ⊥DE ,∴△ADF ∽△EDA∴,即·AD DE DFADAD DE DF ==2∵,DE R DF BC ==212∴·,故AD BC R AD BCR 22==例3. 如图,在⊙O 中,AB=2CD ,那么( )A AB CD B AB CD ..⋂>⋂⋂<⋂22C AB CD D AB CD ..⋂=⋂⋂⋂22与的大小关系不确定分析:要比较与的大小,可以用下面两种思路进行:AB CD ⋂⋂2()112把的一半作出来,然后比较与的大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学圆典型难题及答案————————————————————————————————作者:————————————————————————————————日期:2006年中考“圆”热点题型分类解析1.(2006,泉州)如图1,△ABC为⊙O的内接三角形,AB为⊙O的直径,点D•在⊙O 上,∠BAC=35°,则∠ADC=_______ODCBA(1) (2) (3) (4)2.(2006,哈尔滨市)在△ABC中,AB=AC=5,且△ABC的面积为12,则△ABC外接圆的半径为________.3.(2006,南京市)如图2,矩形ABCD与圆心在AB上的⊙O交于点G、B、F、E,•GB=8cm,AG=1cm,DE=2cm,则EF=_______cm.4.(2006,旅顺口区)如图3,点D在以AC为直径的⊙O上,如果∠BDC=20°,那么∠ACB=________.5.(2006,盐城)已知四边形ABCD内接于⊙O,且∠A:∠C=1:2,则∠BOD=______.6.(2006,大连)如图4,在⊙O中,∠ACB=∠D=60°,AC=3,则△ABC•的周长为______.7.(2006,盐城)如图5,AB是⊙O的弦,圆心O到AB的距离OD=1,AB=4,•则该圆的半径是________.(5) (6) (7) (8) (9)8.如图6,⊙O的直径AB=8cm,C为⊙O上的一点,∠BAC=30°,则BC=_____cm.9.(2006,重庆)如图7,△ABC内接于⊙O,∠A所对弧的度数为120°,∠ABC、•∠ACB的角平分线分别交AC、AB 于点D、E,CE、BD相交于点F.①cos∠BFE=12;②BC=•BD;③EF=FD;④BF=2DF.其中结论一定正确的序号是________.10.(2006,海淀区)如图8,已知A、B、C是⊙O上,若∠COA=100°,则∠CBA的度数是()A.40° B.50° C.80° D.200°11.(2006,温州)如图9,AB是⊙O的直径,点C在⊙O上,∠B=70°,则∠A的度数是()A.20° B.25° C.30° D.35°(10) (11) (12) (13) (14)12.(2006,陕西)如图10,⊙O是△ABC的外接圆,AD是⊙O的直径,连接CD,若⊙O的半径r=32,AC=2,则cosB的值是()A.32B.55.32C D.2313.(2006,浙江)如图11,A、B、C是⊙O上的三点,∠BAC=45°,则∠BOC•的大小是()A.90° B.60° C.45° D.22.5°14.(2006,浙江台州)我们知道,“两点之间线段最短”,“直线外一点与直线上各点连线的所有线段中,垂线段最短”.在此基础上,人们定义了点与点的距离,•点到直线的距离.类似地,如图12,若P是⊙O外一点,直线PO交⊙O于A、B两点,PC•切⊙O于点C,则点P到⊙O的距离是()A.线段PO的长度; B.线段PA的长度; C.线段PB的长度; D.线段PC的长度15.(2006,绵阳)如图13,AB是⊙O的直径,BC、CD、DA是⊙O的弦,且BC=CD=•DA,则∠BCD=()A.100° B.110° C.120° D.135°16.(2006,重庆)如图14,⊙O的直径CD过弦EF的中点G,∠EOD=40°,•则∠DCF等于()A.80° B.50° C.40° D.20°17.(2006,广安)用一把带有刻度尺的直角尺,①可以画出两条平行的直线a•和b,如图(1);②可以画出∠AOB 的平分线OP,如图(2);•③可以检验工件的凹面是否为半圆,如图(3);④可以量出一个圆的半径,如图(4).这四种说法正确的有()A.4个 B.3个 C.2个 D.1个18.(2006,攀枝花)图16中∠BOD的度数是()A.55° B.110° C.125° D.150°(16)(17)(18)19.(2006,攀枝花)如图17,AB是⊙O的直径,弦AC、BD相交于点E,则CDAB等于()A.tan∠AED B.cot∠AED C.sin∠AED D.cos∠AED20.(2006,浙江舟山)如图18已知A、B、C是⊙O上的三点,若∠ACB=44°,•则∠AOB的度数为()A.44° B.46° C.68° D.88°21.(2006,浙江台州)如图,△ABC内接于⊙O,∠BAC的平分线交⊙O于点D,•交边BC于点E,连结BD.(1)根据题设条件,请你找出图中各对相似的三角形;(2)请选择其中的一对相似三角形加以证明.22.(2006,黄冈)如图,AB,AC分别是⊙O的直径和弦,点D为劣弧AC上一点•弦ED分别交⊙O于点E,交AB于点H,交AC于点F,过点C的切线交ED的延长线于点P.(1)若PC=PF;求证:AB⊥ED.(2)点D在劣弧»AC的什么位置时,才能使AD=DE.DF,为什么?23.(2006,广东课改区)如图所示,AB是⊙O的弦,半径OC、OD分别交AB于点E、F,且AE=BF,请你找出线段OE 与OF的数量关系,并给予证明.24.(2006,上海市)本市新建的滴水湖是圆形人工湖,为测量该湖的半径,小杰和小丽沿湖边选取A、B、C三根木柱,使得A、B之间的距离与A、C之间的距离相等,•并测得BC长为240米,A到BC的距离为5米,如图所示,•请你帮他们求出滴水湖的半径.1.(2006,温州)已知∠ABC=60°,点O在∠ABC的平分线上,OB=5cm,以O为圆心,•3cm为半径作圆,则⊙O与BC 的位置关系是________.2.(2006,大连)如图1,AB是⊙O的切线,OB=2OA,则∠B的度数是_______.(1)(2)(3)3.(2006,天津)已知⊙O中,两弦AB和CD相交于点P,若AP:PB=2:3,CP=2cm,DP=•12cm,则弦AB的长为_______cm.4.(2006,天津)如图2,已知直线CD与⊙O相切于点C,AB为直径,若∠BCD=•40°,则∠ABC的大小等于_______(度).5.(2006,上海市)已知圆O的半径为1,点P到圆心O的距离为2,过点P•作圆的切线,那么切线长是________.6.(2006,哈尔滨)如图3,PB为⊙O的切线,B为切点,连结PO交⊙O于点A,PA=2,PO=5,则PB的长为()A.4 B.10 C.26 D.437.(2006,旅顺口区)如图4,AB与⊙O切于点B,AO=6cm,AB=4cm,则⊙O•的半径为()A.45cm B.25cm C.213cm D.13cm(4)(5)(6)8.(2006,浙江绍兴)如图5,已知⊙O的直径AB与弦AC的夹角为35°,过C点的切线PC•与AB的延长线交于点P,那么∠P等于()A.15° B.20° C.25° D.30°9.(2006,浙江台州)如图6,已知⊙O中弦AB,CD相交于点P,AP=6,BP=2,CP=•4,则PD的长是()A.6 B.5 C.4 D.310.(2006,重庆)⊙O的半径为4,圆心O到直线L的距离为3,则直线L与⊙O•的位置关系是()A.相交 B.相切 C.相离 D.无法确定11.(2006,白云区)如图,A是⊙O外一点,B是⊙O上一点,AO•的延长线交⊙O 于点C,连结BC,∠C=22.5°,∠A=45°.求证:直线AB是⊙O的切线.12.(2006,陕西)如图,⊙O的直径AB=4,∠ABC=30°,BC=43,D是线段BC•的中点.(1)试判断点D与⊙O的位置关系,并说明理由;(2)过点D作DE⊥AC,垂足为点E,求证直线DE是⊙O的切线.13.(2006,攀枝花)如图所示,PA、PB是⊙O的切线,A、B为切点,∠APB=•80°,点C是⊙O上不同于A、B的任意一点,求∠ACB的度数.14.(2006,绵阳)已知在Rt△ABC中,AD是∠BAC的角平分线,以AB上一点O•为圆心,AD为弦作⊙O.(1)在图中作出⊙O;(不写作法,保留作图痕迹)(2)求证:BC为⊙O的切线;(3)若AC=3,tanB=34,求⊙O的半径长.15.(2006,天津)如图,已知⊙O的割线PAB交⊙O于A、B两点,PO与⊙O•交于点C,且PA=AB=6cm,PO=12cm.(1)求⊙O的半径;(2)求△PBO的面积.(结果可带根号)16.(2006,海淀区)如图,在⊙O中,弦AC与BD交于E,AB=6,AE=8,ED=4,•求CD的长.17.(2006,盐城)如图,已知:C是以AB为直径的半圆O上一点,CH⊥AB•于点H,直线AC与过B点的切线相交于点D,E为CH中点,连接AE并延长交BD于点F,直线CF交直线AB于点G.(1)求证:点F是BD中点;(2)求证:CG是⊙O的切线;(3)若FB=FE=2,求⊙O的半径.1.(2006,攀枝花市)如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O 于B、C,则BC=_______.2.(2006,淄博市)要在一个矩形纸片上画出半径分别是4cm和1cm•的两个外切圆,该矩形长的最小值是_______.3.(2006,哈尔滨)已知⊙O与⊙O半径的长是方程x2-7x+12=0的两根,且O1O2=12,则⊙O1与⊙O2的位置关系是()A.相交 B.内切 C.内含 D.外切4.(2006,白云山区)已知两圆的半径分别为1和4,圆心距为3,则两圆的位置关系是()A.外离 B.外切 C.相交 D.内切5.(2006,南安市)已知⊙O1和⊙O2的半径分别为2cm和3cm,两圆的圆心距是1cm,则两圆的位置关系是() A.外离 B.外切 C.相交 D.内切6.(2006,烟台市)已知:关于x的一元二次方程x2-(R+r)x+14d2=0无实数根,其中R、•r分别是⊙O1、⊙O2的半径,d为此两圆的圆心距,则⊙O1,⊙O2的位置关系为()A.外离 B.相切 C.相交 D.内含7.(2006,哈尔滨市)下列命题中,正确命题的个数是()①垂直于弦的直径平分这条弦;②平行四边形对角互补;③有理数与数轴上的点是一一对应的;④相交两圆的公共弦垂直平分两圆的连心线.A.0个 B.1个 C.2个 D.3个8.(2006,浙江)如果两圆半径分别为3和4,圆心距为8,那么这两圆的位置关系是()A.内切 B.相交 C.外离 D.外切9.(2006,广安)若⊙A和⊙B相切,它们的半径分别为8cm和2cm,则圆心距AB为( • )A.10cm B.6cm C.10cm或6cm D.以上都不对10.(2006,攀枝花)在等边三角形、正五边形、正六边形、正七边形中,既是轴对称又是中心对称的图形是() A.等边三角形 B.正五边形 C.正六边形 D.正七边形11.(2006,哈尔滨市)已知:如图,⊙O1与⊙O2外切于点P,经过⊙O1上一点A•作⊙O1的切线交⊙O2于B、C两点,直线AP交⊙O2于点D,连结DC、PC.(1)求证:D C2=DP·DA;(2)若⊙O1与⊙O2的半径之比为1:2,连结BD,BD=46,PC=12,求AB的长.12.(2006,成都)已知:如图,⊙O与⊙A相交于C、D两点,A、O分别是两圆的圆心,△ABC内接于⊙O,弦CD交AB 于点G,交⊙O的直径AE于点F,连结BD.(1)求证:△ACG∽△DBG;(2)求证:AC2=AC·AB;(3)若⊙A、⊙O的直径分别为65、15,且CG:CD=1:4,求AB和BD的长.13.(2006,盐城)已知:AB为⊙O的直径,P为AB弧的中心.(1)若⊙O′与⊙O外切于点P(见图甲),AP、BP的延长线分别交⊙O′于点C、D,•连接CD,则△PCD是________.(2)若⊙O′与⊙O相交于点P、Q(见图乙),连接AQ、BQ并延长分别交⊙O•′于点E、F,请选择下列两个问题中的一个作答:问题1:判断△PEF的形状,并证明你的结论;问题2:判断线段AE与BF的关系,并证明你的结论.我选择问题______,结论:___________.证明:1.(2006,浙江)如图1,圆锥的底面半径为6cm,高为8cm,•那么这个圆锥的侧面积是________c m2.(1)(2)(3)(4)2.(2006,泉州)已知圆柱的底面半径为2cm,母线长为3cm,•则该圆柱的侧面展开图的面积为_____cm2.3.(2006,黄冈)如图2,将边长为8cm的正方形ABCD的四边沿直线L向右滚动(不滑动),当正方形滚动两周时,正方形的顶点A所经过的路线的长是_____cm.4.(2006,广州)如图3,从一块直径为a+b的圆形纸板上挖去直径分别为a•和b 的两个圆,则剩下的纸板面积为________.5.(2006,旅顺口)若圆锥的底面周长为20π,•侧面展开后所得扇形的圆心角为120°,则圆锥的侧面积为________.6.(•2006,•晋江)•若圆锥的底面半径为3,•母线长为8,•则这个圆锥的全面积是_____平方单位.7.(2006,哈尔滨市)已知矩形ABCD的一边AB=5cm,另一边AD=3cm,则以直线AB•为轴旋转一周所得到的圆柱的表面积为______c m2.8.(2006,晋江)正十二边形的每一个外角等于______度.9.(2006,黄冈)已知圆锥的侧面展开图是一个半圆,则这个圆锥的母线长与底面半径长的比是________.10.(2006,广东课改实验区)如图4,已知圆柱体底面圆的半径为2π,高为2,•AB、CD分别是两底面的直径,AD、BC是母线.若一只小虫从A点出发,从侧面爬地到C点,则小虫爬行的最短路线的长度是_______(结果保留根式).11.(2006,广安)将一个弧长为12πcm,半径为10cm的扇形铁皮围成个圆锥形容器(不计接缝),那么这个圆锥形容器的高为_______cm.12.(2006,•重庆)•圆柱的底面周长为2π,•高为1,•则圆柱的侧面展开图的面积为______.13.(•2006,•浙江舟山)•已知正六边形的外接圆的半径是a,•则正六边形周长是_____.14.(2006,浙江台州)如图5,已知圆锥的母线长为5cm,底面半径为3cm,则此圆锥的侧面积为()A.15πcm2B.20πcm2C.12πcm2D.30πcm2(5)(6)(7)15.(2006,浙江)在△ABC中,斜边AB=4,∠B=60°,将△ABC绕点B旋转60°,•顶点C运动的路线长是()A.24 (333)B C Dππππ16.(2006,成都)如图6,小丽要制作一个圆锥模型,要求圆锥的母线长9cm,•底面圆的直径为10cm,•那么小丽要制作的这个圆锥模型的侧面展开扇形的纸片的圆心角度数是()A.150° B.200° C.180° D.240°17.(2006,广州)一个圆柱的侧面展开图是相邻边长分别为10和16的矩形,•则该圆柱的底面圆半径是()A.58581016 ...B C Dππππππ或或18.(2006,天津)若同一个圆的内接正三角形、正方形、正六边形的边心距分别为r3,r4,r6,则r3:r4:r6等于() A.1:2:3 B.3:2:1 C.1:2:3 D.3:2:119.(2006,青岛市)如图7,在△ABC中,BC=4,以点A为圆心、2为半径的⊙A与BC相切于点D,交AB于E,交AC 于F,点P是⊙A上的一点,且∠EPF=40°,则图中阴影部分的面积是()A.4-49π B.4-89π C.8-49π D.8-89π20.(2006,南安)如图,半圆M的直径AB为20cm,现将半圆M绕着点A顺时针旋转180°.(1)请你画出旋转后半圆M的图形;(2)求出在整个旋转过程中,半圆M所扫过区域的面积(结果精确到1c m2)21.(2006,海淀区)如图,已知⊙O的直径AB垂直弦CD于E,连结AD,BD,OC,•OD,且OD=5,(1)若sin∠BAD=35,求CD的长;(2)若∠ADO:∠EDO=4:1,求扇形OAC(阴影部分)的面积(结果保留π).22.(2006,烟台市)如图a,O为圆柱形木块底面的圆心,过底面的一条弦AD,•沿母线AB剖开,得剖面矩形ABCD,AD=24cm,AB=25cm,若¼AmD的长为底面周长的23,•如图b所示.(1)求⊙O的半径;(2)求这个圆柱形木块的表面积.(结果可保留π和根号)(a)(b)23.(2006,攀枝花市)如图,圆锥的底面半径r=3cm,高h=4cm,求这个圆锥的表面积(π取3.14).1.(2006,福建泉州)如图,已知O为原点,点A的坐标为(4,3),⊙A•的半径为2,过A作直线L平行于x轴,点P在直线L上运动.(1)当点P在⊙O上时,请你直接写出它的坐标;(2)设点P的横坐标为12,试判断直线OP与⊙A的位置关系,并说明理由.2.(2006,广安市)已知:如图,AB是⊙O的直径,⊙O过AC的中点D,DE切⊙O于点D,交BC于点E.(1)求证:DE⊥BC;(2)如果CD=4,CE=3,求⊙O的半径.3.(2006,广安市)如图,已知AB是⊙O的直径,直线L与⊙O相切于点C且»»AC AD,弦CD交AB于E,BF⊥L,垂足为F,BF交⊙O于G.(1)求证:CE2=FG·FB;(2)若tan∠CBF=12,AE=3,求⊙O的直径.4.(2006,苏州市)如图①,△ABC内接于⊙O,且∠ABC=∠C,点D在弧BC•上运动,过点D作DE∥BC,DE交直线AB 于点E,连结BD.(1)求证:∠ADB=∠E;(2)求证:A D2=AC·AE;(3)当点D运动到什么位置时,△DBE∽△ADE.请你利用图②进行探索和证明.5.(2006,晋江)街道旁边有一根电线杆AB和一块半圆形广告牌.有一天,•小明突然发现,在太阳光照射下,电线杆的顶端A的影子刚好落在半圆形广告牌的最高处G,•而半圆形广告牌的影子刚好落在地面上一点E,已知BC=5米,半圆形的直径为6米,•DE=2米.(1)求电线杆落在广告牌上的影长(即»CG的长度,精确到0.1米).(2)求电线杆的高度.6.(2006,深圳)如图①,在平面直角坐标系xOy中,点M在x轴的正半轴上,⊙M交x 轴于A、B两点,交y轴于C、D两点,且C为»AE的中点,AE交y轴于G点.若点A•的坐标为(-2,0),AE=8.(1)求点C的坐标;(2)连结MG、BC,求证:MG∥BC;(3)如图②,过点D作⊙M的切线,交x轴于点P.动点F在⊙M的圆周上运动时,OFPF的比值是否发生变化,若不变,求出比值;若变化,请说明变化规律.①②7.(2006,烟台市)如图,从⊙O外一点A作⊙O的切线AB、AC,切点分别为B、C,且⊙O直径BD=6,连结CD、AD.(1)求证:CD∥AO;(2)设CD=x,AO=y,求y与x之间的函数关系式,并写出自变量x的取值范围;(3)若AO+CD=11,求AB的长.8.(2006,上海市)已知点P在线段AB上,点O在线段AB延长线上,以点O为圆心,•OP为半径作圆,点C是圆O 的一点.(1)如图,如果AP=2PB,PB=BO,求证:△CAO∽△BCO;(2)如果AP=m(m是常数,且m>1),BP=1,OP是OA、OB的比例中项,当点C在圆O•上运动时,求AC:BC的值(结果用含m的式子表示);(3)在(2)的条件下,讨论以BC为半径的圆B和以CA为半径的圆C的位置关系,并写出相应m的取值范围.1.(2006,浙江市)在平面直角坐标系xOy中,直线L1经过点A(-2,0)和点B(0,233),•直线L2的函数表达式为y=-33x+433,L1与L2相交于点P.⊙C是一个动圆,圆心C在直线L1上运动,设圆心C的横坐标是a,过点C作CM⊥x轴,垂足是点M.(1)填空:直线L1的函数表达式是________,交点P的坐标是______,∠FPB•的度数是_______.(2)当⊙C和直线L2相切时,请证明点P到直线CM的距离等于⊙C的半径R,•并写出R=32-2时a的值.(3)当⊙C和直线L2不相离时,已知⊙C的半径R=32-2,记四边形NMOB的面积为S(•其中点N是直线CM与L2的交点),S是否存在最大值?若存在,求出这个最大值及此时a的值;若不存在,请说明理由.2.(2006,浙江舟山)如图10-62①,在直角坐标系中,点A的坐标为(1,0),以OA•为边在第四象限内作等边△AOB,点C为x轴的正半轴上一动点(OC>1),连结BC,以BC为边在第四象限内作等边△CBD,直线DA交y轴于点E.(1)试问△OBC与△ABD全等吗?并证明你的结论.(2)随着点C位置的变化,点E的位置是否发生变化,若没有变化,求出点E的坐标;若有变化,请说明理由.(3)如图10-62②,以OC为直径作圆,与直线DE分别交于点F、G,设AG=m,AF=n,•用含n的代数式表示m.圆难题整理:爱我在春天1.如图,BC是圆O的直径,AD垂直BC于D,弧BA等于弧AF,BF与AD交于E,求证:(1)∠BAD=∠ACB;(2)AE=BE.证明:(1)∵BC 是圆O 的直径,∴∠BAC=90°, ∴∠BAD+∠CAD=90°, 又AD ⊥BC , ∴∠ACB+∠CAD=90°, ∴∠BAD=∠ACB ; (2)∵弧BA 等于弧AF , ∴∠ACB=∠ABF , ∵∠BAD=∠ACB , ∴∠ABF=∠BAD ,∴AE=BE .2.如图,MN 为半圆O 的直径,半径OA 垂直于MN,D 为OA 的中点,过点D 做BC 平行MN,求证 (1).四边形ABOC 为菱形 (2)角MNB=1/8角BAC (1).解:D 为OA 的中点, 所以BC 为OA 的垂直平分线, 所以OC=AC ;OB=AB 。

相关文档
最新文档