高斯-克吕格投影分带

合集下载

墨卡托投影、高斯-克吕格投影、UTM投影、兰伯特等角圆锥投影

墨卡托投影、高斯-克吕格投影、UTM投影、兰伯特等角圆锥投影

1.墨卡托(Mercator)投影1.1 墨卡托投影简介墨卡托(Mercator)投影,是一种”等角正切圆柱投影”,荷兰地图学家墨卡托(GerhardusMercator1512-1594)在1569年拟定,假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。

墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。

墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。

在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。

“海底地形图编绘规范”(GB/T17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。

基准纬线取至整度或整分。

1.2 墨卡托投影坐标系取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。

2.高斯-克吕格(Gauss-Kruger)投影和UTM(UniversalTransverseMercator)投影2.1 高斯-克吕格投影简介高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。

德国数学家、物理学家、天文学家高斯(CarlFriedrichGauss,1777一1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(JohannesKruger,1857~1928)于1912年对投影公式加以补充,故名。

墨卡托投影、高斯-克吕格投影、UTM投影及我国采用的6度分带和3度分带

墨卡托投影、高斯-克吕格投影、UTM投影及我国采用的6度分带和3度分带

一、墨卡托投影、高斯-克吕格投影、UTM投影1.墨卡托(Mercator)投影墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定,假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。

墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。

墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。

在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。

“海底地形图编绘规范”(GB/T 17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。

基准纬线取至整度或整分。

墨卡托投影坐标系取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。

2.高斯-克吕格(Gauss-Kruger)投影和UTM(Universal Transverse Mercator)投影(1)高斯-克吕格投影性质高斯-克吕格(Gauss-Kruger)投影简称“高斯投影”,又名"等角横切椭圆柱投影”,地球椭球面和平面间正形投影的一种。

高斯投影

高斯投影

高斯-克吕格投影我国现行的大于1:50万比例尺的各种地形图都采用高斯-克吕格(Gauss-Kruger )投影。

从地图投影的变形角度来看,高斯-克吕格投影属于等角投影。

该投影没有角度变形。

从几何概念来分析,高斯-克吕格投影是一种横切椭圆轴投影。

它是假想一个椭圆柱横套在地球椭球体上,使其与某一条纬线(称为轴子午线或中央子午线)相切,椭圆柱的中心轴通过地球椭球的中心,用解析法按等角条件,将椭球面上轴子午线东西两侧一定经差范围内的区域投影到椭球柱面上,再沿着过极点的母线将椭圆柱剪开,然后将椭圆柱展开成平面,即获得投影后的图形。

如图6-12所示,为高斯-克吕格投影的几何概念图。

图6-12 高斯-克吕格投影的几何概念高斯-克吕格投影的基本条件为:(1) 中央子午线的投影为直线,而且是投影的对称轴,赤道的投影为直线并与中央子午线正交;(2) 投影后没有角度变形,即经纬线互相垂直,且同一地点各方向的长度比不变;(3) 中央子午线上没有长度变形。

若以高斯-克吕格投影中的中央子午线的投影为X 轴,以赤道的投影为Y 轴,两轴的交点为原点,则就构成高斯-克吕格平面直角坐标系,如图6-12所示。

根据高斯-克吕格投影的上述三个条件,即可导出高斯-克吕格投影的大地坐标(L ,B )与高斯平面直角坐标(x ,y )之间的函数关系式(6-8)。

+++-++=)49tan 5(cos sin 24cos sin 2422342ηηB B B N L B B N L S x++-++-+=)tan tan 185(cos 120)tan 1(cos 6cos 42552233B B B N L B B N L B LN y η(6-8) 式中:x 、y −− 平面直角坐标系的纵、横坐标;L 、B −− 椭球面上大地坐标系的经、纬度;S −− 由赤道至纬度B 的经线弧长;N −−卯酉圈曲率半径;η −− η2 = e '2cos 2B ,其中e '为地球的第二偏心率。

高斯克吕格投影介绍

高斯克吕格投影介绍

高斯-克吕格投影1. 高斯-克吕格投影概念中文名称:高斯-克吕格投影英文名称:Gauss-Kruger projection概念:由高斯拟定的,后经克吕格补充、完善,即等角横切椭圆柱投影。

假想一个椭圆柱横切于地球椭球某一经线(称“中央经线”),依照等角条件,用解析法将中央经线双侧必然经差范围内地球椭球体面上的经纬网投影到椭圆柱面上,并将此椭圆柱面展为平面所取得的一种等角投影。

所属学科:地理学,地图学简单介绍:由于那个投影是由德国数学家、物理学家、天文学家高斯于19 世纪20 年代拟定,后经德国大地测量学家克吕格于1912 年对投影公式加以补充,故称为高斯-克吕格投影。

即等角横切椭圆柱投影。

假想用一个圆柱横切于地球椭球体的某一经线上,这条与圆柱面相切的经线,称中央经线。

以中央经线为投影的对称轴,将东西各3°或1°30′的两条子午线所夹经差6°或3°的带状地域按数学法那么、投影法那么投影到圆柱面上,再展开成平面,即高斯-克吕格投影,简称。

那个狭长的带状的经纬线网叫做高斯-克吕格投影带。

这种投影,将中央经线投影为直线,其长度没有变形,与球面实际长度相等,其余经线为向极点收敛的弧线,距中央经线愈远,变形愈大。

随远离中央经线,面积变形也愈大。

假设采纳分带投影的方式,可使投影边缘的变形不致过大。

我国各类大、中比例尺地形图采纳了不同的高斯-克吕格投影带。

其中大于1∶1万的地形图采纳3°带;1∶2.5万至1∶50万的地形图采纳6°带。

2. 3°、6°带高斯-克吕格投影选择投影的目的在于使所选投影的性质、特点适合于地图的用途,同时考虑地图在图廓范围内变形较小而且变形散布均匀。

海域利用的地图多采纳保角投影,因其能维持方位角度的正确。

我国的大体比例尺地形图(1:5千,1:1万,1:2.5万,1:5万,1:10万,1:25万,1:50万,1:100万)中,大于等于50万的均采纳高斯-克吕格投影(Gauss-Kruger),这是一个等角横切椭圆柱投影,又叫横轴墨卡托投影(Transverse Mercator);小于50万的地形图采纳等角正轴割园锥投影,又叫兰勃特投影(Lambert Conformal Conic);海上小于50万的地形图多用等角正轴圆柱投影,又叫墨卡托投影(Mercator)。

3°、6°带高斯-克吕格投影

3°、6°带高斯-克吕格投影

3°、6°带高斯-克吕格投影作者:yufeins 发布日期:07-01-183°、6°带高斯-克吕格投影选择投影的目的在于使所选投影的性质、特点适合于地图的用途,同时考虑地图在图廓范围内变形较小而且变形分布均匀。

海域使用的地图多采用保角投影,因其能保持方位角度的正确。

我国的基本比例尺地形图(1:5千,1:1万,1:2.5万,1:5万,1:10万,1:25万,1:50万,1:100万)中,大于等于50万的均采用高斯-克吕格投影(Gauss-Kruger),这是一个等角横切椭圆柱投影,又叫横轴墨卡托投影(Transverse Mercator);小于50万的地形图采用等角正轴割园锥投影,又叫兰勃特投影(Lambert Conformal Conic);海上小于50万的地形图多用等角正轴圆柱投影,又叫墨卡托投影(Mercator)。

一般应该采用与我国基本比例尺地形图系列一致的地图投影系统。

地图坐标系由大地基准面和地图投影确定,大地基准面是利用特定椭球体对特定地区地球表面的逼近,因此每个国家或地区均有各自的大地基准面,我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的两个大地基准面。

我国参照前苏联从1953年起采用克拉索夫斯基(Krassovsky)椭球体建立了我国的北京54坐标系,1978年采用国际大地测量协会推荐的IAG 75地球椭球体建立了我国新的大地坐标系--西安80坐标系,目前GPS定位所得出的结果都属于WGS84坐标系统,WGS84基准面采用WGS84椭球体,它是一地心坐标系,即以地心作为椭球体中心的坐标系。

因此相对同一地理位置,不同的大地基准面,它们的经纬度坐标是有差异的。

采用的3个椭球体参数如下(源自“全球定位系统测量规范 GB/T 18314-2001”):椭球体长半轴短半轴Krassovsky 63782456356863.0188IAG 7563781406356755.2882WGS 8463781376356752.3142椭球体与大地基准面之间的关系是一对多的关系,也就是基准面是在椭球体基础上建立的,但椭球体不能代表基准面,同样的椭球体能定义不同的基准面,如前苏联的Pulkovo子午线的投影为纵坐标x轴,赤道的投影为横坐标y轴,构成高斯克吕格平面直角坐标系。

高斯克里格投影

高斯克里格投影
高斯-克吕格投影与UTM投影可近似采用 Xutm=0.9996 * X高斯, Yutm=0.9996 * Y高斯进行坐标转换。
2021/4/6
7
感谢您的阅读收藏,谢谢!
2021/4/6
8
高斯克里格投影
2021/4/6
地球科学学院二班 张慧
1
简介
高斯-克吕格(Gauss-Kruger)投影
简称“高斯投影”,又名“等角
横切椭圆柱投影”,地球椭球面
和平面间正形投影的一种。德国
数学家、物理学家、天文学家高
斯(Carl FriedrichGauss,1777
Байду номын сангаас
一 1855)于十九世纪二十年代
2021/4/6
3
取中央子午线与赤道交点的投影为原点, 中央子午线的投影为纵坐标x轴,赤道的 投影为横坐标y轴,构成高斯克吕格平面 直角坐标系。
注意:并规定坐标加上500公里,以避免 出现负值
2021/4/6
4
高斯-克里格投影分带
按一定经差将地球椭球面划分成若干投 影带,这是高斯投影中限制长度变形的最 有效方法。分带时既要控制长度变形使 其不大于测图误差,又要使带数不致过 多以减少换带计算工作,据此原则将地 球椭球面沿子午线划分成经差相等的瓜 瓣形地带,以便分带投影。
2021/4/6
6
高斯-克吕格投影与UTM投影
某些国外的软件如ARC/INFO或国外仪器的配套软件如多波束的数据处理 软件等,往往不支持高斯-克吕格投影,但支持UTM投影,因此常有把 UTM投影坐标当作高斯-克吕格投影坐标提交的现象。
UTM投影全称为“通用横轴墨卡托投影”,是等角横轴割圆柱投影(高 斯-克吕格为等角横轴切圆柱投影),圆柱割地球于南纬80度、北纬84度 两条等高圈,该投影将地球划分为60个投影带,每带经差为6度,已被许 多国家作为地形图的数学基础。UTM投影与高斯投影的主要区别在南北 格网线的比例系数上,高斯-克吕格投影的中央经线投影后保持长度不变, 即比例系数为1,而UTM投影的比例系数为0.9996。UTM投影沿每一条南 北格网线比例系数为常数,在东西方向则为变数,中心格网线的比例系 数为0.9996,在南北纵行最宽部分的边缘上距离中心点大约 363公里,比 例系数为 1.00158。

墨卡托投影、高斯-克吕格投影、UTM投影

墨卡托投影、高斯-克吕格投影、UTM投影

1.墨卡托(Mercator)投影1.1 墨卡托投影简介墨卡托(Mercator)投影,是一种"等角正切圆柱投影”,荷兰地图学家墨卡托(Gerhardus Mercator 1512-1594)在1569年拟定,假设地球被围在一中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的“墨卡托投影”绘制出的地图。

墨卡托投影没有角度变形,由每一点向各方向的长度比相等,它的经纬线都是平行直线,且相交成直角,经线间隔相等,纬线间隔从标准纬线向两极逐渐增大。

墨卡托投影的地图上长度和面积变形明显,但标准纬线无变形,从标准纬线向两极变形逐渐增大,但因为它具有各个方向均等扩大的特性,保持了方向和相互位置关系的正确。

在地图上保持方向和角度的正确是墨卡托投影的优点,墨卡托投影地图常用作航海图和航空图,如果循着墨卡托投影图上两点间的直线航行,方向不变可以一直到达目的地,因此它对船舰在航行中定位、确定航向都具有有利条件,给航海者带来很大方便。

“海底地形图编绘规范”(GB/T 17834-1999,海军航保部起草)中规定1:25万及更小比例尺的海图采用墨卡托投影,其中基本比例尺海底地形图(1:5万,1:25万,1:100万)采用统一基准纬线30°,非基本比例尺图以制图区域中纬为基准纬线。

基准纬线取至整度或整分。

1.2 墨卡托投影坐标系取零子午线或自定义原点经线(L0)与赤道交点的投影为原点,零子午线或自定义原点经线的投影为纵坐标X轴,赤道的投影为横坐标Y轴,构成墨卡托平面直角坐标系。

2.高斯-克吕格(Gauss-Kruger)投影和UTM(Universal Transverse Mercator)投影2.1 高斯-克吕格投影简介高斯-克吕格(Gauss-Kruger)投影,是一种“等角横切圆柱投影”。

德国数学家、物理学家、天文学家高斯(Carl Friedrich Gauss,1777一 1855)于十九世纪二十年代拟定,后经德国大地测量学家克吕格(Johannes Kruger,1857~1928)于 1912年对投影公式加以补充,故名。

高斯-克吕格投影性质

高斯-克吕格投影性质

高斯-克吕格投影是设想用一个椭圆柱横套在地球椭球的外面,并与设定的中央经线相切。
高斯-克吕格投影分带规定:该投影是国家基本比例尺地形图的数学基础,为控制变形,采用分带投影的方法,在比例尺 1:2.5万-1:50万图上采用6°分带,对比例尺为 1:1万及大于1:1万的图采用3°分带。
6°分带法:从格林威治零度经线起,每6°分为一个投影带,全球共分为60个投影带。
高斯-克吕格投影在长度和面积上变形很小,中央经线无变形,自中央经线向投影带边缘,变形逐渐增加,变形最大之处在投影带内赤道的两端。由于其投影精度高,变形小,而且计算简便(各投影带坐标一致,只要算出一个带的数据,其他各带都能应用),因此在大比例尺地形图中应用,可以满足军事上各种需要,能在图上进行精确的量测计算。高斯投影:它是一种横轴等角切圆柱投影。它把地球视为球体,假想一个平面卷成一个横圆柱面并把它套在球体外面,使横轴圆柱的轴心通过球的中心,球面上一根子午线与横轴圆柱面相切。这样,该子午线在圆柱面上的投影为一直线,赤道面与圆柱面的交线是一条与该子午线投影垂直的直线。将横圆柱面展开成平面,由这两条正交直线就构成高斯-克吕格平面直角坐标系。为减少投影变形,高斯-克吕定将各带纵坐标轴西移500公里,即将所有y值加上500公里,坐标值前再加各带带号以18带为例,原坐标值为y=243353.5m,西移后为y=743353.5,加带号通用坐标为y=18743353.5 。
°30′起,每3°为一带,将全球划分为120个投影带,东经1°30′-4°30′,...178°30′-西经178°30′,...1°30′-东经1°30′。
东半球有60个投影带,编号1-60,各带中央经线计算公式:L0=3°n ,中央经线为3°、6°...180°。西半球有60个投影带,编号1-60,各带中央经线计算公式:L0=360°-3°n ,中央经线为西经177°、...3°、0°。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

该投影按照投影带中央子午线投影为直线且长度不变和赤道投影为直线的条件,确定函数的形式,从而得到高斯一克吕格投影公式。

投影后,除中央子午线和赤道为直线外,其他子午线均为对称于中央子午线的曲线。

设想用一个椭圆柱横切于椭球面上投影带的中央子午线,按上述投影条件,将中央子午线两侧一定经差范围内的椭球面正形投影于椭圆柱面。

将椭圆柱面沿过南北极的母线剪开展平,即为高斯投影平面。

取中央子午线与赤道交点的投影为原点,中央子午线的投影为纵坐标x轴,赤道的投影为横坐标y轴,构成高斯克吕格平面直角坐标系。

高斯-克吕格投影在长度和面积上变形很小,中央经线无变形,自中央经线向投影带边缘,变形逐渐增加,变形最大之处在投影带内赤道的两端。

由于其投影精度高,变形小,而且计算简便(各投影带坐标一致,只要算出一个带的数据,其他各带都能应用),因此在大比例尺地形图中应用,可以满足军事上各种需要,能在图上进行精确的量测计算。

高斯-克吕格投影分带按一定经差将地球椭球面划分成若干投影带,这是高斯投影中限制长度变形的最有效方法。

分带时既要控制长度变形使其不大于测图误差,又要使带数不致过多以减少换带计算工作,据此原则将地球椭球面沿子午线划分成经差相等的瓜瓣形地带,以便分带投影。

通常按经差6度或3度分为六度带或三度带。

六度带自0度子午线起每隔经差6度自西向东分带,带号依次编为第 1、2…60带。

三度带是在六度带的基础上分成的,它的中央子午线与六度带的中央子午线和分带子午线重合,即自 1.5度子午线起每隔经差3度自西向东分带,带号依次编为三度带第 1、2…120带。

我国的经度范围西起73°东至135°,可分成六度带十一个,各带中央经线依次为75°、81°、87°、……、117°、123°、129°、135°,或三度带二十二个。

六度带可用于中小比例尺(如 1:250000)测图,三度带可用于大比例尺(如 1:10000)测图,城建坐标多采用三度带的高斯投影。

编辑本段高斯-克吕格投影坐标高斯- 克吕格投影是按分带方法各自进行投影,故各带坐标成独立系统。

以中央经线投影为纵轴(x), 赤道投影为横轴(y),两轴交点即为各带的坐标原点。

纵坐标以赤道为零起算,赤道以北为正,以南为负。

我国位于北半球,纵坐标均为正值。

横坐标如以中央经线为零起算,中央经线以东为正,以西为负,横坐标出现负值,使用不便,故规定将坐标纵轴西移500公里当作起始轴,凡是带内的横坐标值均加 500公里。

由于高斯-克吕格投影每一个投影带的坐标都是对本带坐标原点的相对值,所以各带的坐标完全相同,为了区别某一坐标系统属于哪一带,在横轴坐标前加上带号,如(4231898m,21655933m),其中21即为带号高斯-克吕格投影科技名词定义中文名称:高斯-克吕格投影英文名称:Gauss-Kr黦er projection定义:由高斯拟定的,后经克吕格补充、完善,即等角横切椭圆柱投影。

设想一个椭圆柱横切于地球椭球某一经线(称“中央经线”),根据等角条件,用解析法将中央经线两侧一定经差范围内地球椭球体面上的经纬网投影到椭圆柱面上,并将此椭圆柱面展为平面所得到的一种等角投影。

应用学科:地理学(一级学科);地图学(二级学科)本内容由全国科学技术名词审定委员会审定公布由于这个投影是由德国数学家、物理学家、天文学家高斯于19 世纪20 年代拟定,后经德国大地测量学家克吕格于1912 年对投影公式加以补充,故称为高斯-克吕格投影。

即等角横切椭圆柱投影。

假想用一个圆柱横切于地球椭球体的某一经线上,这条与圆柱面相切的经线,称中央经线。

以中央经线为投影的对称轴,将东西各3°或1°30′的两条子午线所夹经差6°或3°的带状地区按数学法则、投影法则投影到圆柱面上,再展开成平面,即高斯-克吕格投影,简称高斯投影。

这个狭长的带状的经纬线网叫做高斯-克吕格投影带。

这种投影,将中央经线投影为直线,其长度没有变形,与球面实际长度相等,其余经线为向极点收敛的弧线,距中央经线愈远,变形愈大。

赤道线投影后是直线,但有长度变形。

除赤道外的其余纬线,投影后为凸向赤道的曲线,并以赤道为对称轴。

经线和纬线投影后仍然保持正交。

所有长度变形的线段,其长度变形比均大于1. 随远离中央经线,面积变形也愈大。

若采用分带投影的方法,可使投影边缘的变形不致过大。

我国各种大、中比例尺地形图采用了不同的高斯-克吕格投影带。

其中大于1∶1万的地形图采用3°带;1∶2.5万至1∶50万的地形图采用6°带。

高斯投影概述投影与变形地图投影:就是将椭球面各元素(包括坐标、方向和长度)按一定的数学法则投影到平面上。

研究这个问题的专门学科叫地图投影学。

可用下面两个方程式(坐标投影公式)表示:x=F1(L,B)y= F2(L,B)式中L,B是椭球面上某点的大地坐标,而X,Y是该点投影后的平面直角坐标。

投影变形:椭球面是一个凸起的、不可展平的曲面。

将这个曲面上的元素(距离、角度、图形)投影到平面上,就会和原来的距离、角度、图形呈现差异,这一差异称为投影变形。

投影变形的形式:角度变形、长度变形和面积变形。

地图投影的方式:(1)等角投影——投影前后的角度相等,但长度和面积有变形;(2)等距投影——投影前后的长度相等,但角度和面积有变形;(3)等积投影——投影前后的面积相等,但角度和长度有变形。

控制测量对地图投影的要求(1)应当采用等角投影(又称为正形投影)采用正形投影时,在三角测量中大量的角度观测元素在投影前后保持不变;在测制的地图时,采用等角投影可以保证在有限的范围内使得地图上图形同椭球上原形保持相似。

(2)在采用的正形投影中,要求长度和面积变形不大,并能够应用简单公式计算由于这些变形而带来的改正数。

(3)能按分带投影高斯投影的基本概念(1)基本概念:如图1所示,假想有一个椭圆柱面横套在地球椭球体外面,并与某一条子午线(此子午线称为中央子午线或轴子午线)相切,椭圆柱的中心轴通过椭球体中心,然后用一定投影方法,将中央子午线两侧各一定经差范围内的地区投影到椭圆柱面上,再将此柱面展开即成为投影面,如图2所示,此投影为高斯投影。

高斯投影是正形投影的一种。

图1 图2(2)分带投影nl 高斯投影6带:自0子午线起每隔经差6自西向东分带,依次编号1,2,3,…。

我国6带中央子午线的经度,由75起每隔6而至135,共计11带(13~23带),带号用N表示,中央子午线的经度用Lo表示,它们的关系是,Lo=6n-3如图所示。

l 高斯投影3带:它的中央子午线一部分同6带中央子午线重合,一部分同6带的分界子午线重合,如用n表示3带的带号,表示带中央子午线经度,它们的关系图8-4所示。

我国带共计22带(24~45带)。

(3)高斯平面直角坐标系在投影面上,中央子午线和赤道的投影都是直线,并且以中央子午线和赤道的交点0作为坐标原点,以中央子午线的投影为纵坐标x轴,以赤道的投影为横坐标y轴。

在我国x坐标都是正的,y坐标的最大值(在赤道上)约为330km。

为了避免出现负的横坐标,可在横坐标上加上500 OOOm。

此外还应在坐标前面再冠以带号。

这种坐标称为国家统一坐标。

例如,有一点y=19 123 456.789m,该点位在19带内,其相对于中央子午线而言的横坐标则是:首先去掉带号,再减去500000m,最后得=-376 543.211m。

(4)高斯平面投影的特点①中央子午线无变形;②无角度变形,图形保持相似;③离中央子午线越远,变形越大。

椭球面三角系化算到高斯投影面将椭球面三角系归算到高斯投影面的主要内容是:(1)将起始点p的大地坐标(L,B)归算为高斯平面直角坐标(X,Y);为了检核还应进行反算,亦即根据X,Y反算L,B。

(2)通过计算该点的子午线收敛角γ及方向δ改正,将椭球面上起算边大地方位角A归算到高斯平面上相应边PK的坐标方位角α。

(3)通过计算各方向的曲率改正和方向改正,将椭球面上各三角形内角归算到高斯平面上的由相应直线组成的三角形内角。

(4)通过计算距离改正Δs,将椭球面上起算边PK的长度S归算到高斯平面上的直线长度s。

(5)当控制网跨越两个相邻投影带,需要进行平面坐标的邻带换算。

高斯平面直角坐标求助编辑百科名片为了方便工程的规划、设计与施工,我们需要把测区投影到平面上来,使测量计算和绘图更加方便。

而地理坐标是球面坐标,当测区范围较大时,要建平面坐标系就不能乎略地球曲率的影响。

把地球上的点位化算到平面上,称为地图投影。

地图投影的方法有很多,目前我国采用的是高斯——克吕格投影(又称高斯正形投影),简称高斯投影。

它是由德国数学家高斯提出的,由克吕格改进的一种分带投影方法。

它成功解决了将椭球面转换为平面的问题。

目录投影方法特点编辑本段投影方法高斯投影的方法是将地球按经线划分为带,称为投影带。

投影是从首子午线开始的,分6°带和3°两种。

每隔6°划分一带的叫6°带,每隔3°划分一带的叫3°带。

我国领土位于东经72°∽136°之间,共包括了11个6°带,即13∽23带;22个3°投影带即24∽45带。

设想一个平面卷成横圆柱套在地球外,如图1-5(a)所示。

通过高斯投影,将中央子午线的投影作为纵坐标轴,用x表示,将赤道的投影作横坐标轴,用y表示,两轴的交点作为坐标原点,由此构成的平面直角坐标系称为高斯平面直角坐标系,如图1-5(b) 所示。

每一个投影带都有一个独立的高斯平面直角坐标系,区分各带坐标系则利用相应投影带的带号。

在每一个投影带内,y坐标值都有正有负,这对于计算和使用都不方便,为了使y坐标都为正值,故将纵坐标轴向西平移500㎞,并在y坐标前加上投影带的带号。

6°带投影是从英国格林尼治子午线开始,自西向东,每隔经差6°分为一带,将地球分为60个带,其编号分别为1,2,3,…60。

任意带的中央子午线经度为Lo,它与投影带号N的关系如下所示:Lo=(6N-3°)式中:N———6°带的带号离中央子午线越远,长度变形越大,在要求较小的投影变形时,可采用3°投影带。

3°带是在6°带的基础上划分的,如图所示。

每3°为一带,从东经1°30′开始,共120带,其中央子午线在奇数带时与6°带的中央子午线重合,每带的中央子午线可用下面的工式计算:Lo=3N′式中:N′——3°带的带号。

为了避免y坐标出现负值,3°带的坐标原点同6°带一样,向西移动500㎞,并在y坐标前加3°带的带号。

相关文档
最新文档