中考数学试题分类圆的有关性质
江苏中考数学历年真题分类 圆的性质及变换

江苏中考数学历年真题分类圆的性质及变换一、单选题1.(2021·常州)如图,BC是⊙O的直径,AB是⊙O的弦.若∠AOC=60°,则∠OAB的度数是()A.20°B.25°C.30°D.35°【答案】C【解析】【解答】解:∵∠AOC=60°,∴∠AOB=180°-60°=120°,∵OA=OB,∴∠OAB=∠OBA=(180°-120°)÷2=30°,故答案为:C.【分析】由圆周角定理可得∠AOB的度数,然后根据等腰三角形的性质以及三角形内角和定理求解即可.2.(2021·镇江)如图,∠BAC=36°,点O在边AB上,∠O与边AC相切于点D,交边AB于点E,F,连接FD,则∠AFD等于()A.27°B.29°C.35°D.37°【答案】A【解析】【解答】解:连接OD,∵∠O与边AC相切于点D,∴∠ADO=90°,∵∠BAC=36°,∴∠AOD=90°﹣36°=54°,∴∠AFD=12∠AOD=12×54°=27,故答案为:A.【分析】连接OD,根据切线的性质得出∠ADO=90°,然后根据直角三角形的性质求出∠AOD,最后利用三角形的外角性质求∠AFD即可.3.(2021·镇江)设圆锥的底面圆半径为r,圆锥的母线长为l,满足2r+l=6,这样的圆锥的侧面积()A.有最大值94πB.有最小值94πC.有最大值92πD.有最小值92π【答案】C【解析】【解答】解:∵2r+l=6,∴l=6﹣2r,∴圆锥的侧面积S侧=πrl=πr(6﹣2r)=﹣2π(r2﹣3r)=﹣2π[(r﹣32)2﹣94]=﹣2π(r﹣32)2+ 92π,∴当r=32时,S侧有最大值92π.故答案为:C.【分析】先把l用含r的代数式表示,代入圆锥的侧面积公式,得出一个关于S侧和r的二次函数关系式,再利用二次函数的性质求圆锥侧面积的最值即可.4.如图,AB是⊙O的弦,点C在过点B的切线上,OC⊥OA,OC交AB于点P.若∠BPC=70°,则∠ABC的度数等于()A.75°B.70°C.65°D.60°【答案】B【解析】【解答】解:∵∠BPC=70°,∴∠APO=70°,∵OC⊥OA,∴∠AOP=90°,∴∠A=20°,又∵OA=OB,∴∠ABO=20°,又∵点C在过点B的切线上,∴∠OBC=90°,∴∠ABC=∠OBC−∠ABO=90°−20°=70°,故答案为:B.【分析】根据题意可求出∠APO、∠A的度数,进一步可得∠ABO度数,从而推出答案. 5.(2020·扬州)如图,由边长为1的小正方形构成的网格中,点A,B,C都在格点上,以AB为直径的圆经过点C、D,则sin∠ADC的值为()A.2√1313B.3√1313C.23D.32【答案】A【解析】【解答】∵∠ADC和∠ABC所对的弧长都是AC⌢,∴根据圆周角定理知,∠ABC=∠ADC,∴在Rt∠ACB中,AB= √AC2+BC2=√22+32=√13根据锐角三角函数的定义知,sin∠ABC=ACAB=2√13=2√1313,∴sin∠ADC= 2√1313,故答案为:A.【分析】首先根据圆周角定理可知,∠ABC=∠ADC,在Rt∠ACB中,根据锐角三角函数的定义求出∠ABC的正弦值.6.(2020·南京)如图,在平面直角坐标系中,点P在第一象限,∠P与x轴、y轴都相切,且经过矩形AOBC的顶点C,与BC相交于点D,若∠P的半径为5,点A的坐标是(0,8),则点D的坐标是()A.(9,2)B.(9,3)C.(10,2)D.(10,3)【答案】A【解析】【解答】设切点分别为G,E,连接PG,PE,PC,PD,并延长EP交BC与F,则PG=PE=PC=5,四边形OBFE是矩形.∵OA=8,∴CF=8-5=3,∴PF=4,∴OB=EF=5+4=9.∵PF过圆心,∴DF=CF=3,∴BD=8-3-3=2,∴D(9,2).故答案为:A.【分析】在Rt∠CPF中根据勾股定理求出PF的长,再根据垂径定理求出DF的长,进而求出OB,BD的长,从而求出点D的坐标.7.(2020·淮安)如图,点A,B,C在圆O上,∠ACB=54∘,则∠ABO的度数是()A.54∘B.27∘C.36∘D.108∘【答案】C【解析】【解答】解:∵在圆O中,∠ACB=54º,∴∠AOB=2∠ACB=108º,∵OA=OB,∴∠OAB=∠OBA= 180∘−108∘2=36º,故答案为:C.【分析】先由圆周角定理得到∠AOB,再利用等腰三角形的性质求解即可.8.(2020·常州)如图,AB是⊙O的弦,点C是优弧AB上的动点(C不与A、B重合),CH⊥AB,垂足为H,点M是BC的中点.若⊙O的半径是3,则MH长的最大值是()A.3B.4C.5D.6【答案】A【解析】【解答】解:∵CH⊥AB∴∠BHC=90°∵在Rt∠BHC中,点M是BC的中点∴MH= 12BC∵BC为⊙O的弦∴当BC为直径时,MH最大∵⊙O的半径是3∴MH最大为3.故答案为:A.【分析】根据直角三角形斜边上的中线等于斜边的一半可知MH= 12BC,当BC为直径时长度最大,即可求解.9.(2019·镇江)如图,四边形ABCD是半圆的内接四边形,AB是直径,DC⌢=CB⌢.若∠C= 110°,则∠ABC的度数等于()A.55°B.60°C.65°D.70°【答案】A【解析】【解答】解:连接AC,∵四边形ABCD是半圆的内接四边形,∴∠DAB=180°-∠C=70°,∵DC⌢=CB⌢,∴∠CAB= 12∠DAB=35°,∵AB是直径,∴∠ACB=90°,∴∠ABC=90°-∠CAB=55°。
【中考必备】最新中考数学试题分类解析 专题47 圆的有关性质

2012年全国中考数学试题分类解析汇编(159套63专题)专题47:圆的有关性质一、选择题1. (2012重庆市4分)已知:如图,OA ,OB 是⊙O 的两条半径,且OA ⊥OB ,点C 在⊙O 上,则∠ACB 的度数为【 】A .45°B .35°C .25°D .20° 【答案】A 。
【考点】圆周角定理。
【分析】∵OA ⊥OB ,∴∠AOB =90°。
∴∠ACB =45°。
故选A 。
2. (2012海南省3分)如图,点A 、B 、O 是正方形网格上的三个格点,⊙O 的半径为OA ,点P 是优弧AmB 上的一点,则tan APB ∠的值是【 】A .1 BCD【答案】A 。
【考点】圆周角定理,勾股定理,锐角三角函数定义。
【分析】如图,连接AO 并延长交⊙O 于点P 1,连接AB ,BP 1。
设网格的边长为a 。
则由直径所对圆周角是直角的性质,得∠ABP 1=900。
根据勾股定理,得AB =BP 1。
根据正切函数定义,得11AB tan AP B=BP ∠。
根据同弧所对圆周角相等的性质,得∠ABP =∠ABP 。
∴1tan APB=tan AP B=1∠∠。
故选A 。
P 13. (2012陕西省3分)如图,在半径为5的圆O中,AB,CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为【】4A.3 B.4 C.D.2【答案】C。
【考点】垂径定理,全等三角形的判定和性质,勾股定理。
【分析】作OM⊥AB于M,ON⊥CD于N,连接OP,OB,OD,∵AB=CD=8,∴由垂径定理和全等三角形的性质得,AM=BM=CN=DN=4,OM=ON。
==又∵OB=5,∴由勾股定理得:OM3∵弦AB、CD互相垂直,∴∠DPB=90°。
∵OM⊥AB于M,ON⊥CD于N,∴∠OMP=∠ONP=90°。
∴四边形MONP是正方形。
中考数学圆专题

圆专题一、圆的有关性质1、下列命题中,①直径是弦,但弦不一定是直径;②半圆是弧,但弧不一定是半圆;③半径相等的两个圆是等圆;④一条弦把圆分成两段弧中,至少有一段是优弧;⑤长度相等的两条弧是等弧。
其中正确的有( )A.3个B.2个C.1个D.0个2、下列说法中,正确的是( )A .等弦所对的弧相等B .等弧所对的弦相等C .圆心角相等,所对的弦相等D .弦相等,所对的圆心角相等3、如图所示,在⊙O 中,A ,C ,D ,B 是⊙O 上四点,OC ,OD 交AB 于点E ,F ,且AE =FB ,下列结论:①OE =OF ;②AC =CD =DB ;③CD ∥AB ;④AC ︵=BD ︵.其中正确的有( )A .4个B .3个C .2个D .1个4.两个正方形彼此相邻,且大正方形ABCD 的A 、D 两点在半圆O 上,小正方形BEFG 顶点F 在半圆O 上;B 、E 两点在半圆O 的直径上,点G 在大正方形边AB 上,若小正方形的边长为4cm ,求该圆的半径.5.如图,点A 、B 、C 在⊙O 上,∠ABO=32°,∠ACO=38°,则∠BOC 等于( )A .60°B .70°C .120°D .140°6. 如图,⊙O 中,∠CBO=450,∠CAO=150,则∠AOB 的度数是( )A.750B.600C.450D.300ABC O7.如图,AB是⊙O的直径,∠AOC=110°,则∠D=( )A.25°B.35°C.55°D.70°8.如图,AB是半圆的直径,点D是AC的中点,∠ABC=50°,则∠DAB等于()A.55°B.60°C.65°D.70°9.如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水的最大深度为2cm,则该输水管的半径为()A.3cm B.4cm C.5cm D.6cm10、工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10mm,测得钢珠顶端离零件表面的距离为8mm,如图所示,则这个小圆孔的宽口AB的长度为mm.11、如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为cm.12、下列命题中正确的有()①垂直于弦的直径平分这条弦;②与弦垂直的直线必过圆心;③平分一条弧的直线必平分这条弧所对的弦;④平分弦的直径垂直于弦,并且平分这条弦所对的两条弧.A. 1 个B. 2 个C. 3 个D. 4 个13、下列命题中正确的有()①垂直于弦的直径平分这条弦;②与弦垂直的直线必过圆心;③平分一条弧的直线必平分这条弧所对的弦;④平分弦的直径垂直于弦,并且平分这条弦所对的两条弧.A. 1 个B. 2 个C. 3 个D. 4 个14.如图,CD是⊙O的弦,直径AB过CD的中点,若∠BOC=40°,则∠ABD的度数为()A.80°B.70°C.60°D.50°15.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC 的长为()16.在一个圆中,给出下列命题,其中正确的是()A. 若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直B. 若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点C. 若两条弦所在直线不平行,则这两条弦可能在圆内有公共点D. 若两条弦平行,则这两条弦之间的距离一定小于圆的半径17.如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为()222A.135°B.122.5°C.115.5°D.112.5°18.已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB=8cm ,则AC 的长为( )A.2√5cmB.4√5cmC.2√5cm 或4√5cmD.2√3cm4√3cm19.如图,正方形ABCD 内接于⊙O ,AD=4,弦AE 平分BC 交BC 于P ,连接CE ,则CE 的长为( )A.2B.2√5C.212D.45√520.如图,半圆O 的直径AB=10,弦AC=6cm ,AD 平分∠BAC ,则AD 的长为( )A.4√5cmB.3√5cmC. 5√5cmD.4cm21.如图,一把直尺,60°的直角三角板和光盘如图摆放,A 为60°角与直尺交点,AB=3,则光盘的直径是( )二、与圆有关的位置关系A .3B .C .6D .1.若⊙O1和⊙O2的半径分别为3cm 和4cm ,圆心距d=7cm,则这两圆的位置关系是( )A.相交B.内切C.外切D.外离2.已知⊙O1的半径为1cm ,⊙O2的半径为3cm ,两圆的圆心距O1O2为2cm ,则两圆的位置关系是( )A.外离B.外切C.相交D.内切3.如图,已知⊙O1的半径为1cm ,⊙O2的半径为2cm ,将⊙O1,⊙O2放置在直线l 上,如果⊙O1在直线l 上任意滚动,那么圆心距O1O2的长不可能是( )A.6cm B.3cm C.2cmD.0.5cm5.已知⊙O1 与⊙O2相交,它们的半径分别是4、7,则圆心距O1O2可能是( )A. 2B. 3C. 6D. 126.已知⊙O1与⊙O2相切,两圆半径分别为3和5,则圆心距O1O2的值是 .三、圆内接正多边形1.一个正多边形的每个外角都等于36°,那么它是( )A . 正六边形 B.正八边形 C.正十边形 D.正十二边形2.对于以下说法:①各角相等的多边形是正多边形;②各边相等的三角形是正三角形;③各角相等的圆内接多边形是正多边形;④各顶点等分外接圆的多边形是正多边形.你认为正确的命题有( ).A. 1 个B. 2 个C. 3 个D. 4 个3.下列说法中,正确的是( )A. 各边都相等的多边形是正多边形B. 正多边形既是轴对称图形又是中心对称图形C. 正多边形都有内切圆和外接圆,且两圆为同心圆D. 各角相等的圆内接多边形为正多边形4.如果一个四边形的外接圆与内切圆是同心圆,则这个四边形一定是( )A. 矩形B. 菱形C. 正方形D. 等腰梯形如图4,⊙1O 、⊙2O 相交于A 、B 两点,两圆的半径分别为6㎝和8㎝,两圆的连心线12O O 的长为10㎝,则弦AB 的长为 ( ) A. 4.8㎝ B. 9.6㎝ C.5.6㎝ D. 9.4㎝5.圆内接正五边形ABCDE 中,对角线AC 和BD 相交于点P ,则∠APB 的度数是( )A .36°B .60°C .72°D .108°6.一个正五边形要绕它的中心至少旋转______度,才能与原来的图形重合.7.正多边形的中心角是036,那么这个正多边形的边数是( ).A .10B .8C .6D .58.有一边长为4的正n 边形,它的一个内角为120°,则其外接圆的半径为( )A .34B .4C .32D .29.如果一个正三角形和一个正六边形面积相等,那么它们边长的比为( )A .6:1B :1C .3:1D :110.同圆的内接正方形和外切正方形的周长之比为( )A 1B .2∶1C .1∶2D .111.同圆的内接正三角形与正六边形的边长之比为( )A .1:2B .1:1C 1D .2:112.正六边形内切圆面积与外接圆面积之比为( ).A B .12 C .14 D .3413.圆外切正方形和内接正方形的相似比似( )A.1:2B.2:1C.√2:1D.1: √214.若正方形的边长为6,则其外接圆半径与内接圆半径的大小分别为( )A. 6, 3√2B. 3√2 ,3C. 6,3D. 6√2 ,3√215.在半径为R 的圆中,它的内接正三角形、内接正方形、内接正六边形的边长之比为() A. 1:√2:√3 B. √3: √2:1 C. 1:2:3 D. 3:2:1四、扇形的弧长及面积的计算1.在半径为3的圆中,150°的圆心角所对的弧长是( ).A .B .C .D .2.如图,以AB 为直径的⊙O 与弦CD 相交于点E ,且AC=2,AE=,CE=1.则弧BD 的长是()A .π93B .π33C .π932D .π332 3.已知弧的长为3πcm ,弧的半径为6cm ,则圆弧的度数为( )A .45°B .90°C .60°D .180°4.如图,把直角△ABC 的斜边AC 放在定直线上,按顺时针的方向在直线上转动两次,使它转到△A 2B 2C 2的位置,设AB=√3,BC=1,则顶点A 运动到点A 2的位置时,点A 所经过的路线为( ) A . B . C . D .5.如图,在边长为a 的正方形ABCD 中,分别以B ,D 分圆心,以a 为半径在正方形内部画弧,形成了叶子形图案(阴影部分),则这个叶片形图案的周长为 .6.如图,OA=OB=6cm ,线段OB 从与OA 重合的位置开始沿逆时针方向旋转120°,在旋转过程中,设AB 的中点为P (当OA 与OB 重合时,记点P 与点A 重合),则点P 运动的路径长为( )A .6cmB .4πcmC .2πcmD .3cm7.如图,三角板ABC 中,∠ACB=90°,∠B=30°,BC=6.三角板绕直角顶点C 逆时针旋转,当点A 的对应点A′落在AB 边的起始位置上时即停止转动,则点B 转过的路径长为 (结果保留π).1.已知扇形的半径为6,圆心角为60︒,则这个扇形的面积为( )A .9πB .6πC .3πD .π2.如果扇形的圆心角为150°,它的面积为240π cm 2,那么扇形的半径为( )A .48cmB .24cmC .12cmD .6cm3.已知扇形的面积为2π,半径为3,则该扇形的弧长为 (结果保留π).4.如图,AB 是半圆O 的直径,CD 是半圆的三等分点,AB=12,则阴影部分的面积是( )A .4πB .6πC .12πD .12π-5.如图,AB 是⊙O 的直径,点D 、E 是半圆的三等分点,AE ,BD 的延长线交于点C 。
中考数学专题23圆的有关性质(全国通用解析版)

圆的有关性质一.选择题(共17小题)1.(2022•包头)如图,AB,CD是⊙O的两条直径,E是劣弧的中点,连接BC,DE.若∠ABC=22°,则∠CDE的度数为()A.22°B.32°C.34°D.44°2.(2022•宜昌)如图,四边形ABCD内接于⊙O,连接OB,OD,BD,若∠C =110°,则∠OBD=()A.15°B.20°C.25°D.30°3.(2022•鄂州)工人师傅为检测该厂生产的一种铁球的大小是否符合要求,设计了一个如图(1)所示的工件槽,其两个底角均为90°,将形状规则的铁球放入槽内时,若同时具有图(1)所示的A、B、E三个接触点,该球的大小就符合要求.图(2)是过球心及A、B、E三点的截面示意图,已知⊙O的直径就是铁球的直径,AB是⊙O的弦,CD切⊙O于点E,AC⊥CD、BD⊥CD,若CD=16cm,AC=BD=4cm,则这种铁球的直径为()A.10cm B.15cm C.20cm D.24cm 4.(2022•台湾)如图,AB为圆O的一弦,且C点在AB上.若AC=6,BC=2,AB的弦心距为3,则OC的长度为何?()A.3B.4C.D.5.(2022•山西)如图,△ABC内接于⊙O,AD是⊙O的直径,若∠B=20°,则∠CAD的度数是()A.60°B.65°C.70°D.75°6.(2022•广元)如图,AB是⊙O的直径,C、D是⊙O上的两点,若∠CAB=65°,则∠ADC的度数为()A.25°B.35°C.45°D.65°7.(2022•嘉兴)如图,在⊙O中,∠BOC=130°,点A在上,则∠BAC的度数为()A.55°B.65°C.75°D.130°8.(2022•陕西)如图,△ABC内接于⊙O,∠C=46°,连接OA,则∠OAB=()A.44°B.45°C.54°D.67°9.(2022•株洲)如图所示,等边△ABC的顶点A在⊙O上,边AB、AC与⊙O 分别交于点D、E,点F是劣弧上一点,且与D、E不重合,连接DF、EF,则∠DFE的度数为()A.115°B.118°C.120°D.125°10.(2022•泰安)如图,AB是⊙O的直径,∠ACD=∠CAB,AD=2,AC=4,则⊙O的半径为()A.2B.3C.2D.11.(2022•温州)如图,AB,AC是⊙O的两条弦,OD⊥AB于点D,OE⊥AC 于点E,连结OB,OC.若∠DOE=130°,则∠BOC的度数为()A.95°B.100°C.105°D.130°12.(2022•滨州)如图,在⊙O中,弦AB、CD相交于点P.若∠A=48°,∠APD=80°,则∠B的大小为()A.32°B.42°C.52°D.62°13.(2022•泸州)如图,AB是⊙O的直径,OD垂直于弦AC于点D,DO的延长线交⊙O于点E.若AC=4,DE=4,则BC的长是()A.1B.C.2D.4 14.(2022•安徽)已知⊙O的半径为7,AB是⊙O的弦,点P在弦AB上.若P A=4,PB=6,则OP=()A.B.4C.D.5 15.(2022•自贡)如图,四边形ABCD内接于⊙O,AB是⊙O的直径,∠ABD =20°,则∠BCD的度数是()A.90°B.100°C.110°D.120°16.(2022•南充)如图,AB为⊙O的直径,弦CD⊥AB于点E,OF⊥BC于点F,∠BOF=65°,则∠AOD为()A.70°B.65°C.50°D.45°17.(2022•云南)如图,已知AB是⊙O的直径,CD是⊙O的弦,AB⊥CD,垂足为E.若AB=26,CD=24,则∠OCE的余弦值为()A.B.C.D.二.填空题(共14小题)18.(2022•内江)如图,在⊙O中,∠ABC=50°,则∠AOC等于.19.(2022•吉林)如图,在半径为1的⊙O上顺次取点A,B,C,D,E,连接AB,AE,OB,OC,OD,OE.若∠BAE=65°,∠COD=70°,则与的长度之和为(结果保留π).20.(2022•雅安)如图,∠DCE是⊙O内接四边形ABCD的一个外角,若∠DCE =72°,那么∠BOD的度数为.21.(2022•长沙)如图,A、B、C是⊙O上的点,OC⊥AB,垂足为点D,且D 为OC的中点,若OA=7,则BC的长为.22.(2022•永州)如图,AB是⊙O的直径,点C、D在⊙O上,∠ADC=30°,则∠BOC=度.23.(2022•随州)如图,点A,B,C在⊙O上,若∠ABC=60°,则∠AOC的度数为.24.(2022•苏州)如图,AB是⊙O的直径,弦CD交AB于点E,连接AC,AD.若∠BAC=28°,则∠D=°.25.(2022•荆州)如图,将一个球放置在圆柱形玻璃瓶上,测得瓶高AB=20cm,底面直径BC=12cm,球的最高点到瓶底面的距离为32cm,则球的半径为cm(玻璃瓶厚度忽略不计).26.(2022•武威)如图,⊙O是四边形ABCD的外接圆,若∠ABC=110°,则∠ADC=°.27.(2022•湖州)如图,已知AB是⊙O的弦,∠AOB=120°,OC⊥AB,垂足为C,OC的延长线交⊙O于点D.若∠APD是所对的圆周角,则∠APD 的度数是.28.(2022•黑龙江)如图,在⊙O中,弦AB垂直平分半径OC,垂足为D,若⊙O的半径为2,则弦AB的长为.29.(2022•自贡)一块圆形玻璃镜面碎成了几块,其中一块如图所示,测得弦AB长20厘米,弓形高CD为2厘米,则镜面半径为厘米.30.(2021•宁夏)如图,四边形ABCD是⊙O的内接四边形,∠ADC=150°,弦AC=2,则⊙O的半径等于.31.(2022•遵义)数学小组研究如下问题:遵义市某地的纬度约为北纬28°,求北纬28°纬线的长度.小组成员查阅相关资料,得到如下信息:信息一:如图1,在地球仪上,与赤道平行的圆圈叫做纬线;信息二:如图2,赤道半径OA约为6400千米,弦BC∥OA,以BC为直径的圆的周长就是北纬28°纬线的长度;(参考数据:π≈3,sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)根据以上信息,北纬28°纬线的长度约为千米.三.解答题(共7小题)32.(2022•宜昌)石拱桥是我国古代人民勤劳和智慧的结晶(如图1),隋代建造的赵州桥距今约有1400年历史,是我国古代石拱桥的代表.如图2是根据某石拱桥的实物图画出的几何图形,桥的主桥拱是圆弧形,表示为.桥的跨度(弧所对的弦长)AB=26m,设所在圆的圆心为O,半径OC⊥AB,垂足为D.拱高(弧的中点到弦的距离)CD=5m.连接OB.(1)直接判断AD与BD的数量关系;(2)求这座石拱桥主桥拱的半径(精确到1m).33.(2022•武汉)如图,以AB为直径的⊙O经过△ABC的顶点C,AE,BE分别平分∠BAC和∠ABC,AE的延长线交⊙O于点D,连接BD.(1)判断△BDE的形状,并证明你的结论;(2)若AB=10,BE=2,求BC的长.34.(2022•怀化)如图,点A,B,C,D在⊙O上,=.求证:(1)AC=BD;(2)△ABE∽△DCE.35.(2022•娄底)如图,以BC为边分别作菱形BCDE和菱形BCFG(点C,D,F共线),动点A在以BC为直径且处于菱形BCFG内的圆弧上,连接EF交BC于点O.设∠G=θ.(1)求证:无论θ为何值,EF与BC相互平分;并请直接写出使EF⊥BC成立的θ值.(2)当θ=90°时,试给出tan∠ABC的值,使得EF垂直平分AC,请说明理由.36.(2022•威海)如图,四边形ABCD是⊙O的内接四边形,连接AC,BD,延长CD至点E.(1)若AB=AC,求证:∠ADB=∠ADE;(2)若BC=3,⊙O的半径为2,求sin∠BAC.37.(2022•湖北)如图,正方形ABCD内接于⊙O,点E为AB的中点,连接CE 交BD于点F,延长CE交⊙O于点G,连接BG.(1)求证:FB2=FE•FG;(2)若AB=6,求FB和EG的长.38.(2022•广东)如图,四边形ABCD内接于⊙O,AC为⊙O的直径,∠ADB =∠CDB.(1)试判断△ABC的形状,并给出证明;(2)若AB=,AD=1,求CD的长度.。
2020届中考数学 几何专题:与圆有关的性质(含答案)

2020届中考数学 几何专题:与圆有关的性质(含答案)一、选择题1.如图,⊙O 是△ABC 的外接圆,已知∠B =60°,则∠CAO 的度数是( )A .15°B .30°C .45°D .60°2.如图,⊙O 的半径为1,AB 是⊙O 的一条弦,且AB=,则弦AB 所对圆周角的度数为()A.30°B.60° C.30°或150° D.60°或120°3.如图,⊙P 内含于⊙O ,⊙O 的弦AB 切⊙P 于点C ,且AB ∥OP .若阴影部分的面积为,则弦AB 的长为( )A .3B .4C .6D .94.如图,△ABC 内接于⊙O ,若∠OAB =28°,则∠C 的大小为( )A .28°B .56°C .60°D .62°5.如图,弦CD 垂直于⊙O 的直径AB ,垂足为H ,且CD =BD ,则AB 的长为( ) A .2 B .3 C .4 D .53 96.如图,∠AOB 是⊙0的圆心角,∠AOB =80°,则弧AB 所对圆周角∠ACB 的度数是( )A .40°B .45°C .50°D .80°7.如图,已知⊙O 的两条弦AC ,BD 相交于点E ,∠A =70o ,∠C =50o,那么sin ∠AEB 的值为( )A. B. C. D.8.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米, 拱的半径为13米,则拱高为( ) A .5米 B .8米 C .7米 D .5米9.如图,△ABC 内接于⊙O ,连结OA 、OB ,若∠ABO=25°,则∠C 的度数为( )A .55°B .60°C .65°D .70°10.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是( ).213322233A .0.4米B .0.5米C .0.8米D .1米11.如图,AB 是半圆O 的直径,点P 从点O 出发,沿的路径运动一周.设为,运动时间为,则下列图形能大致地刻画与之间关系的是( )12.如图,AB 是⊙O 的弦,OD ⊥AB 于D 交⊙O 于E ,则下列说法错误..的是( )A .AD =BDB .∠ACB =∠AOEC .D .OD =DE13.如图,⊙O 的直径AB 垂直弦CD 于点P ,且P 是半径OB 的中点,CD =6cm ,则直径AB 的 长是( )A .B .C .D .14.如图,⊙O 的弦AB =6,M 是AB 上任意一点,且OM 最小值为4,则⊙O 的半径为( )A .5B .4C .3D .2OA AB BO --OP s t s t AE BE =O A . B .C .D .15.如图,⊙O 的半径为5,弦AB =8,M 是弦AB 上的动点,则OM 不可能为( )A .2B .3C .4D .516.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,∠CDB =30°,⊙O的半径为,则弦CD 的长为( )A .B .C .D .二、填空题1.如图,AB 为半圆O 的直径,延长AB 到点P ,使BP =AB ,PC 切半圆O 于点C ,点D 是上和点C 不重合的一点,则的度数为 .2.如图,在⊙O 中,∠ACB =20°,则∠AOB =______度.3.如图所示,A 、B 、C 、D 是圆上的点,则 度. cm 33cm 23cm 9cm 12AC D ∠17040A ∠=∠=°,°,C ∠=4.在⊙O 中,已知⊙O 的直径AB 为2,弦AC 长为,弦AD 长为.则DC 2=______5.如图,AB 是⊙O 的直径,点C 在⊙O 上 ,OD∥AC ,若BD =1,则BC 的长为6.已知的直径为上的一点,,则= _ .7.如图,的半径弦点为弦上一动点,则点到圆心的最短距离是 cm .8.如图,AB 为⊙O 的直径,弦CD ⊥AB ,E 为上一点,若∠CEA =,则∠ABD =°.9.如图,AB 是⊙O 的直径,AC 是弦,若∠A CO =32°,则∠COB 的度数等于 . 32O ⊙8cm AB C =,O ⊙30BAC ∠=°BC cm O 5cm OA =,8cm AB =,P AB P O BC 28BABCD 1三、解答题1.如图,AB 是⊙O 的直径,C 是弧BD 的中点,CE⊥AB,垂足为E ,BD 交CE 于点F .(1)求证:CF =BF ;(2)若AD =2,⊙O 的半径为3,求BC 的长.2.已知:如图,⊙O 1与坐标轴交于A (1,0)、B (5,0)两点,点O 1的纵坐标为.求⊙O 1的半径.3.已知:如图,⊙O 的直径AD =2,,∠BAE =90°.(1)求△CAD 的面积;(2)如果在这个圆形区域中,随机确定一个点P ,那么点P 落在四边形ABCD 区域的概率是多少?5图2 BC CD DE ==4.如图,已知AB 是⊙O 的直径,点C 是⊙O 上一点,连结BC ,AC ,过点C 作直线CD⊥AB 于点D ,点E 是AB 上一点,直线CE 交⊙O 于点F ,连结BF ,与直线CD 交于点G .求证:.【参考答案】选择题1. B2.DBF BG BC ⋅=23. C4. D5. B6. A7. D8. B9. C10. D11. C12. D13. D14. A15. A16. B填空题1. 30°2. 403. 304.5. 26. 47. 38. 289. 64º解答题1. 证明:(1) 连结AC ,如图。
专题23 圆的有关性质(共30道)(原卷版)-2023年中考数学真题分项汇编(全国通用)

专题23圆的有关性质(30道)一、单选题1.(2023·辽宁鞍山·统考中考真题)如图,,AC BC 为O 的两条弦,D ,G 分别为,AC BC 的中点,O 的半径为2.若45C ∠=︒,则DG 的长为()A .2B .3C .32D .22.(2023·辽宁阜新·统考中考真题)如图,A ,B ,C 是O 上的三点,若9025AOC ACB ∠=︒∠=︒,,则BOC ∠的度数是()A .20︒B .25︒C .40︒D .50︒3.(2023·黑龙江哈尔滨·统考中考真题)如图,AB 是O 的切线,A 为切点,连接OA ﹐点C 在O 上,OC OA ⊥,连接BC 并延长,交O 于点D ,连接OD .若65B ∠=︒,则DOC ∠的度数为()A .45︒B .50︒C .65︒D .75︒4.(2023·陕西·统考中考真题)陕西饮食文化源远流长,“老碗面”是陕西地方特色美食之一.图②是从正面看到的一个“老碗”(图①)的形状示意图. AB 是O 的一部分,D 是 AB 的中点,连接OD ,与弦AB 交于点C ,连接OA ,OB .已知24AB =cm ,碗深8cm CD =,则O 的半径OA 为()A.13cm B.16cm C 5.(2023·辽宁锦州·统考中考真题)如图,点A 半径为3,则扇形AOC(阴影部分)的面积为(A.23πB.πC6.(2023·湖南娄底·统考中考真题)如图,正六边形线1l、2l的夹角为60︒,则图中的阴影部分的面积为(A.433π-B.4332π-C7.(2023·辽宁沈阳·统考中考真题)如图,四边形的长是()A .πB .23πC .2πD .4π8.(2023·四川雅安·统考中考真题)如图,某小区要绿化一扇形OAB 空地,准备在小扇形OCD 内种花在其余区域内(阴影部分)种草,测得120AOB ∠=︒,15m OA =,10m OC =,则种草区域的面积为()A .225πm 3B .2125πm 3C .2250πm 3D .2125m 39.(2023·山东泰安·统考中考真题)如图,O 是ABC 的外接圆,半径为4,连接OB ,OC ,OA ,若40CAO ∠=︒,70ACB ∠=︒,则阴影部分的面积是()A .4π3B .8π3C .16π3D .32π310.(2023·山东泰安·统考中考真题)如图,AB 是O 的直径,D ,C 是O 上的点,115ADC ∠=︒,则BAC ∠的度数是()A .25︒B .30︒C .35︒D .40︒11.(2023·黑龙江牡丹江·统考中考真题)如图,A ,B ,C 为O 上的三个点,4AOB BOC ∠=∠,若60ACB ∠=︒,则BAC ∠的度数是()A.2πB.4 3π13.(2023·辽宁营口·统考中考真题)如图所示,30BAD∠=︒,则ACB∠的度数是(A.50︒B.40︒14.(2023·湖北鄂州·统考中考真题)如图,在的中点,以O为圆心,OB长为半径作半圆,交A.3533π-B.53-15.(2023·甘肃兰州·统考中考真题)我国古代天文学确定方向的方法中蕴藏了平行线的作图法.如《淮南子天文训》中记载:“正朝夕:先树一表东方;操一表却去前表十步,以参望日始出北廉.日直入,又树一表于东方,因西方之表,以参望日方入北康.则定东方两表之中与西方之表,则东西也.言叙述作图方法:已知直线a和直线外一定点径作圆,交直线a于点M,N;(取其中点C,过O,C两点确定直线A .35︒B .30︒C .25︒D .20︒16.(2023·内蒙古赤峰·统考中考真题)如图,圆内接四边形ABCD 中,105BCD ∠=︒,连接OB ,OC ,OD ,BD ,2BOC COD ∠=∠.则CBD ∠的度数是()A .25︒B .30︒C .35︒D .40︒17.(2023·内蒙古·统考中考真题)如图,O 是锐角三角形ABC 的外接圆,,,OD AB OE BC OF AC ⊥⊥⊥,垂足分别为,,D E F ,连接,,DE EF FD .若 6.5,DE DF ABC +=△的周长为21,则EF 的长为()A .8B .4C .3.5D .318.(2023·湖南·统考中考真题)如图,圆锥底面圆的半径为4,则这个圆锥的侧面展开图中 AA '的长为()A .4πB .6πC .8πD .16π19.(2023·吉林·统考中考真题)如图,AB ,AC 是O 的弦,OB ,OC 是O 的半径,点P 为OB 上任意A .70︒20.(2023·内蒙古通辽点C 是半径OB 上一动点,若A .26π+B 二、填空题21.(2023·江苏·统考中考真题)如图,4AC =,则O 的直径22.(2023·江苏南通·统考中考真题)如图,则ACD ∠=度.23.(2023·山东济南·统考中考真题)则阴影部分的面积为(结果保留π).24.(2023·宁夏·统考中考真题)如图,四边形ABCD 内接于O ,延长AD 至点E ,已知140AOC ∠=︒,那么CDE ∠=︒.25.(2023·湖南·统考中考真题)如图,点A ,B ,C 在半径为2的O 上,60ACB ∠=︒,OD AB ⊥,垂足为E ,交O 于点D ,连接OA ,则OE 的长度为.26.(2023·江苏徐州·统考中考真题)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥母线l =6,扇形的圆心角120θ=°,则该圆锥的底面圆的半径r 长为.27.(2023·山东东营·统考中考真题)“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺.问:径几何?”.用现在的几何语言表达即:如图,CD 为O 的直径,弦AB CD ⊥,垂足为点E ,1CE =寸,10AB =寸,则直径CD 的长度是寸.29.(2023·吉林·统考中考真题)如图是圆心,半径r 为15m 留π)30.(2023·广东深圳·统考中考真题)如图,交于点D ,若20ADC ∠=︒,则BAD ∠=。
中考数学试题分考点解析汇编圆的有关性质

中考数学试题分考点解析汇编圆的有关性质一、选择题1.(2011上海4分)矩形ABCD中,AB=8,BC=,点P在边AB上,且BP=3AP,如果圆P是以点P 为圆心,PD为半径的圆,那么下列判断正确的是.(A) 点B、C均在圆P外; (B) 点B在圆P外、点C在圆P内;(C) 点B在圆P内、点C在圆P外;(D) 点B、C均在圆P内.【答案】 C。
2011-2012全国各中考数学试题分考点解析汇编圆的有关性质【考点】点与圆的位置关系,矩形的性质,勾股定理。
【分析】根据BP=3AP和AB的长度求得AP=2,然后利用勾股定理求得圆P的半径PD=7==。
点B、C到P点的距离分别为:PB=6,9=。
∴由PB<半径PD,PC>半径PD,得点B在圆P内、点C在外。
故选C。
2.(2011重庆4分)如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数等于A、60°B、50°C、40°D、30°【答案】B。
【考点】等腰三角形的性质,三角形内角和定理,圆周角定理。
【分析】在等腰三角形OCB中,由已知∠OCB=40°和三角形内角和定理求得顶角∠COB的度数100°,然后由同弧所对的圆周角是圆心角的度数一半的圆周角定理,求得∠A=∠C0B=50°。
故选B。
3.(2011重庆綦江4分)如图,PA、PB是⊙O的切线,切点是A、B,已知∠P=60°,OA=3,那么∠AOB所对弧的长度为A、6πB、5πC、3πD、2π【答案】D。
【考点】切线的性质,多边形内角和定理,弧长的计算。
【分析】由于PA、PB是⊙O的切线,由此得到∠OAP=∠OBP=90°,而∠P=60°,利用四边形的内角和即可求出∠AOB=120°;利用已知条件和弧长公式即可求出∠AOB所对弧的长度=12032180=ππ⋅⋅。
故选D。
4.(2011重庆潼南4分)如图,AB为⊙O的直径,点C在⊙O上,∠A=30°,则∠B的度数为A、15°B、30°C、45°D、60°【答案】D。
圆的有关性质(优选真题60道):三年(2021-2023)中考数学真题分项汇编(全国通用)(解析版)

三年(2021-2023)中考数学真题分项汇编(全国通用)圆的有关性质(优选真题60道)一.选择题(共23小题)1.(2023•吉林)如图,AB,AC是⊙O的弦,OB,OC是⊙O的半径,点P为OB上任意一点(点P不与点B重合),连接CP.若∠BAC=70°,则∠BPC的度数可能是()A.70°B.105°C.125°D.155°【分析】利用圆周角定理求得∠BOC的度数,然后利用三角形外角性质及等边对等角求得∠BPC的范围,继而得出答案.【解答】解:如图,连接BC,∵∠BAC=70°,∴∠BOC=2∠BAC=140°,∵OB=OC,=20°,∴∠OBC=∠OCB=180°−140°2∵点P为OB上任意一点(点P不与点B重合),∴0°<∠OCP<20°,∵∠BPC=∠BOC+∠OCP=140°+∠OCP,∴140°<∠BPC<160°,故选:D.【点评】本题考查圆与三角形外角性质的综合应用,结合已知条件求得∠BPC的范围是解题的关键.2.(2023•赤峰)如图,圆内接四边形ABCD中,∠BCD=105°,连接OB,OC,OD,BD,∠BOC=2∠COD.则∠CBD的度数是()A.25°B.30°C.35°D.40°【分析】利用圆内接四边形的性质及圆周角定理求得∠BOD的度数,再结合已知条件求得∠COD的度数,然后利用圆周角定理求得∠CBD的度数.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠A+∠BCD=180°,∵∠BCD=105°,∴∠A=75°,∴∠BOD=2∠A=150°,∵∠BOC=2∠COD,∴∠BOD=3∠COD=150°,∴∠COD=50°,∠COD=25°,∴∠CBD=12故选:A.【点评】本题考查圆内接四边形性质及圆周角定理,结合已知条件求得∠BOD的度数是解题的关键.3.如图,点A,B,C在⊙O上,若∠C=55°,则∠AOB的度数为()A.95°B.100°C.105°D.110°【分析】根据同弧所对的圆周角是圆心角的一半即可得到答案.【解答】解:∵∠AOB =2∠C ,∠C =55°,∴∠AOB =110°,故选:D .【点评】本题考查圆周角定理的应用,解题的关键是掌握同弧所对的圆周角是圆心角的一半.4.(2023•广东)如图,AB 是⊙O 的直径,∠BAC =50°,则∠D =( )A .20°B .40°C .50°D .80°【分析】由AB 是⊙O 的直径,得∠ACB =90°,而∠BAC =50°,即得∠ABC =40°,故∠D =∠ABC =40°,【解答】解:∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠BAC+∠ABC =90°,∵∠BAC =50°,∴∠ABC =40°,∵AĈ=AC ̂, ∴∠D =∠ABC =40°,故选:B .【点评】本题考查圆周角定理的应用,解题的关键是掌握直径所对的圆周角是直角和同弧所对的圆周角相等.5.(2023•广西)赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为37m ,拱高约为7m ,则赵州桥主桥拱半径R 约为( )A .20mB .28mC .35mD .40m【分析】设主桥拱半径R ,根据垂径定理得到AD =372,再利用勾股定理列方程求解,即可得到答案. 【解答】解:由题意可知,AB =37m ,CD =7m ,设主桥拱半径为Rm ,∴OD =OC ﹣CD =(R ﹣7)m ,∵OC 是半径,OC ⊥AB ,∴AD =BD =12AB =372m ,在RtADO 中,AD2+OD2=OA2,∴(372)2+(R ﹣7)2=R2, 解得R =156556≈28.故选:B .【点评】本题主要考查垂径定理的应用,涉及勾股定理,解题的关键是用勾股定理列出关于R 的方程解决问题.6.(2023•广元)如图,AB 是⊙O 的直径,点C ,D 在⊙O 上,连接CD ,OD ,AC ,若∠BOD =124°,则∠ACD 的度数是( )A .56°B .33°C .28°D .23°【分析】先由平角定义求得∠AOD =56°,再利用圆周角定理可求∠ACD .【解答】解:∵∠BOD =124°,∴∠AOD =180°﹣124°=56°,∴∠ACD =12∠AOD =28°,【点评】本题主要考查的是圆周角定理的应用,利用平角定义求得∠AOD =56°是解决本题的关键.7.(2023•温州)如图,四边形ABCD 内接于⊙O ,BC ∥AD ,AC ⊥BD .若∠AOD =120°,AD =√3,则∠CAO 的度数与BC 的长分别为( )A .10°,1B .10°,√2C .15°,1D .15°,√2【分析】由平行线的性质,圆周角定理,垂直的定义,推出∠AOB =∠COD =90°,∠CAD =∠BDA =45°,求出∠BOC =60°,得到△BOC 是等边三角形,得到BC =OB ,由等腰三角形的性质求出圆的半径长,求出∠OAD 的度数,即可得到BC 的长,∠CAO 的度数.【解答】解:∵BC ∥AD ,∴∠DBC =∠ADB ,∴AB̂=CD ̂, ∴∠AOB =∠COD ,∠CAD =∠∵DB ⊥AC ,∴∠AED =90°,∴∠CAD =∠BDA =45°,∴∠AOB =2∠ADB =90°,∠COD =2∠CAD =90°,∵∠AOD =120°,∴∠BOC =360°﹣90°﹣90°﹣120°=60°,∵OB =OC ,∴△OBC 是等边三角形,∴BC =OB ,∵OA =OD ,∠AOD =120°,∴∠OAD =∠ODA =30°,∴AD =√3OA =√3,∴BC=1,∴∠CAO=∠CAD﹣∠OAD=45°﹣30°=15°.故选:C.【点评】本题考查圆周角定理,平行线的性质,等边三角形的判定和性质,等腰三角形的性质,关键是由圆周角定理推出∠AOB=∠COD=90°,∠CAD=∠BDA=45°,证明△OBC是等边三角形.8.(2023•山西)如图,四边形ABCD内接于⊙O,AC,BD为对角线,BD经过圆心O.若∠BAC=40°,则∠DBC的度数为()A.40°B.50°C.60°D.70°【分析】由圆周角定理可得∠BCD=90°,∠BDC=∠BAC=40°,再利用直角三角形的性质可求解.【解答】解:∵BD经过圆心O,∴∠BCD=90°,∵∠BDC=∠BAC=40°,∴∠DBC=90°﹣∠BDC=50°,故选:B.【点评】本题主要考查圆周角定理,直角三角形的性质,掌握圆周角定理是解题的关键.9.(2023•宜昌)如图,OA,OB,OC都是⊙O的半径,AC,OB交于点D.若AD=CD=8,OD=6,则BD的长为()A .5B .4C .3D .2【分析】根据垂径定理得OB ⊥AC ,在根据勾股定理得OA =√AD 2+OD 2=√82+62=10,即可求出答案.【解答】解:∵AD =CD =8,∴OB ⊥AC ,在Rt △AOD 中,OA =√AD 2+OD 2=√82+62=10,∴OB =10,∴BD =10﹣6=4.故选:B .【点评】本题考查了垂径定理和勾股定理,由垂径定理得OB ⊥AC 是解题的关键.10.(2023•枣庄)如图,在⊙O 中,弦AB ,CD 相交于点P .若∠A =48°,∠APD =80°,则∠B 的度数为( )A .32°B .42°C .48°D .52°【分析】根据外角∠APD ,求出∠C ,由同弧所对圆周角相等即可求出∠B .【解答】解:∵∠A =48°,∠APD =80°,∴∠C =80°﹣48°=32°,∵AD̂=AD ̂, ∴∠B =∠C =32°.故选:A .【点评】本题考查了圆周角的性质的应用,三角形外角的性质应用是解题关键.11.(2023•杭州)如图,在⊙O中,半径OA,OB互相垂直,点C在劣弧AB上.若∠ABC=19°,则∠BAC =()A.23°B.24°C.25°D.26°【分析】连接OC,根据圆周角定理可求解∠AOC的度数,结合垂直的定义可求解∠BOC 的度数,再利用圆周角定理可求解.【解答】解:连接OC,∵∠ABC=19°,∴∠AOC=2∠ABC=38°,∵半径OA,OB互相垂直,∴∠AOB=90°,∴∠BOC=90°﹣38°=52°,∴∠BAC=1∠BOC=26°,2故选:D.【点评】本题主要考查圆周角定理,掌握圆周角定理是解题的关键.12.(2023•湖北)如图,在⊙O中,直径AB与弦CD相交于点P,连接AC,AD,BD,若∠C=20°,∠BPC =70°,则∠ADC=()A.70°B.60°C.50°D.40°【分析】先根据外角性质得∠BAC=∠BPC﹣∠C=50°=∠BDC,,再由AB是⊙O的直径得∠ADB=90°即可求得∠ADC.【解答】解:∵∠C=20°,∠BPC=70°,∴∠BAC=∠BPC﹣∠C=50°=∠BDC,∵AB是⊙O的直径,∴∠ADB=90°,∴∠ADC=∠ADB﹣∠BDC=40°,故选:D.【点评】本题主要考查了三角形的外角性质以及直径所对的圆周角是直角,熟练掌握各知识点是解决本题的关键.13.(2022•泰安)如图,AB是⊙O的直径,∠ACD=∠CAB,AD=2,AC=4,则⊙O的半径为()A.2√3B.3√2C.2√5D.√5【分析】根据圆周角定理及推论解答即可.【解答】解:方法一:连接CO并延长CO交⊙O于点E,连接AE,∵OA=OC,∴∠OAC=∠OCA,∵∠ACD=∠CAB,∴∠ACD=∠ACO,∴AE=AD=2,∵CE是直径,∴∠EAC=90°,在Rt△EAC中,AE=2,AC=4,∴EC=√22+42=2√5,∴⊙O 的半径为√5.方法二:连接BC ,∵AB 是直径,∴∠ACB =90°,∵∠ACD =∠CAB ,∴AD̂=BC ̂, ∴AD =BC =2,在Rt △ABC 中,AB =√AC 2+BC 2=2√5,∴圆O 的半径为√5.故选:D .【点评】本题主要考查了圆周角定理及推论,熟练掌握这些性质定理是解决本题的关键.14.(2022•贵阳)如图,已知∠ABC =60°,点D 为BA 边上一点,BD =10,点O 为线段BD 的中点,以点O 为圆心,线段OB 长为半径作弧,交BC 于点E ,连接DE ,则BE 的长是( )A .5B .5√2C .5√3D .5√5【分析】解法一:根据题意和等边三角形的判定,可以得到BE 的长.解法二:先根据直径所对的圆周角是90°,然后根据直角三角形的性质和直角三角形中30°角所对的直角边是斜边的一半,可以求得BE的长.【解答】解:解法一:连接OE,BD=5,由已知可得,OE=OB=12∵∠ABC=60°,∴△BOE是等边三角形,∴BE=OB=5,故选:A.解法二:由题意可得,BD为⊙O的直径,∴∠BED=90°,∵∠ABC=60°,∴∠EDB=30°,∵BD=10,∴BE=5,故选:A.【点评】本题考查等边三角形的判定与性质、与圆相关的知识,解答本题的关键是明确题意,求出△OBE 的形状.15.(2022•温州)如图,AB,AC是⊙O的两条弦,OD⊥AB于点D,OE⊥AC于点E,连结OB,OC.若∠DOE=130°,则∠BOC的度数为()A.95°B.100°C.105°D.130°【分析】根据四边形的内角和等于360°计算可得∠BAC=50°,再根据圆周角定理得到∠BOC=2∠BAC,进而可以得到答案.【解答】解:∵OD⊥AB,OE⊥AC,∴∠ADO=90°,∠AEO=90°,∵∠DOE=130°,∴∠BAC=360°﹣90°﹣90°﹣130°=50°,∴∠BOC=2∠BAC=100°,故选:B.【点评】本题考查的是圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.16.(2022•贵港)如图,⊙O是△ABC的外接圆,AC是⊙O的直径,点P在⊙O上,若∠ACB=40°,则∠BPC的度数是()A.40°B.45°C.50°D.55°【分析】根据直径所对的圆周角是直角得到∠ABC=90°,进而求出∠CAB,根据圆周角定理解答即可.【解答】解:∵AC是⊙O的直径,∴∠ABC=90°,∴∠ACB+∠CAB=90°,∵∠ACB=40°,∴∠CAB=90°﹣40°=50°,由圆周角定理得:∠BPC=∠CAB=50°,故选:C.【点评】本题考查的是圆周角定理,掌握直径所对的圆周角是直角是解题的关键.17.(2022•株洲)如图所示,等边△ABC的顶点A在⊙O上,边AB、AC与⊙O分别交于点D、E,点F ̂上一点,且与D、E不重合,连接DF、EF,则∠DFE的度数为()是劣弧DEA.115°B.118°C.120°D.125°【分析】根据圆的内接四边形对角互补及等边△ABC的每一个内角是60°,求出∠EFD=120°.【解答】解:四边形EFDA是⊙O内接四边形,∴∠EFD+∠A=180°,∵等边△ABC的顶点A在⊙O上,∴∠A=60°,∴∠EFD=120°,故选:C.【点评】本题考查了圆内接四边形的性质、等边三角形的性质,掌握两个性质定理的应用是解题关键.18.(2022•荆门)如图,CD是圆O的弦,直径AB⊥CD,垂足为E,若AB=12,BE=3,则四边形ACBD 的面积为()A.36√3B.24√3C.18√3D.72√3【分析】根据AB=12,BE=3,求出OE=3,OC=6,并利用勾股定理求出EC,根据垂径定理求出CD,即可求出四边形的面积.【解答】解:如图,连接OC,∵AB=12,BE=3,∴OB=OC=6,OE=3,∵AB⊥CD,在Rt△COE中,EC=√OC2−OE2=√36−9=3√3,∴CD=2CE=6√3,∴四边形ACBD的面积=12AB⋅CD=12×12×6√3=36√3.故选:A.【点评】本题考查了垂径定理,解题的关键是熟练运用定理.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.19.(2021•青海)如图是一位同学从照片上剪切下来的海上日出时的画面,“图上”太阳与海平线交于A,B两点,他测得“图上”圆的半径为10厘米,AB=16厘米.若从目前太阳所处位置到太阳完全跳出海平面的时间为16分钟,则“图上”太阳升起的速度为()A.1.0厘米/分B.0.8/分C.1.2厘米/分D.1.4厘米/分【分析】连接OA,过点O作OD⊥AB于D,由垂径定理求出AD的长,再由勾股定理求出OD的长,然后计算出太阳在海平线以下部分的高度,即可求解.【解答】解:设“图上”圆的圆心为O,连接OA,过点O作OD⊥AB于D,如图所示:∵AB=16厘米,∴AD=12AB=8(厘米),∵OA=10厘米,∴OD=√OA2−AD2=√102−82=6(厘米),∴海平线以下部分的高度=OA+OD=10+6=16(厘米),∵太阳从所处位置到完全跳出海平面的时间为16分钟,∴“图上”太阳升起的速度=16÷16=1.0(厘米/分),故选:A.【点评】本题考查的是垂径定理的运用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.20.(2021•攀枝花)如图,在矩形ABCD中,已知AB=3,BC=4,点P是BC边上一动点(点P不与B,C重合),连接AP,作点B关于直线AP的对称点M,则线段MC的最小值为()A.2B.52C.3D.√10【分析】当A,M,C三点共线时,线段CM的长度最小,求出此时CM的长度即可.【解答】解:连接AM,∵点B和M关于AP对称,∴AB=AM=3,∴M在以A为圆心,3为半径的圆上,∴当A,M,C三点共线时,CM最短,∵AC=√32+42=5,AM=AB=3,∴CM=5﹣3=2,故选:A.【点评】本题主要考查圆的性质,关键是要考虑到点M在以A为圆心,3为半径的圆上.21.(2021•吉林)如图,四边形ABCD内接于⊙O,点P为边AD上任意一点(点P不与点A,D重合)连接CP.若∠B=120°,则∠APC的度数可能为()A.30°B.45°C.50°D.65°【分析】由圆内接四边形的性质得∠D度数为60°,再由∠APC为△PCD的外角求解.【解答】解:∵四边形ABCD内接于⊙O,∴∠B+∠D=180°,∵∠B=120°,∴∠D=180°﹣∠B=60°,∵∠APC为△PCD的外角,∴∠APC>∠D,只有D满足题意.故选:D.22.(2021•雅安)如图,四边形ABCD为⊙O的内接四边形,若四边形OBCD为菱形,则∠BAD的度数为()A.45°B.60°C.72°D.36°【分析】根据圆内接四边形的性质得到∠BAD+∠BCD=180°,根据圆周角定理得到∠BOD=2∠BAD,根据菱形的性质得到∠BOD=∠BCD,计算即可.【解答】解:∵四边形ABCD为⊙O的内接四边形,∴∠BAD+∠BCD =180°,由圆周角定理得:∠BOD =2∠BAD ,∵四边形OBCD 为菱形,∴∠BOD =∠BCD ,∴∠BAD+2∠BAD =180°,解得:∠BAD =60°,故选:B .【点评】本题考查的是圆内接四边形的性质、圆周角定理、菱形的性质,掌握圆内接四边形的对角互补是解题的关键.23.(2021•眉山)如图,在以AB 为直径的⊙O 中,点C 为圆上的一点,BĈ=3AC ̂,弦CD ⊥AB 于点E ,弦AF 交CE 于点H ,交BC 于点G .若点H 是AG 的中点,则∠CBF 的度数为( )A .18°B .21°C .22.5°D .30°【分析】由圆周角定理可求∠ACB =90°,由弧的关系得出角的关系,进而可求∠ABC =22.5°,∠CAB =67.5CAH =∠ACE =22.5°,即可求解.【解答】解:∵AB 是直径,∴∠ACB =90°,∴∠ABC+∠CAB =90°,∵BĈ=3AC ̂, ∴∠CAB =3∠ABC ,∴∠ABC =22.5°,∠CAB =67.5°,∵CD ⊥AB ,∴∠ACE =22.5°,∵点H 是AG 的中点,∠ACB =90°,∴AH =CH =HG ,∴∠CAH =∠ACE =22.5°,∵∠CAF =∠CBF ,∴∠CBF =22.5°,故选:C .【点评】本题考查了圆周角定理,圆心角、弧、弦的关系,直角三角形的性质,求出∠CAB 的度数是本题的关键.二.填空题(共25小题)24.(2023•长沙)如图,点A ,B ,C 在半径为2的⊙O 上,∠ACB =60°,OD ⊥AB ,垂足为E ,交⊙O 于点D ,连接OA ,则OE 的长度为 .【分析】连接OB ,利用圆周角定理及垂径定理易得∠AOD =60°,则∠OAE =30°,结合已知条件,利用直角三角形中30°角对的直角边等于斜边的一半即可求得答案.【解答】解:如图,连接OB ,∵∠ACB =60°,∴∠AOB =2∠ACB =120°,∵OD ⊥AB ,∴AD̂=BD ̂,∠OEA =90°, ∴∠AOD =∠BOD =12∠AOB =60°,∴∠OAE =90°﹣60°=30°,∴OE =12OA =12×2=1,故答案为:1.【点评】本题考查圆与直角三角形性质的综合应用,结合已知条件求得∠AOD =60°是解题的关键.25.(2023•深圳)如图,在⊙O中,AB为直径,C为圆上一点,∠BAC的角平分线与⊙O交于点D,若∠ADC=20°,则∠BAD=°.【分析】先根据直径所对的圆周角是直角可得∠ACB=90°,再利用圆周角定理可得∠ADC=∠ABC=20°,然后利用直角三角形的两个锐角互余可得∠BAC=70°,从而利用角平分线的定义进行计算,即可解答.【解答】解:∵AB为⊙O的直径,∴∠ACB=90°,∵∠ADC=20°,∴∠ADC=∠ABC=20°,∴∠BAC=90°﹣∠ABC=70°,∵AD平分∠BAC,∠BAC=35°,∴∠BAD=12故答案为:35.【点评】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.26.(2023•东营)“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问:径几何?”转化为现在的数学语言表达就是:如图,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=10寸,则直径CD的长度为寸.【分析】连接OA ,设⊙O 的半径是r 寸,由垂径定理得到AE =12AB =5寸,由勾股定理得到r2=(r ﹣1)2+52,求出r ,即可得到圆的直径长.【解答】解:连接OA ,设⊙O 的半径是r 寸,∵直径CD ⊥AB ,∴AE =12AB =12×10=5寸,∵CE =1寸,∴OE =(r ﹣1)寸,∵OA2=OE2+AE2,∴r2=(r ﹣1)2+52,∴r =13,∴直径CD 的长度为2r =26寸.故答案为:26.【点评】本题考查垂径定理的应用,勾股定理的应用,关键是连接OA 构造直角三角形,应用垂径定理,勾股定理列出关于圆半径的方程.27.(2023•郴州)如图,某博览会上有一圆形展示区,在其圆形边缘的点P 处安装了一台监视器,它的监控角度是55°,为了监控整个展区,最少需要在圆形边缘上共安装这样的监视器 台.【分析】根据一条弧所对的圆周角等于它所对的圆心角的一半,得该圆周角所对的弧所对的圆心角是110°,则共需安装360°÷110°=3311≈4台.【解答】解:∵∠P=55°,∴∠P所对弧所对的圆心角是110°,,∵360°÷110°=3311∴最少需要在圆形边缘上共安装这样的监视器4台.故答案为:4.【点评】此题考查了要圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.注意把实际问题转化为数学问题,能够把数学和生活联系起来.28.(2023•绍兴)如图,四边形ABCD内接于圆O,若∠D=100°,则∠B的度数是.【分析】由圆内接四边形的性质:圆内接四边形的对角互补,即可得到答案.【解答】解:∵四边形ABCD内接于圆O,∴∠B+∠D=180°,∵∠D=100°,∴∠B=80°.故答案为:80°.【点评】本题考查圆内接四边形的性质,关键是掌握圆内接四边形的性质.29.(2023•南充)如图,AB是⊙O的直径,点D,M分别是弦AC,弧AC的中点,AC=12,BC=5,则MD的长是.【分析】根据垂径定理得OM⊥AC,根据圆周角定理得∠C=90°,根据勾股定理得AB=√122+52=13,BC=2.5,OD∥BC,所以OD⊥AC,MD=OM﹣OD=6.5﹣2.5=4.根据三角形中位线定理得OD=12【解答】解:∵点M是弧AC的中点,∴OM⊥AC,∵AB是⊙O的直径,∴∠C=90°,∵AC=12,BC=5,∴AB=√122+52=13,∴OM=6.5,∵点D是弦AC的中点,∴OD=1BC=2.5,OD∥BC,2∴OD⊥AC,∴O、D、M三点共线,∴MD=OM﹣OD=6.5﹣2.5=4.故答案为:4.【点评】本题考查了垂径定理,圆周角定理,勾股定理,三角形中位线定理,熟练掌握和运用这些定理是解题的关键.30.(2022•锦州)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,∠ADC=130°,连接AC,则∠BAC 的度数为.【分析】利用圆内接四边形的性质和∠ADC的度数求得∠B的度数,利用直径所对的圆周角是直角得到∠ACB =90°,然后利用直角三角形的两个锐角互余计算即可.【解答】解:∵四边形ABCD内接于⊙O,∠ADC=130°,∴∠B=180°﹣∠ADC=180°﹣130°=50°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠CAB=90°﹣∠B=90°﹣50°=40°,故答案为:40°.【点评】本题考查了圆内接四边形的性质及圆周角定理的知识,解题的关键是了解圆内接四边形的对角互补.31.(2022•上海)如图所示,小区内有个圆形花坛O ,点C 在弦AB 上,AC =11,BC =21,OC =13,则这个花坛的面积为 .(结果保留π)【分析】根据垂径定理,勾股定理求出OB2,再根据圆面积的计算方法进行计算即可.【解答】解:如图,连接OB ,过点O 作OD ⊥AB 于D ,∵OD ⊥AB ,OD 过圆心,AB 是弦,∴AD =BD =12AB =12(AC+BC )=12×(11+21)=16, ∴CD =BC ﹣BD =21﹣16=5,在Rt △COD 中,OD2=OC2﹣CD2=132﹣52=144,在Rt △BOD 中,OB2=OD2+BD2=144+256=400,∴S ⊙O =π×OB2=400π,故答案为:400π.【点评】本题考查垂径定理、勾股定理以及圆面积的计算,掌握垂径定理、勾股定理以及圆面积的计算公式是正确解答的前提.32.(2022•日照)一圆形玻璃镜面损坏了一部分,为得到同样大小的镜面,工人师傅用直角尺作如图所示的测量,测得AB =12cm ,BC =5cm ,则圆形镜面的半径为 .【分析】连接AC,根据∠ABC=90°得出AC是圆形镜面的直径,再根据勾股定理求出AC即可.【解答】解:连接AC,∵∠ABC=90°,且∠ABC是圆周角,∴AC是圆形镜面的直径,由勾股定理得:AC=√AB2+BC2=√122+52=13(cm),所以圆形镜面的半径为13cm,2cm.故答案为:132【点评】本题考查了圆周角定理和勾股定理等知识点,能根据圆周角定理得出AC是圆形镜面的直径是解此题的关键.33.(2022•阿坝州)如图,点A,B C在⊙O上,若∠ACB=30°,则∠AOB的大小为.【分析】根据圆周角定理即可得出答案.∠AOB,∠ACB=30°,【解答】解:∵∠ACB=12∴∠AOB=2∠ACB=2×30°=60°.故答案为:60°.【点评】本题主要考查了圆周角定理,熟练掌握圆周角定理是解题的关键.34.(2022•湖州)如图,已知AB是⊙O的弦,∠AOB=120°,OC⊥AB,垂足为C,OC的延长线交⊙O ̂所对的圆周角,则∠APD的度数是.于点D.若∠APD是AD【分析】由垂径定理得出AD̂=BD ̂,由圆心角、弧、弦的关系定理得出∠AOD =∠BOD ,进而得出∠AOD =60°,由圆周角定理得出∠APD =12∠AOD =30°,得出答案.【解答】解:∵OC ⊥AB ,∴AD̂=BD ̂, ∴∠AOD =∠BOD ,∵∠AOB =120°,∴∠AOD =∠BOD =12∠AOB =60°,∴∠APD =12∠AOD =12×60°=30°,故答案为:30°.【点评】本题考查了圆周角定理,垂径定理,圆心角、弧、弦的关系,熟练掌握圆周角定理,垂径定理,35.(2022•自贡)一块圆形玻璃镜面碎成了几块,其中一块如图所示,测得弦AB 长20厘米,弓形高CD 为2厘米,则镜面半径为 厘米.【分析】根据题意,弦AB 长20厘米,弓形高CD 为2厘米,根据勾股定理和垂径定理可以求得圆的半径.【解答】解:如图,点O 是圆形玻璃镜面的圆心,连接OC ,则点C ,点D ,点O 三点共线,由题意可得:OC ⊥AB ,AC =12AB =10(厘米),设镜面半径为x 厘米,由题意可得:x2=102+(x ﹣2)2,∴x =26,∴镜面半径为26厘米,故答案为:26.【点评】本题考查了垂径定理和勾股定理的应用,解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,由勾股定理可求解.36.(2022•黄石)如图,圆中扇子对应的圆心角α(α<180°)与剩余圆心角β的比值为黄金比时,扇子会显得更加美观,若黄金比取0.6,则β﹣α的度数是 .【分析】根据已知,列出关于α,β的方程组,可解得α,β的度数,即可求出答案.【解答】解:根据题意得:{αβ=0.6α+=360°,解得{α=135°β=225°, ∴β﹣α=225°﹣135°=90°,故答案为:90°.【点评】本题考查圆心角,解题的关键是根据周角为360°和已知,列出方程组.37.(2022•荆州)如图,将一个球放置在圆柱形玻璃瓶上,测得瓶高AB =20cm ,底面直径BC =12cm ,球的最高点到瓶底面的距离为32cm ,则球的半径为 cm (玻璃瓶厚度忽略不计).【分析】设球心为O,过O作OM⊥AD于M,连接OA,设球的半径为rcm,由垂径定理得AM=DM=1AD2=6(cm)然后在Rt△OAM中,由勾股定理得出方程,解方程即可.【解答】解:如图,设球心为O,过O作OM⊥AD于M,连接OA,设球的半径为rcm,由题意得:AD=12cm,OM=32﹣20﹣r=(12﹣r)(cm),AD=6(cm),由垂径定理得:AM=DM=12在Rt△OAM中,由勾股定理得:AM2+OM2=OA2,即62+(12﹣r)2=r2,解得:r=7.5,即球的半径为7.5cm,故答案为:7.5.【点评】本题考查了垂径定理的应用以及勾股定理的应用等知识,熟练掌握垂径定理,由勾股定理得出方程是解题的关键.38.(2021•盘锦)如图,在平面直角坐标系xOy中,点A在x轴负半轴上,点B在y轴正半轴上,⊙D经过A,B,O,C四点,∠ACO=120°,AB=4,则圆心点D的坐标是.【分析】先利用圆内接四边形的性质得到∠ABO=60°,再根据圆周角定理得到AB为⊙D的直径,则D点为AB的中点,接着利用含30度的直角三角形三边的关系得到OB=2,OA=2√3,所以A(﹣2√3,0),B (0,2),然后利用线段的中点坐标公式得到D点坐标.【解答】解:∵四边形ABOC为圆的内接四边形,∴∠ABO+∠ACO=180°,∴∠ABO=180°﹣120°=60°,∵∠AOB=90°,∴AB为⊙D的直径,∴D点为AB的中点,在Rt△ABO中,∵∠ABO=60°,AB=2,∴OB=12∴OA=√3OB=2√3,∴A(﹣2√3,0),B(0,2),∴D点坐标为(−√3,1).故答案为(−√3,1).【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的90°的圆周角所对的弦是直径.也考查了坐标与图形性质.39.(2021•黑龙江)如图,在⊙O中,AB是直径,弦AC的长为5cm,点D在圆上且∠ADC=30°,则⊙O 的半径为cm.【分析】连接OC,证明△AOC是等边三角形,可得结论.【解答】解:如图,连接OC.∵∠AOC=2∠ADC,∠ADC=30°,∴∠AOC=60°,∵OA=OC,∴△AOC是等边三角形,∴OA=AC=5(cm),∴⊙O的半径为5cm.故答案为:5.【点评】本题考查圆周角定理,等边三角形的判定和性质等知识,解题的关键是证明△AOC是等边三角形.40.(2021•天津)如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,C均落在格点上,点B 在网格线上.(Ⅰ)线段AC的长等于;(Ⅱ)以AB O,在线段AB上有一点P,满足AP=AC.请用无刻度的直尺,在如图所示的网格中,画出点P,并简要说明点P的位置是如何找到的(不要求证明).【分析】(Ⅰ)利用勾股定理求解即可.(Ⅱ)取BC与网格线的交点D,连接OD延长OD交⊙O于点E,连接AE交BC于点G,连接BE,延长AC 交BE的延长线于F,连接FG延长FG交AB于点P,点P即为所求.【解答】解:(Ⅰ)AC=√22+12=√5.故答案为:√5.(Ⅱ)如图,点P即为所求.故答案为:如图,取BC与网格线的交点D,则点D为BC中点,连接OD并延长OD交⊙O于点E,连接AE 交BC于点G,连接BE,延长AC交BE的延长线于F,则OE为△BFA的中位线,则AB=AF,连接FG延长FG交AB于点P,则BG=FG,∠AFG=∠ABG,即△FAP≌△BAC,则点P即为所求.【点评】本题考查圆周角定理,勾股定理,等腰三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.41.(2021•黑龙江)如图,在Rt△AOB中,∠AOB=90°,OA=4,OB=6,以点O为圆心,3为半径的⊙O,与OB交于点C,过点C作CD⊥OB交AB于点D,点P是边OA上的动点,则PC+PD的最小值为.【分析】延长CO交⊙O于点E,连接ED,交AO于点P,则PC+PD的值最小.【解答】解:延长CO交⊙O于点E,连接ED,交AO于点P,则PC+PD的值最小,最小值为线段DE的长.∵CD⊥OB,∴∠DCB=90°,∵∠AOB=90°,∴∠DCB=∠AOB,∴CD∥AO,∴CDAO =BCBO,∴CD4=36,∴CD=2,在Rt△CDE中,DE=√CD2+CE2=√22+62=2√10,∴PC+PD的最小值为2√10.故答案为:2√10.【点评】本题考查圆周角定理,垂径定理,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.42.(2021•宿迁)如图,在Rt△ABC中,∠ABC=90°,∠A=32°,点B、C在⊙O上,边AB、AC分别交⊙O于D、E两点,点B是CD̂的中点,则∠ABE=.【分析】由∠ABC=90°,可得CD是⊙O的直径,由点B是CD̂的中点以及三角形的内角和,可得∠BDC=∠BCD=45°,利用三角形的内角和求出∠ACB,再根据角的和差关系求出∠DCE,由圆周角定理可得∠ABE =∠DCE得出答案.【解答】解:如图,连接DC,∵∠DBC=90°,∴DC是⊙O的直径,∵点B是CD̂的中点,∴∠BCD=∠BDC=45°,在Rt△ABC中,∠ABC=90°,∠A=32°,∴∠ACB=90°﹣32°=58°,∴∠ACD=∠ACB﹣∠BCD=58°﹣45°=13°=∠ABE,故答案为:13°.【点评】本题考查圆周角定理,弦、弧、圆心角之间的关系以及三角形内角和定理,掌握圆周角定理和推论是正确计算的前提.43.(2021•成都)如图,在平面直角坐标系xOy 中,直线y =√33x +2√33与⊙O 相交于A ,B 两点,且点A 在x 轴上,则弦AB 的长为 .【分析】设直线AB 交y 轴于C ,过O 作OD ⊥AB 于D ,先求出A 、C 坐标,得到OA 、OC 长度,可得∠CAO =30°,Rt △AOD 中求出AD 长度,从而根据垂径定理可得答案.【解答】解:设直线AB 交y 轴于C ,过O 作OD ⊥AB 于D ,如图:在y =√33x +2√33中,令x =0得y =2√33, ∴C(0,2√33),OC =2√33, 在y =√33x +2√33中令y =0得√33x +2√33=0,解得x =﹣2,∴A(﹣2,0),OA =2,Rt △AOC 中,tan ∠CAO =OC OA =2√332=√33,∴∠CAO=30°,Rt△AOD中,AD=OA•cos30°=2×√3=√3,2∵OD⊥AB,∴AD=BD=√3,∴AB=2√3,故答案为:2√3.得到【点评】本题考查一次函数、锐角三角函数及垂径定理等综合知识,解题的关键是利用tan∠CAO=OCOA∠CAO=30°.44.(2022•苏州)如图,AB是⊙O的直径,弦CD交AB于点E,连接AC,AD.若∠BAC=28°,则∠D =°.【分析】如图,连接BC,证明∠ACB=90°,求出∠ABC,可得结论.【解答】解:如图,连接BC.∵AB是直径,∴∠ACB=90°,∴∠ABC=90°﹣∠CAB=62°,∴∠D=∠ABC=62°,故答案为:62.【点评】本题考查圆周角定理,解题的关键是熟练掌握圆周角定理,属于中考常考题型.45.(2022•牡丹江)⊙O的直径CD=10,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AC 的长为.【分析】连接OA,由AB⊥CD,设OC=5x,OM=3x,根据CD=10可得OC=5,OM=3,根据垂径定理得到AM=4,然后分类讨论:当如图1时,CM=8;当如图2时,CM=2,再利用勾股定理分别计算即可.【解答】解:连接OA,∵OM:OC=3:5,设OC=5x,OM=3x,则OD=OC=5x,∵CD=10,∴OM=3,OA=OC=5,∵AB⊥CD,AB,∴AM=BM=12在Rt△OAM中,OA=5,AM=√OA2−OM2=√52−32=4,当如图1时,CM=OC+OM=5+3=8,在Rt△ACM中,AC=√AM2+CM2=√42+82=4√5;当如图2时,CM=OC﹣OM=5﹣3=2,在Rt△ACM中,AC=√AM2+MC2=√42+22=2√5.综上所述,AC的长为4√5或2√5.故答案为:4√5或2√5.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.46.(2021•黔东南州)小明很喜欢钻研问题,一次数学杨老师拿来一个残缺的圆形瓦片(如图所示)让小明求瓦片所在圆的半径,小明连接瓦片弧线两端AB,量得弧AB的中心C到AB的距离CD=1.6cm,AB =6.4cm,很快求得圆形瓦片所在圆的半径为cm.【分析】先根据垂径定理的推论得到CD 过圆心,AD =BD =3.2cm ,设圆心为O ,连接OA ,如图,设⊙O 的半径为Rcm ,则OD =(R ﹣1.6)cm ,利用勾股定理得到(R ﹣1.6)2+3.22=R2,然后解方程即可.【解答】解:∵C 点是AB̂的中点,CD ⊥AB , ∴CD 过圆心,AD =BD =12AB =12×6.4=3.2(cm ),设圆心为O ,连接OA ,如图,设⊙O 的半径为Rcm ,则OD =(R ﹣1.6)cm ,在Rt △OAD 中,(R ﹣1.6)2+3.22=R2,解得R =4(cm ),所以圆形瓦片所在圆的半径为4cm .故答案为4.【点评】本题考查了垂径定理的应用:利用垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.47.(2021•德阳)在锐角三角形ABC 中,∠A =30°,BC =2,设BC 边上的高为h ,则h 的取值范围是 .【分析】如图,BC 为⊙O 的弦,OB =OC =2,证明△OBC 为等边三角形得到∠BOC =60°,则根据圆周角定理得到∠BAC =30°,作直径BD 、CE ,连接BE 、CD ,则∠DCB =∠EBC =90°,当点A 在DÊ上(不含D 、E 点)时,△ABC 为锐角三角形,易得CD =√3BC =2√3,当A 点为DÊ的中点时,A 点到BC 的距离最大,即h 最大,延长AO 交BC 于H ,如图,根据垂径定理得到AH ⊥BC ,所以BH =CH =1,OH =√3,则AH =2+√3,然后写出h 的范围.【解答】解:如图,BC 为⊙O 的弦,OB =OC =2,∵BC =2,∴OB =OC =BC ,∴△OBC 为等边三角形,∴∠BOC =60°,∴∠BAC =12∠BOC =30°,作直径BD 、CE ,连接BE 、CD ,则∠DCB =∠EBC =90°,∴当点A 在DÊ上(不含D 、E 点)时,△ABC 为锐角三角形, 在Rt △BCD 中,∵∠D =∠BAC =30°,∴CD =√3BC =2√3,当A 点为DÊ的中点时,A 点到BC 的距离最大,即h 最大, 延长AO 交BC 于H ,如图,∵A 点为DÊ的中点, ∴AB̂=AC ̂, ∴AH ⊥BC ,∴BH =CH =1,∴OH =√3BH =√3,∴AH =OA+OH =2+√3,∴h 的范围为2√3<h ≤2+√3.故答案为2√3<h ≤2+√3.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理和勾股定理.48.(2023•成都)为传承非遗文化,讲好中国故事,某地准备在一个场馆进行川剧演出.该场馆底面为一个圆形,如图所示,其半径是10米,从A 到B 有一笔直的栏杆,圆心O 到栏杆AB 的距离是5米,观众在阴影区域里观看演出,如果每平方米可以坐3名观众,那么最多可容纳 名观众同时观看演出.(π取3.14,√3取1.73)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学试题分类圆的有关性质一、选择题1. (2011广东湛江16,4分)如图,,,A B C 是O 上的三点,30BAC ︒∠=,则BOC ∠= 度.【答案】602. (2011安徽,7,4分)如图,⊙O 的半径是1,A 、B 、C 是圆周上的三点,∠BAC =36°,则劣弧 ⌒BC 的长是( ) A .π5B .25πC .35πD .45π【答案】B3. (2011福建福州,9,4分)如图2,以O 为圆心的两个同心圆中,大圆的弦AB 切小圆于点C ,若120AOB ∠= ,则大圆半径R 与小圆半径r 之间满足( )A.R = B .3R r =C .2R r =D.R =【答案】C4. (2011山东泰安,10 ,3分)如图,⊙O 的弦AB 垂直平分半径OC ,若AB =6,则⊙O图2的半径为()A. 2B.2 2C.22D.62【答案】A5. (2011四川南充市,9,3分)在圆柱形油槽内装有一些油。
截面如图,油面宽AB 为6分米,如果再注入一些油 后,油面AB 上升1分米,油面宽变为8分米,圆柱形油槽直径MN 为( )(A )6分米 (B )8分米 (C )10分米 (D )12分米 【答案】C6. (2011浙江衢州,1,3分)一个圆形人工湖如图所示,弦AB 是湖上的一座桥,已知桥AB 长100m ,测得圆周角45ACB ∠=︒,则这个人工湖的直径AD 为( )A.B.C.D.【答案】B7. (2011浙江绍兴,4,4分)如图,AB O 为的直径,点C 在O 上,若16C ∠=︒,则BOC ∠的度数是( )A.74︒B. 48︒C. 32︒D. 16︒【答案】C8. (2011浙江绍兴,6,4分)一条排水管的截面如图所示.已知排水管的截面圆半径10OB ,截面圆圆心O 到水面的距离OC 是6,则水面宽AB 是( )A.16B.10C.8D.6【答案】A9. (2011浙江省,5,3分)如图,小华同学设计了一个圆直径的测量器,标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为( ) A. 12个单位 B. 10个单位 C.4个单位 D. 15个单位【答案】B10.(2011四川重庆,6,4分)如图,⊙O 是△A BC 的外接圆,∠OCB =40°则∠A 的度数等于( )A . 60°B . 50°C . 40°D . 30°【答案】B11.(2011浙江省嘉兴,6,4分)如图,半径为10的⊙O中,弦AB的长为16,则这条弦的弦心距为()(A)6 (B)8 (C)10 (D)12【答案】A12.(2011台湾台北,16)如图(六),BD为圆O的直径,直线ED为圆O的切线,A、C两点在圆上,AC平分∠BAD且交BD于F点。
若∠ADE=19,则∠AFB的度数为何?A.97 B.104 C.116 D.142【答案】C13. (2011台湾全区,24)如图(六),△ABC的外接圆上,AB、BC、CA三弧的度数比为12:13:11.自BC上取一点D,过D分别作直线AC、直线AB的并行线,且交BC于E、F两点,则∠EDF的度数为何?A.55 B.60 C.65 D.70【答案】C14. (2011甘肃兰州,12,4分)如图,⊙O过点B、C,圆心O在等腰Rt△ABC的内部,∠BAC=90°,OA=1,BC=6。
则⊙O的半径为A.6 B.13 CD.(第6题)【答案】C15.(2011四川成都,7,3分)如图,若AB是⊙0的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD=(B )(A)116°(B)32°(C)58°(D)64°A【答案】B16. (2011四川内江,9,3分)如图,⊙O是△ABC的外接圆,∠BAC=60°,若⊙O的半径OC为2,则弦BC的长为A.1B C.2D.OCAB【答案】D17. (2011江苏南京,6,2分)如图,在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P的弦AB的长为a的值是A.B.2+C.D.2AB CO【答案】B1.18. (2011江苏南通,8,3分)如图,⊙O的弦AB=8,M是AB的中点,且OM=3,则⊙O的半径等于A.8B. 2C. 10D. 5【答案】D19. (2011山东临沂,6,3分)如图,⊙O的直径CD=5cm,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OD=3:5,则AB 的长是()A.2cm B.3cmC.4cm D.221cm 【答案】C20.(2011上海,6,4分)矩形ABCD中,AB=8,BC P在边AB上,且BP =3AP,如果圆P是以点P为圆心,PD为半径的圆,那么下列判断正确的是().(A) 点B、C均在圆P外;(B) 点B在圆P外、点C在圆P内;(C) 点B在圆P内、点C在圆P外;(D) 点B、C均在圆P内.【答案】C21.(2011四川乐山6,3分)如图(3),CD是⊙O的弦,直径AB过CD的中点M,若ABD=∠BOC=40°,则∠A.40°B.60°C.70°D.80°【答案】C上,且点C不与A、22.(2011四川凉山州,9,4分)如图,100AOB∠= ,点C在O∠的度数为()B重合,则ACBA.50 B.80 或50 C.130 D.50 或130【答案】D23.(2011广东肇庆,7,3分)如图,四边形ABCD是圆内接四边形,E是BC延长线上一点,若∠BAD =105°,则∠DCE的大小是A.115°B.105°C.100°D.95°【答案】B24.(2011内蒙古乌兰察布,9,3分)如图,AB 为⊙ O 的直径,CD 为弦,AB ⊥ CD ,如果∠BOC = 700,那么∠A的度数为()A .70︒B . 35︒C . 30︒D . 20︒第9题图【答案】B25.(2011重庆市潼南,3,4分)如图,AB为⊙O的直径,点C在⊙O上,∠A=30°,则∠B的度数为A.15° B. 30° C. 45° D. 60°【答案】D26.(2011浙江省舟山,6,3分)如图,半径为10的⊙O中,弦AB的长为16,则这条弦的弦心距为()(A)6 (B)8 (C)10(D)12【答案】A (第6题)二、填空题1. (2011浙江省舟山,15,4分)如图,AB 是半圆直径,半径OC ⊥AB 于点O ,AD 平分∠CAB 交弧BC 于点D ,连结CD 、OD ,给出以下四个结论:①AC ∥OD ;②OE CE =;③△ODE ∽△ADO ;④AB CE CD ⋅=22.其中正确结论的序号是 .【答案】①④2. (2011安徽,13,5分)如图,⊙O 的两条弦AB 、CD 互相垂直,垂足为E ,且AB =CD ,已知CE =1,ED =3,则⊙O 的半径是 .【答案】53. (2011江苏扬州,15,3分)如图,⊙O 的弦CD 与直径AB 相交,若∠BAD=50°,则∠ACD=【答案】40°4. (2011山东日照,14,4分)如图,在以AB 为直径的半圆中,有一个边长为1的内接正方形CDEF ,则以AC 和BC 的长为两根的一元二次方程是 .【答案】如:x 2-5x +1=0;(第16题)ABDCOE5. (2011山东泰安,23 ,3分)如图,P A与⊙O相切,切点为A,PO交⊙O于点C,点B是优弧CBA上一点,若∠ABC==320,则∠P的度数为。
【答案】2606. (2011山东威海,15,3分)如图,⊙O的直径AB与弦CD相交于点E,若AE=5,BE=1,CD 则∠AED=.【答案】30°7. (2011山东烟台,16,4分)如图,△ABC的外心坐标是__________.【答案】(-2,-1)8. (2011浙江杭州,14,4)如图,点A,B,C,D都在⊙O 上,的度数等于84°,CA是∠OCD的平分线,则∠ABD十∠CAO= °.【答案】53°9. (2011浙江温州,14,5分)如图,AB 是⊙O 的直径,点C ,D 都在⊙O 上,连结CA ,CB ,DC ,DB .已知∠D =30°,BC =3,则AB 的长是 .【答案】610.(2011浙江省嘉兴,16,5分)如图,AB 是半圆直径,半径OC ⊥AB 于点O ,AD 平分∠CAB 分别交OC 于点E ,交弧BC 于点D ,连结CD 、OD ,给出以下四个结论:①S △AEC =2S △DEO ;②AC=2CD ;③线段OD 是DE 与DA 的比例中项;④AB CE CD ⋅=22.其中正确结论的序号是 .【答案】①④11. (2011福建泉州,16,4分)已知三角形的三边长分别为3,4,5,则它的边与半径为1的圆的公共点个数所有可能的情况是.(写出符合的一种情况即可)【答案】 2(符合答案即可)12. (2011甘肃兰州,16,4分)如图,OB 是⊙O 的半径,点C 、D 在⊙O 上,∠DCB=27°,则∠OBD= 度。
(第16题)ABDCOE【答案】63°13. (2011湖南常德,7,3分)如图2,已知⊙O 是△ABC 的外接圆,且∠C =70°,则∠OAB=__________.图 2【答案】20°14. (2011江苏连云港,15,3分)如图,点D 为边AC 上一点,点O 为边AB 上一点,AD =DO .以O 为圆心,OD 长为半径作半圆,交AC 于另一点E ,交AB 于点F ,G ,连接EF .若∠BAC =22º,则∠EFG =_____.【答案】1215. (2011四川广安,19,3分)如图3所示,若⊙O 的半径为13cm ,点p 是弦AB 上一动点,且到圆心的最短距离为5 cm ,则弦AB 的长为________cmBODBC【答案】2416. (2011重庆江津,16,4分)已知如图,在圆内接四边形ABCD中,∠B=30º,则∠D=-____________.【答案】150°17. (2011重庆綦江,13,4分) 如图,已知AB为⊙O的直径,∠CAB=30°,则∠D=.【答案】:60°18. (2011江西南昌,13,3分)如图,在△ABC中,点P是△ABC的内心,则∠PBC+∠PCA+∠P AB= 度.【答案】9019. (2011江苏南京,13,2分)如图,海边有两座灯塔A、B,暗礁分布在经过A、B两点的弓形(弓形的弧是⊙O的一部分)区域内,∠AOB=80°,为了避免触礁,轮船P与A、B的张角∠APB的最大值为______°.【答案】40(第13题)第16题图20.(2011上海,17,4分)如图,AB 、AC 都是圆O 的弦,OM ⊥AB ,ON ⊥AC ,垂足分别为M 、N ,如果MN =3,那么BC =_________.【答案】621. (2011江苏无锡,18,2分)如图,以原点O 为圆心的圆交x 轴于点A 、B 两点,交y轴的正半轴于点C ,D 为第一象限内⊙O 上的一点,若∠DAB = 20°,则∠OCD = _____________.【答案】6522. (2011湖北黄石,14,3分)如图(5),△ABC 内接于圆O ,若∠B =300.AC =3,则⊙O 的直径为 。