统计学第三章及前面部分 练习题答案
统计学练习03--第三章统计指标

第三章统计指标一、单项选择题1.如果所有标志值的频数都减少为原来的1/5,而标志值仍然不变,那么算术平均数(A)不变(B)扩大到5倍(C)减少为原来的1/5 (D)不能预测其变化2.在下列两两组合的平均指标中,哪一组的两个平均数不受极端两值的影响?(A)算术平均数和调和平均数(B)几何平均数和众数(C)调和平均数和众数(D)众数和中位数3.总量指标按反映总体的内容不同,分为(A)时期指标和时点指标(B)总体标志总量和总体单位总数(C)数量指标和质量指标(D)实物量指标、价值量指标和劳动量指标4.总量指标按反映总体的时间状态不同,分为(A)时期指标和时点指标(B)总体标志总量和总体单位总数(C)数量指标和质量指标(D)实物量指标、价值量指标和劳动量指标5.若单项数列中每组标志值都增加一倍,而各组权数都减少一倍,则算术平均数(A)增加一倍(B)减少一倍(C)不变(D)无法判断6.,H,G的大小顺序为(A)≤H≤G (B)≥G≥H (C)≥H≥G (D)G≥≥H7.当标志值较小的一组其权数较大时,则算术平均数(A)接近标志值较大的一组(B)接近标志值较小的一组(C)不受权数影响(D)仅受标志值影响8.若甲单位的平均数比乙单位的平均数小,但甲单位的标准差比乙单位的标准差大,则(A)甲单位的平均数代表性比较大(B)甲单位的平均数代表性比较小(C)两单位的平均数代表性一样大(D)无法判断9.可直接用标准差评价两数列差异程度大小的条件是:两数列的平均数(A)相差较大(B)相差较小(C)不等(D)相等10.某企业5月份计划要求销售收入比上月增长8%,实际增长12%,其超计划完成程度为(A)103.70%(B)50%(C)150%(D)3.7%11.某企业7月份计划要求成本降低3%,实际降低5%,则计划完成程度为(A)97.94%(B)166.67%(C)101.94%(D)1.94%12.现有一数列:3,9,27,81,243,729,2187,反映其平均水平最好用(A)算术平均数(B)调和平均数(C)几何平均数(D)中位数13.计算平均速度最好用(A)算术平均数(B)调和平均数(C)几何平均数(D)众数14.有甲乙两组数列,若(A)1<21>2,则乙数列平均数的代表性高(B)1<21>2,则乙数列平均数的代表性低(C)1=21>2,则甲数列平均数的代表性高(D)1=21<2,数列平均数的代表性低15.若两数列的标准差相等而平均数不等,则(A)平均数小代表性大(B)平均数大代表性大(C)无法判断(D)平均数大代表性小16.人均粮食消费量与人均粮食产量(A)前者是平均指标而后者是强度相对指标(B)前看是强度相对指标而后者是平均指标(C)两者都是平均指标(D)两者都是强度相对指标17.人口数与出生人数(A)前者是时期指标而后者是时点指标(B)前者是时点指标而后者是时期指标(C)两者都是时点指标(D)两者都是时期指标18.动态相对指标是指(A)同一现象在不同时间不同空间上的对比(B)同一现象在同时间不同空间上的对比(C)不同一现象在不同时间同空间上的对比(D)同一现象在不同时间同空间上的对比19.若两组数列的计量单位不同,在比较丙数列的离散程度大小时,应采用(A)全距(B)平均差(C)标准差(D)标准差系数20.若n=20,X=200,X2 =2080,则标准差为(A)2 (B)4 (C)1.5 (D)3二、多项选择题1.下列属于时期指标的有(A)职工人数(B)大学生毕业人数(C)储蓄存款余额(D)折旧额(E)出生人数2.在下列哪些情况下,必须用离散系数来比较两数列的离散程度大小(A)两平均数相差较大(B)两平均数不等但标准差相等(C)两平均数相等(D)两数列的计量单位不同(E)两平均数相等但标准差不等3.分子分母可互换的相对指标有(A)计划完成相对指标(B)比例相对数(C)比较相对数(D)动态相对数(E)强度相对数4.几何平均数适合(A)等差数列(B)等比数列(C)标志总量等于各标志值之和(D)标志总量等于各标志值之积(E)含有负值的数列5.下列指标中属于强度相对指标的有(A)人均粮食产量(B)人均钢铁产量(C)人均国民收入(D)工人劳动生产率(E)职工月平均工资6.算术平均数具有下列哪些性质(A)(X-)=最小值(B)(X-)=0 (C)(X-)2=最小值(D)(X-)2=0 (D)(X-)=17.时期指标的特点有(A)只能间断计数(B)数值大小与时期长短有关(C)具有可加性(D)不具有可加性(E)数值大小与间隔长短元关8.下列统计指标中,属于时点指标的有(A)商品库存数(B)国内生产总值(C)固定资产折旧额(D)银行存款余额(E)设备拥有量9.下列指标中,属于时点指标的有(A)人口数(B)职工人数(C)出生人数(D)死亡人数(E)毕业生人数10.受极端两值影响的平均数有(A)算术平均数(B)调和平均数(C)几何平均数(D)众数(E)中位数11.标志变异指标能反映(A)变量的一般水平(B)总体分布的集中趋势(C)总体分布的离中趋势(D)变量分布的离散趋势(E)现象的总规模、总水平12.加权算术平均数。
统计学第三章课后作业参考答案

统计学第三章课后作业参考答案1、统计整理在统计研究中的地位如何?答:统计整理在统计研究中的地位:统计整理实现了从个别单位标志值向说明总体数量特征的指标过度,是人们对社会经济现象从感性认识上升到理性认识的过度阶段,为统计分析提供基础,因而,它在统计研究中起了承前启后的作用。
2、什么是统计分组?为会么说统计分组的关键在于分组标志的选择?答:1)统计分组是根据统计研究任务的要求和现象总体的内在特点,把统计总体按照某一标志划分为若干性质不同而又有联系的几个部分。
2)因为分组标志作为现象总体划分为各处不同性质的给的标准或根据,选择得正确与否,关系到能否正确地反映总体的性质特征、实现统计研究的目的的任务。
分组标志一经选取定,必然突出了现象总体在此标志下的性质差异,而掩盖了总体在其它标志下差异。
缺乏科学根据的分组不但无法显示现象的根本特征,甚至会把不同性质的事物混淆在一起,歪曲了社会经济的实际情况。
所以统计分组的关键在于分组的标志选取择。
3、统计分组可以进行哪些分类?答:统计分组可以进行以下分类1)按其任务和作用的不同分为:类型分组、结构分组、分析分组2)按分组标志的多少分为:简单分组、复合分组3)按分组标志性质分为:品质分组、变量分组5单项式分组和组距式分组分别在什么条件下运用?答:单项式分组运用条件:变量值变动范围小的离散变量可采取单项式分组组距式分组运用条件:变量值变动很大、变量值的项数又多的离散变量和连续变量可采取组距式分组8、什么是统计分布?它包括哪两个要素?答:1)在分组的基础上把总体的所有单位按组归并排列,形成总体中各个单位在各组分布,称为统计分布,是统计整理结果的重要表现形式。
2)统计分布的要素:一、是总体按某一标志分的组,二、是各组所占有的单位数——次数10、频数和频率在分配数列中的作用如何?答:频数和频率的大小表示相应的标志值对总体的作用程度,即频数或频率越大则该组标志值对全体标志水平所起作用越大,反之,频数或频率越小则该组标志值对全体标志水平所起作用越小11、社会经济现象次数分布有哪些主要类型?分布特征?答:1) 社会经济现象次数分布有以下四种主要类型:钟型、U 型 、J 型、洛伦茨分布 2)分布特征如下:钟型分布:正态分布,两头小,中间大U 型分布:两头大,中间小J 型分布:次数随变量值增大而增多;倒J 型分布:次数随变量值增大而减少 洛伦茨分布:各组标志比重随着各组单位数比重(频率)增加而增加;17、有27个工人看管机器台数如下:5 4 2 4 3 4 3 4 4 2 4 3 4 3 26 4 4 2 2 3 4 5 3 2 4 3 试编制分配数列18、某车间同工种40名工人完成个人生产定额百分数如下 :97 88 123 115 119 158 112 146 117 108 105 110 107 137 120 136 125 127 142 118 103 87115 114 117 124 129 138 100 103 92 95 113 126 107 108 105 119 127 104根据上述资料,试编制分配数列错例:下面解法几个地方错?19、1993年某出口创汇大户出口实绩(万美元)列举如下:1011 1052 865 721 2032 1218 1046 721 546 623 2495 1015 1113 1104 1084 707 878 678 2564 620 575 943 828 2035 2375 4342 751 505 798 728 1103 1285 2856 3200 518第九章时间序列分析一、单项选择题二、多项选择题三、判断题四、填空题1、时间序列 指标数值2、总量指标时间数列 相对指标时间数列 平均指标时间数列 总量指标时间数列3、简单 na a ∑=间断 连续 间隔相等 间隔不等4、逐期 累计 报告期水平–基期水平 逐期 累计5、环比 定基基期水平报告期水平环比 定基 环比6、水平法 累计法 水平 nx x ∏=或nna a x 0= 累计 032a a x x x x n∑=++++7、26 26 8、79、)-(y y ˆ∑ = 0)-(y y ˆ∑2为最小 10、季节比率 1200% 400% 五、简答题(略) 六、计算题1、4月份平均库存 = 3053008370122505320⨯+⨯+⨯+⨯= 302(辆)2、第一季度平均人数917301024927217270302751026424258++++⨯+⨯+⨯+⨯+⨯=(人)3、第一季度平均库存额142434405408240012221-+++=-+++=n a a a a n = 410(万元) 同理,第二季度平均库存额1424184384262434-+++= 430(万元)上半年平均库存额1724184384264344054082400-++++++= 420(万元)或 2430410+= 420(万元)4、年平均增加的人数 =516291678172617931656++++= 1696.4(万人)5、某酿酒厂成品库1998年的平均库存量12111232121222---+++++++++=n n n n f f f f a a f a a f a a a=121124084122233533012330326+++⨯+++⨯++⨯+=124620= 385(箱)6、列计算表如下:该柴油机厂全年的平均计划完成程度指标为.346004.47747==∑∑b bc c = 138.0% 7、列计算表如下:该企业第一季度生产工人数占全部职工人数比重232003100320023000225602356249622250++++++==b a c = 77.2% 8、①填写表中空格:②第一季度平均职工人数 =3= 268. 33(人)③第一季度工业总产值 = + + = 83.475(万元) 第一季度平均每月工业总产值 =3475.83=27.825(万元) ④第一季度劳动生产率 =33.268834750=3110.91(元/人)第一季度平均月劳动生产率 =33.26891.3110=1036.97(元/人)或 =33.268278250=1036.97(元/人)9、煤产量动态指标计算表:第①、②与③的要求,计算结果直接在表中; ④平均增长量=552.2=(万吨) ⑤水平法计算的平均发展速度=554065.120.672.8== 107.06% 平均增长速度= 107.06%-100%=7.06% 10、以1991年为基期的总平均发展速度为 62306.105.103.1⨯⨯= 104.16% 11、每年应递增:535.2=118.64%以后3年中平均每年应递增:355.135.2=114.88% 12、计算并填入表中空缺数字如下:(阴影部分为原数据)平均增长量为:3266.39÷6 = 544.40(万台) 平均发展速度为:66556.3= 124.12% 平均增长速度为:124.12%-1=%13、设在80亿元的基础上,按8 %的速度递增,n 年后可达200亿元,即n80200= 108% → n 1 → n = 08.1log 5.2log按8 %的速度递增,约经过年该市的国民收入额可达到200亿元。
统计学第三章练习题(附答案)

统计学第三章练习题(附答案).单项选择题B.平均差 D.离散系数2.如果峰度系数k >3,表明该组数据是(A )0A. 64.5 和 78.5 D.64.5 和 67.55.对于右偏分布,平均数、中位数和众数之间的关系是( A)o7.在离散程度的测度中,最容易受极端值影响的是( A)08.在⽐较两组数据的离散程度时,不能直接⽐较它们的标准差,因为两组数据的 (D )oA.标准差不同C 数据个数不同1.⽐较两组数据的离散程度最合适的统计量是(D )。
A.极差 C 标准差A.尖峰分布B 扁平分布C 左偏分布 D.右偏分布3.某⼤学经济管理学院有 1200 名学⽣,法学院有 800 名学⽣,医学院有 320 名学⽣,理学院有 200 名学⽣0上⾯的描述中,众数是(B)0A.1200B.经济管理学院C.200D 理学院4. 某班共有 25 名学⽣ , 期末统计学课程的考试分数分别为:68,73,66,76,86,74,61,89,65,90,69,67,76,62,81,63,68,81,70,73,60,87,75,64,56考试分数下四分位数和上四分位数分别是( A)0B.67.5 和 71.5C.64.5和 71.5A.平均数>中位数>众数B. 中位数>平均数>众数 C 众数〉中位数〉平均数D.众数〉平均数〉中位数6.某班学⽣的统计学平均成绩是70分,最⾼分是 96分,最低分是 62分,根据这些信息,可以计算的测度离散程度的指标是(B)0A ⽅差B 极差C 标准差 D.变异系数A.极差B ⽅差C 标准差D.平均差B.⽅差不同 D.计量单位不同9.总量指标按其反应的内容不同,可分为( C)0A.总体指标和个体指标B.时期指标和时点指标c 总体单位总量指标和总体标识总量指标 D.总体单位总量指标和标识单位指标10.反映同⼀总体在不同时间上的数量对⽐关系的是(D.⽐例相对指标11.2003年全国男性⼈⼝数为 66556万⼈,2002年全国⾦融、保险业增加值为 5948.9亿元,2003年全社会固定资产投资总额为 55566.61亿元,2003年全国城乡居民⼈民币储蓄存款余额103617.7亿元。
统计学 第三章练习题答案及解析

3%1%2%5.1++453025453025++++统计学第三章出题优课后习题答案原多项选择第三题D 选项解释有误,现在已经重新更改。
一、单项选择题1. 某商场某月商品销售额为1200万元,月末商品库存额为400万元,这两个总量指标( )。
A. 是时期指标B. 前者是时期指标,后者是时点指标C. 是时点指标2. 国民总收入与国内生产总值之间相差一个( )。
A. 出口与进口的差额B. 固定资产折旧C. 来自国外的要素收入净额3. 有三批产品,废品率分别为1.5%、2%、1%,相应的废品数量为25件、30件、45件,则这三批产品平均废品率的计算式应为( )。
A. B.C. D.4. 下列各项中,超额完成计划的有( )。
A. 利润计划完成百分数103.5%B. 单位成本计划完成百分数103.5%C. 建筑预算成本计划完成百分数103.5%5. 某厂某种产品生产量1月刚好完成计划,2月超额完成2%,3月超额完成4%,则该厂该年一季度各月平均超额完成计划的计算方法是( )。
A. 2%+4%=6%B. (2%+4%)÷2=3%C. (2%+4%)÷3=2%453025%1%2%5.1++++3%1%2%5.1⨯⨯6. 甲、乙两组工人的平均日产量分别为18件和15件。
若甲乙两组工人的平均日产量不变,但是甲组工人数占两组工人总数的比重下降,则两组工人总平均日产量( )。
A. 上升B. 下降C. 不变D.可能上升,也可能下降7. 当各个变量值的频数相等时,该变量的()。
A. 众数不存在B. 众数等于均值C. 众数等于中位数8. 如果你的业务是提供足球运动鞋的号码,那么哪一种平均指标对你更有用?( )A. 算术平均数B. 几何平均数9. 某年年末某地区城市和乡村平均每人居住面积分别为30.3和33.5平方米,标准差分别12.8和13.1平方米,则居住面积的差异程度( )。
A. 城市大B. 乡村大10. 下列数列的平均数都是50,在平均数附近散布程度最小的数列是( )。
统计学课后练习题。部分题目有答案。

第三章统计数据的整理和显示习题二、单项选择题1.统计分组的关键问题是( A >A确定分组标志和划分各组界限 B确定组距和组数C确定组距和组中值 D确定全距和组距4.某连续变量数列,其末组为开口组,下限为200,又知其邻组的组中值为170,则末组组中值为(C >b5E2RGbCAP每个组上限与下限的中点值称为组中值,对于开口组的组限是按相邻组的组距来计算的,所以末组开口组的组中值=末组下限+邻组组限/2=200+<200-170)=230p1EanqFDPwA260 B 215 C 230 D 1855.下列分组中按品质标志分组的是( B >品质标志是说明事物的性质或属性特征的,它反映的是总体单位在性质上的差异,它不能用数值来表现。
A人口按年龄分组 B产品按质量优劣分组C企业按固定资产原值分组 D乡镇按工业产值分组6.对企业先按经济类型分组,再按企业规模分组,这样的分组,属于( C >A简单分组 B平行分组 C复合分组 D再分组7.用组中值代表各组内的一般水平的假定条件是( D > A各组的次数均相等 B各组的组距均相等C各组的变量值均相等 D各组次数在本组内呈均匀分布9.对某地区的全部商业企业按实现的销售额多少进行分组,这种分组属于( A >A变量分组 B属性分组 C分组体系 D复合分组10.在频数分布中,频率是指( C >A各组频数之比 B各组频率之比 C各组频数与总频数之比 D 各组频数与各组次数之比11.频数分布用来表明( A >A总体单位在各组的分布状况 B各组变量值构成情况C各组标志值分布情况 D各组变量值的变动程度12.在分组时,若有某单位的变量值正好等于相邻组的下限时,一般应将其归在( B >A上限所在组 B下限所在组C任意一组均可 D另设新组13.在编制组距数列时,当全距不变的情况下,组距与组数的关系是( B >A正例关系 B反比例关系 C乘积关系 D毫无关系14.统计表的宾词是用来说明总体特征的( C >A标志 B总体单位 C统计指标 D统计对象15.统计表的主词是统计表所要说明的对象,一般排在统计表的( A >A左方 B上端中部 C右方 D下方三、多项选择题1.统计分组的作用在于( BCD >A区分现象的类型 B反映现象总体的内部结构变化C比较现象间的一般水平 D分析现象的变化关系 E研究现象之间数量的依存关系2.指出下表表示的分布数列所属的类型(ABC >A品质数列 B变量数列 C分组数列 D异距数列 E等距数列3.指出下列分组哪些是品质分组( ABCD >A人口按性别分组 B企业按产值多少分组C家庭按收入水平分组 D在业人口按文化程度分组E宾馆按星级分组6.从形式上看,统计表由哪些部分构成(CDE>A总标题 B主词 C纵栏标题 D横行标题 E宾词7.按主词是否分组,统计表可分为( AC >A单一表 B简单表 C分组表 D复合表 E综合表9.统计数据整理的内容一般有( BCE >A对原始数据进行预处理 B对统计数据进行分组C 对统计数据进行汇总 D对统计数据进行分析E编制统计表、绘制统计图11.某单位100名职工按工资额分为300以下、300-400、400-600、600-800、800以上等五个组。
第三章统计学课后习题答案

第三章统计学课后习题答案第三章统计学课后习题答案统计学是一门研究数据收集、分析和解释的学科,它在各个领域都有广泛的应用。
在学习统计学的过程中,做课后习题是非常重要的一部分,它可以帮助我们巩固所学的知识,提高解决实际问题的能力。
本文将为大家提供第三章统计学课后习题的答案,希望对大家的学习有所帮助。
1. 什么是样本调查?与全面普查有什么区别?样本调查是指通过对一部分个体进行调查和观察,从而推断出整个总体的特征和规律的方法。
与样本调查相对应的是全面普查,全面普查是指对总体中的每一个个体进行调查和观察。
样本调查相对于全面普查来说,具有成本低、效率高的优势。
通过合理选择和处理样本,可以在保证统计结果的准确性的同时,节省调查成本和时间。
2. 什么是抽样误差?如何减小抽样误差?抽样误差是指样本统计量与总体参数之间的差异。
在样本调查中,由于样本的随机性,样本统计量与总体参数之间会存在一定的差异。
为了减小抽样误差,可以采取以下措施:- 增大样本容量:样本容量越大,样本统计量与总体参数之间的差异越小,抽样误差也就越小。
- 采用分层抽样:将总体划分为若干个层次,然后在每个层次上进行抽样,可以减小抽样误差。
- 采用整群抽样:将总体划分为若干个群体,然后随机选择一部分群体进行调查,可以减小抽样误差。
3. 什么是抽样分布?如何描述抽样分布?抽样分布是指在同样的抽样条件下,重复进行样本调查,得到的样本统计量的分布。
抽样分布的特点是:在样本容量足够大的情况下,抽样分布的形状逐渐接近正态分布。
根据中心极限定理,当样本容量足够大时,样本均值的抽样分布近似服从正态分布。
抽样分布可以通过描述统计量来进行描述。
常用的描述统计量有样本均值、样本方差、样本比例等。
通过计算样本统计量的平均值和标准差,可以对抽样分布进行描述。
4. 什么是置信区间?如何计算置信区间?置信区间是指通过样本统计量对总体参数进行估计的区间。
置信区间的计算方法根据不同的参数类型有所不同。
高等职业教育“十一五”规划教材《统计学》第三章课后习题及答案

高等职业教育“十一五”规划教材《统计学》第三章课后习题及答案一.判断题1.对于连续型变量,其组限是按照“上限不包括在内”的原则进行汇总的。
对。
所谓“上组限不在内”的原则,是对连续变量分组采用重合组限时,习惯上规定一般只包括本组下限变量值的单位,而当个体的变量值恰为组的上限是时,不包括在本组。
2.统计资料的整理不仅是对原始资料的整理,而且还包括对次级资料的整理。
对。
3.在确定组限时,最大组上限必须大于最大变量值,最小组下限必须小于最小变量值。
错,等于也可在闭口组中试用。
4.对统计总体进行分组是由于总体各单位的“同质性”所决定的。
错,将原始数据按照某种标准化分成不同的组别。
5.连续型变量在进行分组时,其组限可以采取“不重叠”式表示。
对。
二.单项选择题1.某连续型变量的组距数列,其末组为开口凯旋而归,下限为600,其邻组的组中值为550,则末组的组中值为(B)A.550B.650C.700D. 750由于是连续型变量,变量值之间是连续的。
又因为末组的开口下限比邻组中值要大,注意它是一个递减变量数列。
而一个组的最小值,称为下限。
所以这里的下限,实际才是邻组的上限。
所以末组的下限=邻组的上限,因此邻组的上限也是600。
又有邻组的组中值是550,所以可以确定邻组的组距为100。
再利用公式:缺上限开口组组中值=下限+邻组组距/2可得末组组中值为650。
2.对一个总体选择三个标志做复合分组,按各个标志所分的组数分别为3、4、5,则所分的全部组数为(A)A.60B.12C.30D.63.某小区居民人均月收入最高为5500元,最低为2500元,据此分为6组,形成等距数列,其组距应为(A)A.500B.600C.550D.6504.统计资料整理的首要环节是(C)A.编制统计报表B.审核汇总资料C.审核原始资料D.设计整理方案5.某年收入变量数列,其分组依次为10万元以下,10-20万元,20-30万元,30万元以上,则有(C)A、10万元应归入第一组B、20万元应归入第二组C、20万元应归入第三组 D、30万元应归入第三组6.组数与组距的关系是(A)A.组数越多,组距越小B.级数越多,组距越大C.组数与组距无关D.组数越少,组距越小三.简答题1.简述统计整理的意义及内容统计整理,首先要搞清楚教材当中关于统计整理的内容,通常理解的统计整理包括制作次数分布、或者给出排秩、等级的结果,有些还可能包括对数据的类型的判别、编码和对原始数据的必要转换等.有些人认为描述统计也可以视为统计整理的内容,或者是汇总统计的内容.根据统计整理的内容再来回答其意义.主要是可以在正式的描述统计和推断统计之前,预先了解和掌握数据的大致状况,尤其是其分布和次数特征,以便根据数据的类型选择适当的统计方法(不论是描述统计还是推断统计,很重要的一点是依据数据的类型来选择统计法).有些时候,需要对数据进行必要的转换,也是为了便于后继的统计,如由量表原始数据转换成量表得分,原始数据转换成标准分数,或者转换成可统计的某种指标等.总之,数据整理是为了服务于后继的统计过程,使得原始测量数据符合统计方法的需要,同时,也是为统计方法的选择提供依据.2.简述数据的类型及整理方法(1)分类数据把数据按照一定的标志进行分类,形成各且单位数在各组的分布,并用表格形式表现出来,称为频数分布,落在某一特定类型(或组)中的数据个数,称为频数,也称次数。
统计学练习题及答案

第三章数据分布特征的描述1.下面是我国人口和国土面积资料:────────┬───────────────│根据第四人次人口普查调整数指标├──────┬────────│1982年│1990年────────┼──────┼────────人口总数│101654 │114333男│52352 │58904女│49302 │55429────────┴──────┴────────国土面积960万平方公里。
试计算所能计算的全部相对指标。
2.某企业2014年某产品单位成本520元,2015年计划规定在上年的基础上单位成本降低5%,实际降低6%,试确定2015年单位成本的计划数与实际数,并计算2015年单位成本比计划降低多少3.某市共有50万人,其市区人口占85%,郊区人口占15%,为了解该市居民的收入水平,在市区抽查了1500户居民,每人平均收入为1400元;在郊区抽查了1000户居民,每人年平均收入为1380元,若这两个抽样数字具有代表性,则计算该市居民年平均收入应采用哪一种形式的平均数方法进行计算4根据上表资料计算:(1)哪个班级统计学成绩好(2)哪个班级的成绩分布差异大哪个班级的成绩更稳定5.2014年8月份甲、乙两农贸市场资料如下:────┬──────┬─────────┬─────────品种│价格(元/斤)│甲市场成交额(万元)│乙市场成交量(万斤)────┼──────┼─────────┼─────────甲│││2乙│││1丙│││1────┼──────┼─────────┼─────────合计│──││4────┴──────┴─────────┴─────────试问哪一个市场农产品的平均价格较高并说明原因。
6.某车间有甲、乙两个生产组,甲组平均每个工人的日产量36件,标准差件。
乙组工人资料如下:要求:(1)计算乙组平均每个工人的日产量和标准差。
(2)比较甲、乙两个生产小组哪个组的平均日产量更有代表性比较哪组的产量更稳定比较哪组的产量差异大第四章抽样调查检验结果如下:1.某进出口公司出口茶叶,为检查其每包规格的重量,抽取样本100包,(1)确定每包平均重量的抽样平均误差和极限误差;(2)估计这批茶叶每包平均重量的范围,确定是否达到规格要求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前面章节及第三章综合指标答案
一、选择题
1、杭州地区每百人手机拥有量为90部,这个指标是 D
A、比例相对指标
B、比较相对指标
C、结构相对指标
D、强度相对指标
2、某组数据呈正态分布,计算出算术平均数为5,中位数为7,则该数据分布为A
A、左偏分布
B、右偏分布
C、对称分布
D、无法判断
3、加权算术平均数的大小D
A 主要受各组标志值大小的影响,与各组次数多少无关;
B 主要受各组次数多少的影响,与各组标志值大小无关;
C 既与各组标志值大小无关,也与各组次数多少无关;
D 既与各组标志值大小有关,也受各组次数多少的影响
4、已知一分配数列,最小组限为30元,最大组限为200元,不可能是平均数的为D
A、50元
B、80元
C、120元
D、210元
5、比较两个单位的资料,甲的标准差小于乙的标准差,则D
A 两个单位的平均数代表性相同
B 甲单位平均数代表性大于乙单位
C 乙单位平均数代表性大于甲单位
D 不能确定哪个单位的平均数代表性大
6、若单项数列的所有标志值都增加常数9,而次数都减少三分之一,则其算术平均数A
A、增加9
B、增加6
C、减少三分之一
D、增加三分之二
7、与变量值相同计量单位的是ABCDF
A 全距
B 调和平均数
C 平均差
D 标准差
E 离散系数
F 算术平均数
8、与变量值同比例变化的是ABDEF
A 算术平均数
B 调和平均数
C 几何平均数
D 全距
E 标准差
F 平均差
G 标准差系数
9、人口普查中以每个常住居民为调查单位,下面属于标志的是AB
A 性别
B 年龄
C 男性
D 人口总数
E 未婚
10、对浙江财经学院学生的基本情况进行调查,属于数量标志的是BD
A 平均支出
B 年龄
C 年级
D 体重
E 学生总数
二、计算题
1、已知甲小区居民平均年龄为37岁,标准差为12岁,现对乙小区居民年龄进行抽样调查,得到资料如下(保留1位小数):
根据以上资料计算:(保留1位小数)
(1)计算乙小区居民的平均年龄;
(2)比较甲乙两小区平均年龄的代表性大小;
解:
(组中值计算1分)
(1)(岁)0170
6464f
xf x .38==
=
∑∑ (3分)
(2) 岁)(.941170
37544f
f
)x -x (2
==
=
σ
∑∑ (3分)
或岁)(.9418
3170
283328x f
f x 2
2
2
=-=
-=
σ∑∑
甲:%
.42337
12x
V ==
σ=
甲 (1分)
乙:%2.3938
14.9x
V ==
σ=
乙 (1分)
甲乙V V >,所以甲小区的平均年龄更有代表性 (1分)
2、已知某企业职工工资情况如下:
根据资料计算该企业职工工资的平均数,众数和中位数。
(保留1位小数) 解:
(组中值计算1分)
(1)
(元)2625240
630000f
xf x ==
=
∑∑ (3分)
(2)人数最多为第三组,所以众数组为 2000-4000
(元)52545100050100401004010020002
11
0.)
()()
(d x m L =⨯-+--+
=⨯∆+∆∆+
= (3分)
(3)1202
240
2
f ==∑
,根据向上累计,中位数组为2000-3000。
(元)26001000100
60120200021
=⨯-+=⨯-+
=-∑
d f S f x m m
m L e (3分)
3、已知甲单位职工劳动生产率资料如下:(保留2位小数)(标准差系数以百分数表示,保留2位小数,指的是百分数分子项保留2位小数)
根据以上资料计算该单位职工劳动生产率的平均数、标准差。
又已知乙单位职工平均劳动生产率为3.6万元/人,标准差为1.65万元/人,判断哪个单位职工的劳动生产差别大。
解:
(组中值计算1分)
(1)人)(万元/98.15099m/x
m x ===
∑∑ (4分)
(2)人)万元/(10.198
.150
256.5x f
f x 2
2
2
=-=
-=
σ∑∑
(4分)
(3) %56.551.98
1.10x
V ==σ=σ (1分)
4、某商店2003年实际销售额为1500万元,超额完成计划10%,计算2003年计划销售额。
5、某企业2003年计划产量比上一年增长10%,实际比计划少完成5%,计算实际产量比上一年则增长多少?
(万元)
计划完成程度
实际销售额计划销售额6413631011500.%
=+=
=
%
.%%541511011
=--⨯+=-⨯=)()(计划完成程度计划产量增长率实际产量增长率。