一阶微分方程求解

合集下载

一阶微分方程解法

一阶微分方程解法

y x0 4
的特解.
解 分离变量, 得 sinydy sinxdx
cos y cosx
两边积分,得 ln c o sy ln c o s x ln c
于是原方程的通解为 c o sy c c o sx
3
又将初始条件
y x0 4
代入通解中, 得 c
2 2
故满足初始条件的特解为 cosy 2cosx
12
将 y与y’代入方程, 并整理, 得 c'(x) ex
两端积分, 得 c(x)ex c
故原方程的通解为 y = ex + c (x+1)2
例8 求方程 sin2y + xcoty dy = dx 的通解及满足初始 条件 y|x=1 = π / 2 的特解.
解 将方程改写为 dx xcot y sin2 y
dx
解 将方程恒等变形为 dy y ln y
dx x x
令uy, 即yux 则得 dy x du u
x
dx dx
7
代入原方程,

du x
u
ulnu
dx
分离变量, 得
du dx u(ln u 1) x
两端积分, 得 ln (ln u 1 ) ln x ln c
即 lnucx1 将 u y代 入 上 式 , 并 化 简 得 方 程 的 通 解 为
x
y xecx1
8
三. 一阶线性微分方程 形如 y’+ pxy = q(x)的方程,称为一阶线性微分方程. 若 qx = 0 , 则称方程 y’+ p(x)y = 0 为一阶齐次线性微分方程 若 qx ≠ 0 , 则称方程 y’+ p(x)y = q(x) 为一阶非齐次线性微分方程. 1.一阶齐次线性微分方程的通解 方程 y’+ pxy = 0 是变量可分离的方程, 其通解为

一阶微分方程的求解

一阶微分方程的求解
一阶其次微分方程的通解可以通过猜试法来求解。首先,需要了解线性微分方程解的结构,即通解x(t)由齐次线性微分方程的通解xh(t)和非齐次线性微分方程的一个特解xp(t)两部分组成。其次,求解齐次方程通解xh(t),可以设定解的形式为xh(t)=Kest,代入齐次方程后得到特征方程,解出特征根s=A,从而得到xh(t)=KeAt,其中K为任意常数,可由初始条件确定。然后,求解非齐次方程特解xp(t),需要根据输入函数w(t)的形式假定xp(t)的形式,并通过表格进行对应求解。最后,将xh(t)和xp(t)相加,得到一阶其次微分方程的通解x(t常数K,从而得到完整的解答。

一阶微分方程的解法

一阶微分方程的解法

一阶微分方程的解法一、分离变量法:分离变量法适用于可分离系数的方程,即可以将微分方程变换成关于未知函数的形式。

例如,考虑一阶微分方程dy/dx = f(x)g(y),我们可以将方程变换为dy/g(y) = f(x)dx的形式,然后对方程两边同时积分,即可求解出未知函数y(x)的表达式。

二、齐次方程法:齐次方程是指一阶微分方程可以表示为dy/dx = f(y/x)的形式。

对于这种类型的方程,我们可以通过变量替换来将其转化为可分离变量的方程。

设y = vx,其中v是未知函数。

将y = vx代入原方程,对方程进行求导得到dy/dx = v + x*dv/dx。

将这两个式子代入原方程,得到v +x*dv/dx = f(v)。

将此方程化简为可分离变量的形式后,进行变量分离、积分的步骤,即可得到未知函数v(x)的表达式。

进一步代回y = vx,即可求得原方程的解。

三、一阶线性方程法:一阶线性方程是指可以表示为dy/dx + P(x)y = Q(x)的方程。

对于这种类型的方程,我们可以利用积分因子法来求解。

设积分因子为μ(x) = exp[∫P(x)dx],其中P(x)是已知的系数。

对原方程两边同时乘以μ(x),可以得到μ(x)*dy/dx + P(x)μ(x)y =Q(x)μ(x)。

左边这个式子是一个恰当方程的形式,我们可以将其写成d(μ(x)y)/dx = Q(x)μ(x)的形式。

对上述方程进行积分后,再除以μ(x),即可得到未知函数y(x)。

四、可化为可分离变量的方程:有一些一阶微分方程虽然不能直接分离变量,但是可以通过一些代换或适当变量变换后化为可分离变量的方程。

例如,对于方程dy/dx = f(ax + by + c),我们可以设u = ax + by + c,将其转化为关于u和x的方程。

然后对方程两边进行求导,并代入y = (u - ax - c)/b,即可得到关于u和x的可分离变量方程。

最后通过分离变量、积分等步骤,计算出未知函数y(x)的表达式。

一阶微分方程的求解

一阶微分方程的求解

取步长h=0.1,并把计算结果与精确解比较
解:据后向欧拉法 yn+1
yn
2 h(
t n1
yn1
t n2+1e tn+1 )
即 : yn+1
yn
ht e 2
t n+1
n+1
2
1 h
t n+1

y0 y(1) 0
tn t0 nh 1 0.1n
计算结果列表(yn为后向欧拉法计算近似值,
y(为tn )精确值)
yk1 yk hf (tk1 , yk1 )
y(t)
y3
在任一步长内,用一段直线
代替函数 y(的t)曲线,此直
线段的斜率等于该函数在该 步长终点的斜率。
y2
y1
y(t3)
y(t2)
y(t1)
y0
y(t0) h
h
h
t
0
t0
t1
t2
t3
例2. 应用后向欧拉法解初值问题
y' 2 y t 2e t ,1 t 2, y(1) 0 t
二、后向欧拉法
对于给定初始条件 y(t0 ) y0的微分方程
y'(t) f ( y(t), t)
用一阶差商近似代替 y(在t) 一个步长终点的一阶导数, 则原微分方程化为:
其近似值:
y(tk1 ) h
y(tk )
y'(tk1 )
yk1 yk y'k1 h 欧拉隐式公式
后向欧拉法的几何意义:
n
tn
0 1.0
1 1.1
2 1.2
3 1.3
4 1.4
5 1.5
6 1.6
7 1.7
yn
0 0.271828183 0.684755578 1.276978344 2.093547688 3.187445122 4.620817846 6.466396378

一阶齐次微分方程求解

一阶齐次微分方程求解

一阶线性齐次微分方程式求解
一阶线性齐次微分方程公式:y'+P(xy)=Q(x)。

Q(x)称为自由项。

一阶,指的是方程中关于Y的导数是一阶导数。

线性,指的是方程简化后的每一项关于y、y'的指数为1。

通解求法:一阶线性微分方程的求解一般采用常数变易法,通过常数变易法,可求出一阶线性微分方程的通解。

对于一阶线性微分方程的求解,可以从不同的角度、不同的思路去观察和思考,其解题的方法不是唯一的,这可以开阔我们的思路、丰富我们的解题方法。

微分方程指含有未知函数及其导数的关系式。

解微分方程就是找出未知函数。

是伴随着微积分学一起发展起来的。

微积分学的奠基人Newton和Leibniz的著作中都处理过与微分方程有关的问题。

微分方程的应用十分广泛,可以解决许多与导数有关的问题。

物理中许多涉及变力的运动学、动力学问题,如空气的阻力为速度函数的落体运动等问题,很多可以用微分方程求解。

此外,微分方程在化学、工程学、经济学和人口统计等领域都有应用。

一阶微分方程的解法

一阶微分方程的解法

一阶微分方程的解法
一阶微分方程的通解形式为:
$${\frac {dy}{dx}}+P(x)y=Q(x)$$。

其中$P(x)$和$Q(x)$是已知函数。

解法有以下几种:
1. 变量分离法:将 $dy$ 和 $dx$ 分离到方程两边,然后积分得到$y$ 的通解。

2. 齐次方程法:当 $Q(x)=0$ 时,方程被称为齐次方程。

通过将$y$ 转化为 $u=\frac{y}{x}$ 的方式,将齐次方程转化为分离变量的形式,然后积分得到 $u$ 的通解,再将 $u$ 转化为 $y$。

3.一阶线性非齐次方程法:对于一阶线性非齐次方程,可以通过求解齐次方程的解和特解的方式得到通解。

4. 一阶恰当方程法:对于一个形如 $M(x,y)dx+N(x,y)dy=0$ 的微分方程,如果 $\frac{\partial M}{\partial y} = \frac{\partial
N}{\partial x}$,那么该方程就是恰当方程。

此时,可以通过求解方程的积分因子,将恰当方程变为恰好可积分的形式,然后求解得到通解。

5.变系数线性微分方程法:如果$P(x)$或$Q(x)$是$x$的函数,那么可以通过变量代换将其转化为常数系数的线性微分方程,然后采用常数系数线性微分方程的解法求解得到通解。

这些解法都有其适用的场合,具体应根据问题的特点来选择相应的方法。

一阶线性微分方程通解公式

一阶线性微分方程通解公式引言在微积分中,线性微分方程是一种非常重要的方程形式。

一阶线性微分方程是指关于未知函数及其导数的一阶方程,且方程可以写成如下形式:$$\\frac{dy}{dx} + P(x)y = Q(x)$$其中,P(x)和Q(x)分别是给定的函数。

解一阶线性微分方程的通解公式可以帮助我们找到方程的所有解。

解一阶线性微分方程的通解公式我们使用常数变易法来解一阶线性微分方程。

假设方程的解为y(x),且y(x)的导数为$\\frac{dy}{dx}$,则通解公式可表示为:$$y(x) = \\frac{1}{\\mu(x)} \\left(\\int \\mu(x)Q(x)dx + C\\right)$$其中,$\\mu(x)$是一个称为积分因子的函数,C是一个任意常数。

求解积分因子为了求解积分因子$\\mu(x)$,我们需要满足以下条件:1.积分因子$\\mu(x)$是一个非零函数,即$\\mu(x) \ eq 0$。

2.方程$\\mu(x)\\left(\\frac{dy}{dx} + P(x)y\\right) = \\mu(x)Q(x)$是一个恰当微分方程。

为满足第二个条件,我们引入一个新的函数M(x,y),使得$\\frac{\\partial M}{\\partial x} = \\frac{\\partial}{\\partial y}[\\mu(x)\\left(\\frac{dy}{dx} +P(x)y\\right)]$。

利用偏导数的性质,我们可以得到:$$\\frac{\\partial M}{\\partial x} = \\mu'(x)\\left(\\frac{dy}{dx} +P(x)y\\right) + \\mu(x)\\left(\\frac{d}{dx}\\frac{dy}{dx} + P'(x)y +P(x)\\frac{dy}{dx}\\right)$$化简上式,并与$\\frac{\\partial M}{\\partial x} = \\frac{\\partial}{\\partial y}[\\mu(x)\\left(\\frac{dy}{dx} + P(x)y\\right)]$进行对比,得到:$$\\mu'(x)\\left(\\frac{dy}{dx} + P(x)y\\right) +\\mu(x)\\left(\\frac{d}{dx}\\frac{dy}{dx} + P'(x)y + P(x)\\frac{dy}{dx}\\right) = \\frac{d}{dx}[\\mu(x)\\left(\\frac{dy}{dx} + P(x)y\\right)]$$对以上公式重新整理,得到:$$\\mu'(x)\\frac{dy}{dx} + \\mu(x)\\frac{d^2y}{dx^2} + \\mu(x)P'(x)y =\\mu'(x)\\frac{dy}{dx} + \\mu(x)P(x)\\frac{dy}{dx} + \\mu(x)P'(x)y$$ 进一步简化,得到:$$\\mu(x)\\frac{d^2y}{dx^2} = \\mu(x)P(x)\\frac{dy}{dx}$$根据以上结果,我们可以得到一个关于$\\mu(x)$的常微分方程:$$\\frac{d^2\\mu(x)}{dx^2} = P(x)\\frac{d\\mu(x)}{dx}$$求解上述常微分方程,找到$\\mu(x)$后,我们就可以利用通解公式求解一阶线性微分方程的解。

一阶常微分方程的解法

一阶常微分方程的解法微积分理论中,微分方程是一个非常重要的分支,它们通常用来描述一些变化或进化过程中的物理现象、生物现象或经济现象等等。

其中,一阶常微分方程是微分方程中最简单的一类。

在这篇文章中,我们将介绍一阶常微分方程的求解方法。

一、分离变量法分离变量法是求解一阶常微分方程最简单也是最常用的方法。

这个方法的基本思想是将微分方程中的变量分开,并将每个变量移到不同的方程两侧,最终得到可以分别积分的两个方程。

具体来说,如果给定一个一阶常微分方程$$\frac{dy}{dx}=f(x,y)$$我们可以将它改写为$$dy=f(x,y)dx$$然后对两边同时积分,得到$$\int dy=\int f(x,y)dx+C$$其中C为常数。

这个方法的局限性在于只适用于一些特定的微分方程,例如y'=ky这类的方程就可以很容易地用这个方法求解。

举个例子,考虑方程$$\frac{dy}{dx}=x^2y$$我们将它改写为$$\frac{dy}{y}=x^2dx$$然后对两边同时积分,得到$$\ln|y|=\frac{1}{3}x^3+C$$最终解为$$y=Ce^{\frac{1}{3}x^3}$$其中C为常数。

二、齐次方程如果方程中的所有项均能够写成y和x的某个函数的乘积,那么这个方程就是齐次方程。

对于这类方程,我们可以利用变量替换来把它转化为分离变量的形式。

具体来说,如果给定一个一阶常微分方程$$\frac{dy}{dx}=f(\frac{y}{x})$$我们可以进行变量替换,令y=ux,其中u是关于x的未知函数。

因此,$$\frac{dy}{dx}=u+x\frac{du}{dx}$$将其带入原方程,得到$$u+x\frac{du}{dx}=f(u)$$将u视为自变量,x视为函数,可转化为$$\frac{dx}{du}=\frac{1}{f(u)-u}$$然后对两边同时积分,得到$$x=\int \frac{1}{f(u)-u}du+C$$最后将u替换成y/x即可。

一阶常微分方程若干求解技巧

一阶常微分方程若干求解技巧1. 可分离变量法:如果方程可以写成dy/dx=g(x)h(y),则可以将方程分离为两个变量的方程,然后进行分别积分得到解。

2. 齐次方程法:如果方程dy/dx=f(x,y)可以写成dy/dx=g(x,y),其中g(x,y)是齐次函数,则可以进行变量代换y=ux,将方程转化为关于u和x的可分离变量方程。

3. 全微分法:如果方程可以写成M(x,y)dx+N(x,y)dy=0,其中M(x,y)和N(x,y)是关于x和y的已知函数,则可以判断M(x,y)和N(x,y)的一阶偏导数是否相等,如果相等,则方程为全微分方程,可以求出方程的解。

4. 高阶可降阶方程法:对于方程dy/dx=f(x,y),可以进行变量代换u=y',将方程转化为关于u和x的高阶方程,然后再进行求解。

5.变量替换法:通过适当的变量代换,将原方程转化为形式简单的方程,然后进行求解。

6. 恰当方程法:如果方程M(x,y)dx+N(x,y)dy=0满足∂M/∂y=∂N/∂x,则称该方程为恰当方程,可以使用求解恰当方程的方法求解。

7. 积分因子法:对于形式为M(x,y)dx+N(x,y)dy=0的方程,可以通过乘以适当的积分因子来使方程变为恰当方程,然后再进行求解。

8. 线性方程法:对于形如dy/dx+p(x)y=q(x)的线性方程,可以通过求解其特征方程来得到通解。

9. 变系数线性方程法:对于形如dy/dx+p(x)y=q(x)的非齐次线性方程,可以通过利用常数变易法来求解。

10.积分组合法:对于一些特殊形式的方程,可以通过将方程进行适当的积分组合,从而得到解的形式。

以上是一些常见的一阶常微分方程的解法技巧,不同的方程形式可能需要使用不同的解法。

熟练掌握这些技巧可以帮助我们更好地求解一阶常微分方程,解决实际问题。

一阶微分方程的解法


解:因为 a1
b1
1
1 20
a2 b2 1 1
线性方程组


y y

x x
1 5

0 的解 0


x0 y0

2的解 3
因此令

x y
2 代入原方程得:d
3
d



解此齐次微分方程得通解为:
ln( 2 2 ) 2 arctan C
例9 求解微分方程
( x y cos y)dx x cos y dy 0.
x
x
解 令u y, 则 dy xdu udx, x
( x ux cos u)dx xcos u(udx xdu) 0,
cos udu dx , sin u ln x C, x
,
ln y 1 ln(1 x2 ) lnC 2
y c 1 x2为所求通解.
例3 求解微分方程dy e x 1 y2 . dx
解 当 1 y2 0时,可分离变量得
dy e xdx 1 y2
两边同时积分得
dy e xdx
1 y2
通解为 arcsin y e x C C为任意常数
1 ( dz a) f ( z c)
b dx
c1
可分离变量的微分方程.
当b1 0时,
令 a1 b1 ,
ab
方程可化为 dy f ( ax by c ), dx (ax by) c1
令 z ax by,
则 dz a b dy, 1 ( dz a) f ( z c ).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设一阶微分方程 初始条件
dx dt
-Ax = Bw
x(t0) = X0
(7-8) (7-9)
一、直接积分法 方程式两边同时乘以e -At,整理后得
dห้องสมุดไป่ตู้d
e –A • x
= e –A Bw
两边从 t0 到 t 对d积分得
t
e –At x(t) = e –At0 • x(t0) +
e –A Bw d t0
电路分析基础——第二部分:第七章 目录
第七章 一 阶 电 路
1 分解方法在动态电 路分析中的应用
2 一阶微分方程求解
3 零输入响应
4 零状态响应
5 线性动态电路的叠加定理
6 三要素法 7 阶跃函数和阶跃响应 8 一阶电路的子区间分析
电路分析基础——第二部分:7-2
1/5
7-2* 一阶微分方程的求解
由此可得
x(t) = e A(t - t0) x(t0) + e AtB
t e –A w d t0
(7-10)
电路分析基础——第二部分:7-2
2/5
二、猜试法 对解的形式进行猜试后再求解。要点如下:
(一)线性微分方程解的结构
如 (7-8) 式所示的非齐次线性微分方程,其通解 x(t) 由两部
分组成,即
则由(7-18)式可得 x(t0) = KeAt0 + xp(t0) = X0
(7-19)
由此可确定常数 K,从而可求得非齐次方程式(7-8)的解答。
x(t) = xh(t) + xp(t)
(7-11)
其中, xh(t) 为与 (7-8) 式对应的齐次线性微分方程,即
dx dt
-Ax = 0
(7-12)
的通解; xp(t) 为非齐次线性微分方程的一个特解。
(二)齐次方程通解 xh(t) 的求解
设解为
xh(t) = Kest
(7-13)
代入(7-12)方程,得 Ksest -KAest = 0
(7-14)
电路分析基础——第二部分:7-2
两边除以 Kest 得
s -A = 0
3/5
(7-15)
(7-15)式称为特征方程,其解为 s = A 称为微分方程的特征根或固有频率。因此
xh(t) = KeAt K为任意常数,可由初始条件确定。
(7-16) (7-17)
(三)非齐次方程特解 xp(t) 的求解 应根据输入函数 w(t )的形式假定 xp(t) 的形式,可按下表进行:
Qet
Pet ( = A) Psinbt
Qtet Q1sinbt+Q2cosbt
Pcosbt
Q1sinbt+Q2cosbt
电路分析基础——第二部分:7-2
5/5
(四) xh(t) 中常数 K 的确定 x(t) = xh(t) + xp(t) = KeAt + xp(t)
(7-18)
若已知初始条件
x(t0) = X0
表7-1
非齐次微分方程
dx dt
-Ax = Bw的特解形式
电路分析基础——第二部分:7-2
4/5
表7-1
非齐次微分方程
dx dt
-Ax
=
Bw的特解形式
输入函数 w(t) 的形式 P
特解 xp(t) 的形式 Q
Pt P0+P1t
P0 +P1t +P2t2 Pet (≠A)
Q0+Q1t Q0+Q1t Q0 +Q1t +Q2t2
相关文档
最新文档