制动系统设计(DOC)

合集下载

(完整word版)制动系统设计

(完整word版)制动系统设计

GD12A电动汽车行车制动系统设计毕业设计说明书姓名:俞翼鸿专业:汽车维修与检测班级:(2)指导老师: 邹章鸣南昌理工学院机械工程系1.。

目录摘要Troduction前言第一章绪论 (6)1。

1 制动系统设计的意义 (6)1。

2 制动系统研究现状 (6)1.3 本次制动系统应达到的目标 (6)1.4 本次制动系统设计要求 (6)第二章制动系统方案论证分析与选择 (7)2.1 制动器形式方案分析 (7)2。

1.1 鼓式制动器 (7)2。

1。

2 盘式制动器 (9)2。

2 制动驱动机构的结构形式选择 (10)2.2.1 简单制动系 (10)2。

2。

2 动力制动系 (10)2。

2。

3 伺服制动系 (11)2。

3 液压分路系统的形式的选择 (11)2.3.1 II型回路 (11)2.3.2 X型回/路 (12)2。

3。

3 其他类型回路 (12)2。

4 液压制动主缸的设计方案 (12)第三章制动系统设计计算 (15)3.1 制动系统主要参数数值 (15)3.1.1 相关主要技术参数 (15)3.1.2 同步附着系数的分析 (15)3.2 制动器有关计算 (16)3.2。

1 确定前后轴制动力矩分配系数β (16)3。

2。

2制动器制动力矩的确定 (16)3.2。

3 后轮制动器的结构参数与摩擦系数的选取 (17)3.2.4 前轮盘式制动器主要参数确定 (18)3。

3 制动器制动因数计算 (19)3.3.1 前轮盘式制动效能因数 (19)3.3。

2 后轮鼓式制动器效能因数 (19)3。

4 制动器主要零部件的结构设计 (20)第四章液压制动驱动机构的设计计算 (22)4。

1 后轮制动轮缸直径与工作容积的设计计算 (22)4.2 前轮盘式制动器液压驱动机构计算 (23)4.3 制动主缸与工作容积设计计算 (24)4.4 制动踏板力与踏板行程 (24)4.4。

1 制动踏板力 (24)4.4.2 制动踏板工作行程 (25)第五章制动性能分析 (26)5.1 制动性能评价指标 (26)5.2 制动距离S (26)5。

毕业设计论文—汽车制动系统的设计

毕业设计论文—汽车制动系统的设计

毕业设计论文—汽车制动系统的设计汽车制动系统的设计是一项关键的工程,它直接影响到汽车的安全性能。

本文旨在探讨汽车制动系统的设计原理、组成部分以及优化方法,以满足日益增长的汽车市场需求。

首先,汽车制动系统的设计原理基于转动部件的摩擦力和力矩平衡。

当驾驶员踩下制动踏板时,制动助力器将压力传递给制动主缸。

主缸生成高压液体,通过制动液管传输到车轮上的制动器。

与轮轴相连的制动器则通过摩擦力将车轮减速或停止。

一个典型的汽车制动系统由几个主要部分组成:制动踏板、制动助力器、主缸、制动液管、制动器和制动片。

制动踏板是驾驶员踩下的控制装置,通过运动传感器将信号传递给制动助力器。

制动助力器增加制动力,减少驾驶员踩踏的力量。

主缸是一个液压装置,将驾驶员施加的力量转化为液压压力,并将其传输到制动器上。

制动液管连接主缸和制动器,将液体压力传递给制动器。

制动器包括制动片和制动盘(或制动鼓),分别与车轮相连。

当制动片与制动盘(或鼓)接触时,摩擦力将车轮减速或停止。

为了提高汽车制动系统的性能,需要进行优化设计。

首先,制动系统的制动力和灵敏度需满足不同驾驶条件下的要求。

制动力是制动器产生的摩擦力,可以通过调整制动片和盘(或鼓)之间的接触面积、制动片的材料以及压力比例装置来实现。

灵敏度是指制动器对驾驶员踩踏力的响应程度,可以通过调整制动助力器的机械结构和材料来实现。

其次,制动系统的耐久性和可靠性也是关键要素。

车辆在长时间行驶中,制动系统需要承受较大的磨损和高温。

因此,制动片的材料和设计应具有良好的耐磨和耐高温性能。

此外,制动液管和连接件应具有高强度和密封性,以防止液压泄漏和系统失效。

最后,制动系统的安全性是设计的重要目标。

为了提高系统的安全性,制动系统应具有防抱死制动系统(ABS)和电子制动力分配系统(EBD)。

ABS系统能够避免车轮因制动过度而导致车辆失控,而EBD系统能够根据不同车轮的情况分配适当的制动力,以实现最佳制动性能。

汽车制动系统设计说明书

汽车制动系统设计说明书

目录第一章绪论 (1)1.1 本次制动系统设计的意义 (2)1.2 本次制动系统应达到的目标 (2)1.3 本次制动系统设计容 (3)1.4 汽车制动系统的组成 (3)1.5 制动系统类型 (3)1.6 制动系工作原理 (3)第二章汽车制动系统方案确定 (4)2.1 汽车制动器形式的选择 (5)2.2 鼓式制动器的优点及其分类 (6)2.3 盘式制动器的缺点 (8)2.4 制动驱动机构的结构形式 (8)2.4.1 简单制动系 (9)2.4.2 动力制动系 (9)2.4.3 伺服制动系 (10)2.5 制动管路的形式选择 (10)2.6 液压制动主缸方案的设计 (12)第三章制动系统主要参数的确定 (14)3.1 轻型货车主要技术参数 (14)的确定 (14)3.2 同步附着系数的3.3 前、后轮制动力分配系数 的确定 (15)3.4 鼓式制动器主要参数的确定 (16)3.5 制动器制动力矩的确定 (18)3.6 制动器制动因数计算 (19)3.6.1 制动器制动因数计算 (19)3.6.1 制动器制动因数计算 (20)3.7 鼓式制动器零部件的结构设计 (21)第四章液压制动驱动机构的设计计算 (24)4.1 制动轮缸直径d的确定 (24)的计算 (25)4.2 制动主缸直径d4.3 制动踏板力F (26)P4.4 制动踏板工作行程Sp (26)第五章制动性能分析 (27)5.1 制动性能评价指标 (27)5.2 制动效能 (27)5.3 制动效能的恒定性 (27)5.4 制动时汽车的方向稳定性 (28)5.5 前、后制动器制动力分配 (28)5.5.1 地面对前、后车轮的法向反作用力 (29)5.6 制动减速度j (29)5.7 制动距离S (29)5.8 摩擦衬片(衬块)的磨损特性计算 (30)5.9 汽车能够停留在极限上下坡角度计算 (32)第六章总结 (33)参考文献 (34)一.绪论汽车工业是一个综合性产业,汽车工业的生产水平,能够代表一个国家的整个工业水平,汽车工业的发展,能够带动各行各业的发展,进而促进我国工业生产的总体水品。

制动系统设计手册(NEW)

制动系统设计手册(NEW)
王工:
总体上写得不错,需要进一步改进的建议如下:
1.主要零部件的典型结构图。
2.分泵、总泵、吊挂助力器和阀等试验验证与试制验证的方法与标准(结合参考上次L项目验证计划)细化与补充。
3.分泵、总泵、吊挂助力器和阀的DFMEA分析的主要内容。
3.做到图文并茂,无经验的年轻的设计人员(《设计手册》主要读者)一看就明白。
3.3.6制动管路的布置:
首先以不与其它零部件干涉为前提,应尽量理顺;其次各管路的结构应合理,尤其是管路两端在整车行驶过程中有相对运动的件应考虑吸震方案,必要时采用软管连接;另外,在进行管路布置时应考虑管子的卡固,在空间允许的前提下管卡子的间隔以500~600mm为佳,当然在局部障碍部位可能要密一些。
真空助力器的直接作用在于降低制动踏板力,当制动踏板力太大时,仅依靠人的输入力(按照标准要求人的最大输入力不得大于700N)可能不足以使整车完全制动,而利用真空对助力器内橡胶膜片及反馈盘的作用可以成数倍(取决于真空助力器的助力比)地放大制动踏板的输入力,即增大制动总泵活塞的输入力,从而增大制动管路的压力。当然真空助力器助力比的选取应合适,助力比太大易使驾驶员失去踏板感,而太小又使人在制动过程中感到吃力,且对于一定规格的助力器来说,助力器的助力比越大,其最大输出拐点越低,这就容易造成整个制动过程在初期省力,但在后期特废力,严重时也会刹不住车,故真空助力器助力比的选取以使制动踏板力调整适当为宜。另当某一规格的助力器对整车制动踏板力的调整不能满足要求且适当调整助力比仍不能达到要求时应更换助力器的规格。
3.3制动系统各总成零部件在设计和布置过程中的注意事项:
3.3.1制动器总成:
优先采用社会成熟资源,但在与整车实际应用时应考察制动器的效能、制动底板、制动蹄铁、制动鼓的刚性与整车的符合性。

制动系统方案

制动系统方案
3.制动系统设计符合我国道路交通安全法规。
五、方案实施与验收
1.实施前,组织专业人员进行技术交底,确保施工人员了解方案内容。
2.施工过程中,严格按照方案要求进行操作,确保质量。
3.施工完成后,进行制动系统性能测试,确保制动效果达到预期目标。
4.验收合格后,对制动系统进行定期检测和维护,确保长期稳定运行。
2.降低制动系统故障率,延长系统使用寿命。
3.确保制动系统符合国家及行业标准,满足车辆行驶安全要求。
4.优化制动系统的经济性,降低维护成本。
三、方案内容
1.制动系统设计
(1)根据车辆类型、用途及行驶环境,选择合适的制动系统类型。
(2)采用模块化设计,提高制动系统的兼容性和可维护性。
(3)合理布局制动系统,优化制动力的分配,提高制动效能。
(2)制动鼓:选用高强度、耐磨、抗疲劳的制动鼓。
(3)制动片:选用摩擦系数稳定、耐磨、低噪音、环保的制动片。
(4)制动蹄:选用高强度、耐磨、抗疲劳的制动蹄。
(5)制动油管:选用耐压、耐高温、抗老化、防ቤተ መጻሕፍቲ ባይዱ漏的制动油管。
(6)制动泵:选用性能稳定、寿命长、噪音低的制动泵。
3.制动系统设计
(1)制动系统布局:合理布局制动系统,确保制动力的合理分配,提高制动效果。
(2)定期更换制动液,确保制动系统工作正常。
(3)定期检查制动片、制动盘等易损件,及时更换,确保制动效果。
(4)加强对制动系统的日常维护,保持清洁、干燥,防止腐蚀。
四、合法合规性
1.本方案遵循国家及行业标准,满足汽车制动系统的相关法规要求。
2.制动部件选用符合国家强制性产品认证(CCC)要求的产品。
(6)制动泵:选用性能稳定、寿命长、噪音低的制动泵,提高制动系统的整体性能。

盘式制动器制动系统设计

盘式制动器制动系统设计

XXX大学本科生毕业设计(论文)HX7200制动系设计学生姓名:______________学号:______________班级: ______________专业:______________指导教师:______________4月目录目录 ............................................................................................................................ 错误!未定义书签。

摘要 .......................................................................................................................... 错误!未定义书签。

Abstract ......................................................................................................................... 错误!未定义书签。

第1章绪论......................................................................................................... 错误!未定义书签。

1.1本课题研究背景............................................................................................. 错误!未定义书签。

1.2制动系统旳研究现实状况............................................................................. 错误!未定义书签。

制动系统项目规划方案设计

制动系统项目规划方案设计

制动系统项目规划方案设计1. 项目背景制动系统是汽车关键的安全装置之一,对于汽车的刹车性能和稳定性起着重要作用。

随着汽车行业的快速发展,制动系统技术也在不断进步和创新,为了满足市场需求,开展本次制动系统项目。

2. 项目目标本项目的目标是设计一个高性能、稳定可靠的制动系统。

具体目标如下:1. 提高汽车刹车性能,实现更短的制动距离;2. 提高制动系统的可靠性,减少制动故障的发生概率;3. 降低制动系统的成本,提高制动系统的性价比;4. 增加制动系统的功能,满足用户的个性化需求。

3. 项目内容本项目主要包括以下工作内容:1. 系统需求分析:对制动系统的功能和性能进行详细的分析和描述,明确项目的需求目标;2. 技术研究和方案设计:通过对国内外相关技术和方案的研究,设计出适合本项目需求的制动系统解决方案;3. 软硬件开发:根据项目需求,进行软硬件的开发工作,包括电子控制单元(ECU)开发、传感器的设计和制造等;4. 系统集成和测试:对开发完成的软硬件进行集成,进行系统测试,验证系统的性能和可靠性;5. 项目管理和技术支持:进行项目进度管理,确保项目按计划进行,同时提供技术支持和服务,保证项目顺利实施。

4. 项目计划根据以上的项目内容,制定了如下的项目计划:项目阶段开始日期结束日期系统需求分析2022年10月1日2022年10月31日技术研究和方案设计2022年11月1日2022年12月31日软硬件开发2023年1月1日2023年3月31日系统集成和测试2023年4月1日2023年5月31日项目管理和技术支持2023年6月1日2023年12月31日5. 项目风险与控制在项目实施过程中,可能会面临以下风险:1. 技术风险:对于一些新的技术和方案,可能存在技术实施风险,需要进行充分的技术研究和风险评估;2. 人力资源风险:项目所需的人力资源可能存在不足或者能力不匹配的问题,需要进行合理的人员配备和培训;3. 进度风险:项目实施过程中,可能会受到各种因素的影响,导致项目进度延误,需要进行进度的及时控制和跟踪。

制动系统设计计算报告

制动系统设计计算报告

制动系统设计计算报告引言:制动系统是现代车辆中非常重要的一部分,它对车辆的安全性能起着至关重要的作用。

制动系统的设计需要综合考虑多个因素,如车辆的速度、重量、制动距离等。

本报告将以款小型轿车制动系统设计为例,详细介绍制动系统设计中的相关计算。

设计目标:为确保车辆在不同速度下能够在较短的距离内停下,设计目标是使车辆在制动过程中的平均减速度为4m/s^2设计计算:1.制动力的计算制动力的大小与车辆质量和车辆的速度有关。

根据经验公式,制动力可由以下公式计算得出:制动力=车辆质量*减速度选择减速度为4m/s^2,则制动力可以由车辆质量乘以4得出。

2.制动距离的计算制动距离是指车辆从制动开始到完全停止所需要行驶的距离。

根据经验公式,制动距离可以由以下公式计算得出:制动距离=初速度^2/(2*加速度)在制动过程中,加速度是负值(减速),所以加速度取为-4m/s^2、根据具体车辆的初始速度,可以计算出相应的制动距离。

3.制动盘和制动钳的尺寸计算制动盘和制动钳的尺寸需要考虑车辆的速度和质量。

根据经验公式,制动盘的直径与车速和减速度有关,可以通过以下公式计算得出:制动盘直径=停车速度*车辆质量*系数/制动力在本设计中,选择停车速度为60 km/h,车辆质量为1000 kg,系数为0.7、根据以上参数,可以计算出制动盘的直径。

根据制动盘的直径,可以确定制动钳的尺寸。

制动盘和制动钳的尺寸需要满足制动力的需求,并能够有效散热,以免在制动过程中过热导致制动力减弱。

4.制动液系统的计算制动液的压力和制动钳的工作效果有关。

根据经验公式,制动液的压力可以由以下公式计算得出:制动液压力=制动力/制动钳有效面积制动液压力需要根据制动钳的效率和制动力来选择合适的值。

根据经验,选择制动液压力为5MPa。

结论:根据以上计算结果,制动系统的设计可以满足要求。

制动力、制动距离、制动盘和制动钳的尺寸以及制动液压力的计算都能够保证车辆在制动过程中的安全性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章 制动系统匹配与设计第七章 制动系统设计制动系是汽车的一个重要的组成部分。

它直接影响汽车的行驶安全性。

为了保证汽车有良好的制动效能,应该合理地确定汽车的制动性能及制动系结构。

7.1 制动动力学7.1.1 稳定状态下的加速和制动加速力和制动力通过轮胎和地表的接触面从车辆传送到路面。

惯性力作用于车辆的重心,引起一阵颠簸。

在这个过程中当刹车时,前后轮的负载各自增加或减少;而当加速时,情况正好相反。

制动和加速的过程只能通过纵向的加速度a x 加以区分。

下面,我们先来分析一辆双轴汽车的制动过程。

最终产生结果的前后轮负载ZVF '和ZhF ',在制动过程中,图7.1随着静止平衡和制动减速的条件而变为:()l h ma l l l mg F x V ZV--=' (7.1a ) l h ma l l mg F x V Zh+=' (7.1b ) 设作用于前后轴的摩擦系数分别为f V 和f h ,那么制动力为:V ZVXVf F F'= (7.2a ) h Zh Xhf F F '=' (7.2b )图7.1双轴汽车的刹车过程它们的总和便是作用于车辆上的减速力。

x Xh XV ma F F =+ (7.3)对于制动过程,f V 和f h 是负的。

如果要求两轴上的抓力相等,这种相等使 f V =f h =a x /g ,理想的制动力分配是:)/(])([gl h a l l g ma F x v x XV --=(7.4) )/(][gl h a gl ma F x v x Xh +=(7.5)这是一个抛物线F xh (F xv )和参数a x 的参数表现。

在图7.1的右半部分,显示了一辆普通载人汽车的理想制动力分配。

实践中,向两边分配制动力通常被选用来防止过早的过度制动,或是由刹车片摩擦偏差而引起的后轮所死,因为后轮锁死后将几乎无法抓地,车辆将会失去控制。

然而防抱死刹车系统将会减轻这个问题。

当然,每一个负载状态都有它各自的理想制动力分配。

如果所有负载状态都必须由一个固定的分配去应对,那么最重要的条件往往就是空车载司机的情况。

虽然,固定的分配在更多负载时无法实现最优化的制动力分配,b线显示了当后轴的制动力未超过理想值直到最大减速度为0.8g时的制动力分配情况。

弯曲的分配曲线可通过如下方法应用。

图 7.2 半挂车的刹车过程情况(c)使用一个后轴限压阀,情况(d)使用减压阀。

那些负载变化巨大的车辆,比如说卡车,或火车站货车及很多前轮驱动车,都有减压阀,并且带有一个可变的突变点,具体要看静止时的轴上负载(所谓的“制动力调节器”)。

在一辆双轴车上,轮子在制动中的负载只取决于减速度,而不取决于设定的制动力分配。

但这对于有三个或以上轴的车辆来说并不适用。

例如拖车,图7.2,高度协调了拖车接点的hk,h1和h2,拖拉机和拖车的重心,设定的制动力分配决定了连接力Fxk和F2k,从而决定了各轴上力的分布。

这里建立的制定过程等式仍然有效,对于加速,加速度为正值。

7.2、制动系统设计与匹配的总布置设计硬点或输入参数新车型总体设计时能够基本估算如下基本设计参数, 这些参数作为制动系统的匹配和优化设计的输入参数.7.3、理想的前、后制动器制动力分配曲线7.3.1 基本理论(1) 地面对前、后车轮的法向反作用力在分析前、后轮制动器制动力分配比例以前,首先了解地面作用于前、后车轮的法向反作用力。

图7.3.1由图7.3.1,对后轮接地点取力矩得gz h dtdum Gb L F +=1式中:1z F ——地面对前轮的法向反作用力;G ——汽车重力;b ——汽车质心至后轴中心线的距离;m ——汽车质量;g h ——汽车质心高度;dtdu——汽车减速度。

对前轮接地点取力矩,得g z h dtdu mGa L F -=2 式中2z F——地面对后轮的法向反作用力;a ——汽车质心至前轴中心线的距离。

则可求得地面法向反作用力为⎪⎪⎭⎫ ⎝⎛+=dt du g h b L G F g z 1 ⎪⎪⎭⎫ ⎝⎛-=dt du g h a L G F g z 2 (7.3.1)(2) 前、后制动器制动力分配曲线在任何附着系数的路面上,前、后车轮同时抱死的条件是:前、后轮制动器制动力之和等于附着力;并且前、后轮制动器制动力分别等于各自的附着力,即:G F F ϕμμ=+21 11z F F ϕμ=22z F F ϕμ=消去变量ϕ,得)]2(4[21112μμμF h Gb F G hgL b h G F gg +-+=(7.3.2)7.3.2 计算算例与计算结果由上述结果可以分别得出车型A 和车型B 的前、后车轮同时抱死时前、后制动器制动力的关系曲线——理想的前、后轮制动器制动力分配曲线,简称I 曲线。

(1) 车型B 的I 曲线下图为车型B 空载和满载时候的I 曲线2μF (N )1μF(2) 车型A 的I 曲线下图分别为车型A 空载、满载的I 曲线2μF (N )1 F7.4、前、后轮制动器制动力矩的确定 7.4.1车型B 制动器的制动力矩计算车型B 所采用的为:前面为盘式制动器,后面为鼓式制动器。

下面就两种制动器分别进行制动力矩的计算。

已知制动总泵的参数如下: 总泵缸径 22.22mm 总泵压力87.7Kgf(1) 盘式制动器的制动力矩计算 (a) 基本参数(b) 计算依据假定衬块的摩擦表面全部与制动盘接触,且各处单位压力分布均匀,则制动器的制动力矩为: R fF M 02=μ式中f ——摩擦系数;0F ——单侧制动块对制动盘的压紧力;R ——作用半径(c) 计算结果下面为盘式制动器的制动力矩与摩擦系数之间的关系曲线。

M(Nm)f 由上图可以看出,当摩擦系数在0.35~0.42之间时,盘式制动器所能提供的摩擦力矩在1205Nm~1447Nm之间。

当f=0.38时,鼓式制动器提供的摩擦力矩为1309Nm。

(2) 鼓式制动器的制动力矩计算(a) 基本参数缸径19.05mm制动鼓直径 220mm 制动蹄片包角 110° 制动蹄片宽度 40mm(b) 计算依据在摩擦衬片表面取一横向微元面积,由鼓作用在微元面积上的法向力为: ααd bfR p fR dF dF sin 112max==对于紧蹄:对于松蹄:其中(c) 计算结果下图为鼓式制动器所能提供的制动力矩——摩擦系数曲线。

M(Nm)f 由上图可以看出,摩擦系数在0.35~0.42之间时,制动力矩在524Nm~706.53Nm之间。

当f=0.38时,鼓式制动器提供的摩擦力矩为598.316Nm。

(3) 确定同步附着系数通过上述关于制动器的制动力矩的计算,可以得到前、后制动器之间的制动力分配的比例β:211μμμβM M M +=通过这个曲线与I 曲线的交点处的附着系数为同步附着系数。

7.4.2确定车型A 的制动器制动力矩(1) 基本原理选定同步附着系数φ0,确定为0.7。

并用下列计算前、后轮制动力矩的比值。

然后,根据汽车满载在柏油、混凝土路面上紧急制动到前轮抱死,计算出前轮制动器的最大制动力矩M μ1max ;在根据前、后轮制动力矩的比值计算出后轮制动器的最大制动力矩M μ2max 。

M μ1Mμ2=b φ0h g aφ0h g(2) 基本参数(3) 计算结果7.4.3 车型A的制动器改进结果前桥制动力矩为2323 Nm,后桥制动力矩1430Nm。

即所采用的盘式制动器制动力矩为2323/2 =1161.5Nm,鼓式制动器为1430/2=715Nm。

通过确定前、后轮制动器的最大制动力矩,可以用7.3中提及的公式,用改变制动分泵的直径来改变原来制动器的制动力矩。

可以得出制动分泵改变情况如下:在车型A上,前桥采用盘式制动器,后桥采用鼓式制动器。

盘式制动器的缸径为48mm,鼓式制动器的缸径为21mm。

7.5、比例阀的设计由于,对于具有固定比值的前、后制动器制动力的制动系特性,其实际制动力分配曲线与理想的制动力分配曲线相差很大,附着效率低。

因此,现代汽车均装有制动力调节装置,可根据制动强度,载荷等因素来改变前、后制动器制动力的比值,使之接近于理想制动力分配曲线,满足制动法规的要求。

7.5.1 基本参数由上述参数,用前面讨论过的盘式、鼓式制动器的计算方法,可以得出以下结果:7.5.2 GMZ1的校核经GZM1调节后,汽车在空、满载时的状态如下:制动器所输出的制动1513力(N)满载输出压力(MPa)8.5955174制动器所输出的制动力(N)如下图:那么可以得出,空载的时候,经比例阀调节后,后面的制动器提供的制动力是小于当时情况下的地面所能提供的制动力的;满载的时候,经比例阀调节后,后面的制动器提供的制动力是大于当时情况下的地面所能提供的制动力的。

7.5.3 GZM2的校核经GZM2调节后,结果如下:同样,空载的时候,经比例阀调节后,后面的制动器提供的制动力是小于当时情况下的地面所能提供的制动力的;满载的时候,经比例阀调节后,后面的制动器提供的制动力是大于当时情况下的地面所能提供的制动力的。

7.5.4新曲线通过上面的计算可以看出,GZM1和GZM2可以满足0.7g时空载时的要求,但是不满足在满载时候的要求。

那么,理想的调节曲线如下:可以得出实际的新曲线,如下:上图中,1、4为GZM2曲线,2、3为新曲线。

比较上述图表,我们可以得出以下结论;如下表对照可得:空载状态满载状态新曲线更贴近理想的调节状态,也更能充分的利用地面附着系数。

7.6、总泵的校核由于相对与原车,前、后制动器轮缸直径发生了变化,因此需要校核原车总泵的容积是否满足改动后的容积要求。

7.6.1基本参数改动前,盘式制动器轮缸缸径'1D,容积'1v;鼓式制动器轮缸缸径'2D,容积'2v;总泵的缸径为'D,前腔容积'_fv,后腔容积'v;_b改动后,盘式制动器轮缸缸径1D,容积1v;鼓式制动器轮缸缸径1D,容积2v;总泵的缸径为D;前腔容积fv_;v_,后腔容积b7.6.2基本理论如果原总泵的前、后腔容量满足制动器的需要,那么就认为原总泵是满足要求的,反之,就认为是不满足。

7.6.3校核结果由上可以得出,前、后腔的容积是满足前、后制动器的需要的。

7.7法规要求7.7.1 GB12676-1999法规要求由于GB12676-1999制动法规要求发动机脱开的0型试验性能要求。

空、满载试验车辆分别按6.6.2.1a)和6.6.2.2a)规定的试验方法进行,在规定的车速下,各类车辆试验结果必须达到下表规定的最低性能要求。

车辆类型试验车制动初速度v,Km/h制动距离Smax,m充分发出的平均减速度MFDDmin,m/s2最大控制力,NM1 80 5.8 500 那么其规定的制动距离为:50.667m。

相关文档
最新文档