最新人教版2018-2019学年九年级数学上册第21章一元二次方程-自我小测6及答案-精品试题

合集下载

【5套打包】邯郸市初三九年级数学上(人教版)第21章《一元二次方程》测试题(含答案)

【5套打包】邯郸市初三九年级数学上(人教版)第21章《一元二次方程》测试题(含答案)

人教版九年级数学上册第 21 章一元二次方程单元检测题(有答案)(6)一、选择题1.已知 x=1 是一元二次方程 x 2-2mx+1=0 的一个解,则 m 的值是()A .1B . 0C .0或 1D .0 或 -12.已知 a 、b 为一元二次方程 x 2 2x 9 0 的两个根, 那么 a 2 a b 的值为()(A )- 7(B )0(C )7(D ) 113.依据以下表格中二次函数yax 2 bxc 的自变量 x 与函数值 y 的对应值,判断方程ax 2 bx c0 ( a 0,a ,b , c 为常数)的一个解 x 的范围是( )x6.176.186.19 6.20y ax 2 bxc0.030.010.020.04A. 6x 6.17B. 6.17 x 6.18C. 6.18 x 6.19D. 6.19 x 6.204.等腰三角形的底和腰是方程x 2-6x+8=0 的两根,则这个三角形的周长为()A.8B.10C.8 或 10D.不可以确立5.新能源汽车节能、环保,愈来愈受花费者喜欢,各样品牌接踵投放市场,我国新能源汽车近几年销量全世界第一,2016 年销量为 50.7 万辆,销量逐年增添, 到 2018 年销量为 125.6 万辆.设年均匀增添率为x ,可列方程为( )A . 50.7( 1+x ) 2= 125.6B . 125.6( 1﹣ x ) 2= 50.7C . 50.7( 1+2x )= 125.62D . 50.7( 1+x )= 125.66.现定义某种运算 a b a(ab) ,若 (x 2) x 2 x 2 ,那么 x 的取值范围是 ()(A ) 1x 2 ( B ) x2 或 x1 (C ) x 2( D ) x17、已知 a , b 是对于 x 的一元二次方程x2nx 10 的两实数根,则式子ba的值是a b( )A . n 22B . n 22C . n 2 2D . n 228、已知 a , b 是对于 x 的一元二次方程x2nx 10 的两实数根,则式子ba的值是a b( )A . n 22B . n 22C . n 2 2D . n 229、对于 x 的一元二次方程 2x221 0 的一个根为2,则 a 的值是()3 x aA . 1B . 3C . 3D .310、一个等腰三角形的底边长是6,腰长是一元二次方程x 2﹣8x+15= 0 的一根, 则此三角形的周长是( )A . 16B .12C . 14D .12 或 16二、填空题11.已知一元二次方程有一个根是2,那么这个方程能够是(填上你以为正确的一个方程即可).12.已知实数 x 知足 4x2-4x+l=O ,则代数式2x+ 1的值为 ________.2x13.假如、是一元二次方程 x23x 1 0的两个根,那么2 +2的值是___________14.已知23是一元二次方程 x24x c0 的一个根,则方程的另一个根是.15.已知a0,a b, x 1是方程ax2bx10 0 的一个解,则a2b2的值是.2a 2b16.在实数范围内定义一种运算“*”,其规则为a* b a 2b2,依据这个规则,方程( x 2)*50 的解为17、《田亩比类乘除捷法》是我国古代数学家杨辉的著作,此中有一个数学识题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何”.意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60 步,问它的长比宽多多少步?依据题意得,长比宽多步.18、已知三个连续奇数,此中较大的两个数的平方和比最小数的平方的 3 倍还小 25,则这三个数分别为 _________19、甲、乙两同学解方程22 和 7;乙看错了常数x +px+q=0,甲看错了一次项系数,得根为项,得根为 1 和 -10,则原方程为20、如图 1,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为 1 米的正方形后,剩下的部分恰好能围成一个容积为15 米3的无盖长方体箱子,且此长方体箱子的底面长比宽多 2 米,现已知购置这类铁皮每平方米需20 元钱,问张大叔购回这张矩形铁皮共花了元钱?1 米1 米图 1三、解答题21、我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从以下一元二次方程中任选一个..,并选择你以为适合的方法解这个方程.① x23x 1 0 ;② ( x 1)2 3 ;③ x23x 0 ;④ x22x 4 .22、关 x 的一元二次方程(x-2)(x-3)=m有两个不相等的实数根x1、 x2,则 m 的取值范围是;若 x1、x2满《一元二次方程》单元检测试题(含答案)一、选一选,慧眼识金(每题 3 分,共 24 分)1.在一元二次方程x 2x 6x 5中,二次项系数、一次项系数、常数项分别是() .A . 1、- 1、 5B . 1、 6、5C . 1、- 7、 5D .1、- 7、- 52.用配方法解方程x 2x 2 ,方程的两边应同时() .11A .加上B .加上42C .减去1D .减去 1423.方程 (x - 5)( x - 6)=x - 5 的解是()A . x=5B . x=5 或 x=6C . x=7D . x=5 或 x=74.餐桌桌面是长 160cm ,宽为 100cm 的长方形,妈妈准备设计一块桌布,面积是桌面的2 倍,且使周围垂下的边等宽, 小刚设周围垂下的边宽为 xcm ,则应列得的方程为 ().A .( 160+ x )( 100+ x )=160× 100× 2B .(160+ 2x )(100+ 2x ) =160× 100× 2C .( 160+ x )(100+ x ) =160× 100D .(160+ 2x )( 100+ 2x ) =160×1005.电流经过导线会产生热量,设电流强度为 I (安培),电阻为 R (欧姆),1 秒产生的热量为 Q (卡),则有 Q=0.24I 2R ,此刻已知电阻为 0.5 欧姆的导线, 1 秒间产生 1.08 卡的热量,则该导线的电流是() .A .2 安培B .3 安培C . 6安培D .9 安培6.对于 x 的方程 ax 2bx c0 ( a ≠0, b ≠ 0)有一根为- 1 ,则 b 的值为()a cA . 1B .- 1C . 22D .- 27.对于 x 的一元二次方程 (2m 3)x m 2 0 根的状况是() .xA .有两个相等的实数根B .没有实数根C .有两个不相等的实数根D .根的状况没法确立8.在解二次项系数为1 的一元二次方程时,马虎的甲、乙两位同学解同一道题,甲看错了常数项,获得两根分别是4 和 5;乙看错了一次项系数,获得的两根分别是-3 和- 2,则方程是()A . x 2 9 x 6 0B . x 2 9x 6 0C . x 29x 6 0D . x 29 x 6二、填一填,点睛之笔(每题 3 分,共 18 分)9.对于 x 的方程 (m2) x m 22(3 m)x2 0 是一元二次方程,则 m 的值为 _______.10.若对于 x 的一元二次方程x 2mx n0 有两个相等的实数根,则切合条件的一组m ,n 的实数值能够是m =_________, n =________.11.第二象限内一点 A ( x1 , x 2- 3),其对于 x 轴的对称点为B ,已知 AB=12,则点 A 的坐标为 __________.12.跟着人们收入的不停提升及汽车家产的迅速发展,汽车已愈来愈多地进入了一般家庭,成为居民花费新的增添点.据某市交通部门统计, 2008 年末全市汽车拥有量为 150 万 辆,而截止到 2010 年末,全市的汽车拥有量已达 216 万辆.则 2008 年末至2010 年末该市汽车拥有量的年均匀增添率为__________.13.拂晓同学在演算某正数的平方时,将这个数的平方误写成它的2 倍,使答案少了35,则这个数为 __________.a b a b14.将 4 个数 a ,b ,c , d 排成 2 行、2 列,两边各加一条竖直线记成d,定义dc cad bc ,上述记号就叫做 2 x 1 x 1______.阶队列式.若xx6 ,则 x1 1三、做一做,牵手成功(共58 分)15.(每题 3 分,共 9 分)用适合方法解以下方程:( 1)( x - 4) 2- 81=0;( 2) 3x ( x - 3) =2( x - 3);( 3) 2 x 2 1 6 x .16.( 5 分)已知 y 1 x 2x 3 , y 25( x 1) ,当 x 为什么值时, y 1 y 2 .17.( 6 分)飞机腾飞时,要先在跑道上滑行一段行程,这类运动在物理中叫做匀加快直线运动,其公式为 s v 0 t1at 2 ,若某飞机在腾飞前滑行了 400m 的距离,此中 v 0=30m/s ,2a=20m/s 2,求所用的时间 t .18.( 7 分)阅读资料:为解方程( x 2 1)2 5( x 2 1) 4 0 ,我们能够将 x 2 1 看作一个整体,而后设 x 21 y ,那么原方程可化为y 2 5y 40 ① .解得 y 1=1, y 2=4.当 y 1时, x 2 1 1 ,∴ x 2 2 ,∴ x 2 ;当 y4 时, x 2 1 4 ,∴ x 25 ,∴ x5 .故原方程的解为 x 12 , x 22 , x 22 , x 45 .解答问题:( 1)上述解题过程, 在由原方程获得方程①的过程中,利用 ________法达到认识方程的目的,表现了转变的数学思想;( 2)请利用以上知识解方程x 4- x 2- 6=0.19.( 7 分)设 a 、 b 、 c 是△ ABC 的三条边,对于 x 的方程 x 22 bx 2c a0 有两个相等的实数根,且方程 3cx 2b 2a 的根为 0.( 1)求证:△ ABC 为等边三角形;( 2)若 a 、 b 为方程 x 2mx 3m 0 的两根,求 m 的值 .20.( 7 分)在国家的宏观调控下,某市的商品房成交价由今年5 月份的14000元 /人教版九年级数学上册第21 章一元二次方程单元检测题(有答案) (10)一、选择题 (本大题共 6 小题, 每题 2 分,共 12 分.在每题所给出的四个选项中,恰 有一项为哪一项切合题目要求的,请将正确选项前的字母代号填涂在答题卡相应地点上)1.( 2 分)计算 218 5 的结果是()。

人教版九年级上册数学第二十一章 一元二次方程单元练习题附详细解析学生版

人教版九年级上册数学第二十一章 一元二次方程单元练习题附详细解析学生版

人教版九年级上册数学第二十一章一元二次方程单元练习题附详细解析一、单选题1.已知关于x的一元二次方程(a-1)x2-2x+1=0有两个不相等的实数根,则a的取值范围是().A.a<2 B.a>2C.a<2且a≠1D.a<-22.若α、β是方程x2+2x﹣2007=0的两个实数根,则α2+3α+β的值()A.2007B.2005C.﹣2007D.40103.一元二次方程x2-kx-1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法判断4.用配方法解方程时,原方程应变形为()A.B.C.D.5.方程-x2+3x=1用公式法求解,先确定a,b,c的值,正确的是()A.a=-1,b=3,c=-1B.a=-1,b=3,c=1C.a=-1,b=-3,c=-1D.a=1,b=-3,c=-16.下列方程中,有两个不相等实数根的是().A.x2-4x+4=0B.x2+3x-1=0C.x2+x+1=0D.x2-2x+3=07.关于x的一元二次方程kx2-2x-1=0有实数根,则k的取值范围是()A.k>-1或k≠0B.k≥-1C.k≤-1或k≠0D.k≥-1且k≠08.参加一次活动的每个人都和其他人各握了一次手,所有人共握手10次,有多少人参加活动?设有x人参加活动,可列方程为()A.12x(x−1)=10B.x(x−1)=10C.12x(x+1)=10D.2x(x−1)=109.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是()A.(32−x)(20−x)=32×20−570B.32x+2×20x=32×20−570C.32x+2×20x−2x2=570D.(32−2x)(20−x)=57010.直角三角形两条直角边的和为7,面积是6,则斜边长是()A.√37B.5C.√38D.7二、填空题11.已知(x2+y2+1)(x2+y2+2)=6,则x2+y2的值为。

人教版九年级数学上册第21章《一元二次方程》测试卷3(含答案)

人教版九年级数学上册第21章《一元二次方程》测试卷3(含答案)

人教版九年级数学上册第21章《一元二次方程》测试卷3(含答案)时间:100分钟 总分100分一、选择题(共10小题,每小题3分,共30分.每小题只有一个选项是符合题意的)1.下列方程中,是一元二次方程的是 ( )A .x ²+y =3B . 112=-x xC .x ²-3=0D .2x +1=0 2.一元二次方程(x +3)(2x -1)=9化为一般形式后正确的是( )A .2x ²+5x -12=0B .2x ²+6x +12=0C .x ²+3x -6=0D .2x ²-5x -3=93.若m ,n 是一元二次方程x ²+2x -25=0的两个实数根,则m +n 的值为( ) A .-2 B .2 C .-25 D .254.某衬衫经过连续两次降价,售价由原来的每件100元降到每件 64元,则平均每次降价的百分率为 ( )A .10%B .15%C .20%D .25%5.关于x 的一元二次方程(a -2)x ²-3x -2=0有两个不相等的实数 根,则a 的取值范围是( )A .87>aB . 87<aC .87>a 且α≠2D . 78>a 且a ≠26.给出一种运算:a ⊗b =(a +b )b ,如2⊗3=(2+3)×3=15,若方程2⊗x =k 的一个根为2,则另一个根 为 ( )A . 4B .-4C . 8D .-87.若x =a 是方程x ²+x -1=0的一个根,则代数式-(a -1)²-3a 的值为 ( )A .2B .1C .-1D .-28.某社区服务中心为解决居民停车难的问题,准备利用社区内一块矩形空地修建一个停车场(如图). 已知停车场的长为52米,宽为20米,阴影部分设计为停车位,其余部分是等宽的通道.设通道的宽是x 米,若停车位的面积为482平方米.依题意可列出方程( )A . 2×20x +52x =52×20-482B . 20x +2×52x -x ²=52×20-482C . (52-2x )(20-2x )=482D .(52-x )(20-2x )=4829.已知关于x 的一元二次方程x ²+5x -k =0,当-6≤h ≤0时,该方程根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.无法确定10.欧几里得的《原本》中记载着方程x²+ax=b²的图解法:画Rt△ABC,使得∠ACB=90°,,AC=b,再在斜边AB上截取BD=BC.则该方程的一个正根是 ( )A. AC的长B. CD的长C. AD的长D. BC的长二、填空题(共6小题,每小题3分,共18分)11.已知(m-2)x|m|+3x+2=0是关于x的一元二次方程,则m=________.12.一元二次方程x²+21x=20x+20×21的根是______________.13. 若关于x的一元二次方程(a-2)x²-3x+1=0有实数根,则整数a的最大值为_________.14.已知关于x的一元二次方程x²+6x+4k-8=0的一个根与分式方程的根相等,则k的值为 .15.阅读下面的诗词然后解题:大江东去浪淘尽,千古风流数人物.而立之年督东吴,早逝英年两位数.十位恰小个位三,个位平方与寿符.哪位学子算得快,多少年华属周瑜?请你通过列方程式,算出周瑜去世时的年龄为__________.16.若x1,x2是一元二次方程x²-3x+1=0的两个实数根,则x1²+x22-2的值为_______.三、解答题(共7小题,共52分.解答应写出过程)17.(6分)选择合适的方法解一元二次方程.(1)3(x+2)²=(x-2)2; (2)(x+3)²=2x+6.18.(6分)已知关于x的方程x²-3x+m-2=0有两个实数根x1,x2.(1)求实数m的取值范围;(2)若x1²+x2²=m+1,求m的值.19.(7分)为解方程(x²-2)²-5(x²- 2)+4=0,我们可以将x²-2视为一个整体,然后设x²-2=y,则原方程化为y²-5y+4=0,解此方程得y1=1,y2=4,当y=1时,x²-2=1, x=±√3,当y=4时,x²-2=4, x=±√6,∴原方程的解为x1=-√3,x2=√3,x3=-√6,x4=√6.以上方法叫做换元法解方程,达到了降次的目的,体现了转化思想.用上述方法解下列方程:(1)(2x+5)²-4(2x+5)+3=0; (2)x4-8x²+7=0.20.(7分)某工厂为了给市场上供应足够的跳绳,3月到5月生产的跳绳数量由10000条增加到14400条.(1)求该工厂3月到5月生产跳绳的数量的月平均增长率;(2)若该工厂在接下来的生产中仍然保持相同的月平均增长率,请你预计6月份生产跳绳的数量能否达到18000条?说明理由.21. (8分)已知等腰△ABC 的两边长b ,c 恰好是关于x 的一元二次方程x 2-(2k +1)x +5(k -34)=0 的两个根.若△ABC 的另一边长a =4,试求△ABC 的周长.22.(8分)如图,在矩形ABCD 中, AB =4 cm ,BC =9cm ,点P 从点A 出发,沿AB 边向点B 以1 cm /s 的速度移动,同时点Q 从点B 出发,沿BC 边向点C 以2 cm /s 的速度移动.若其中有一个动点先到达终点,则两个动点同时停止运动,设运动时间为t s .(1)填空:AP =_______cm ,BQ =_______ cm ;(用含t 的代数式表示)(2)当t (t ≠0)为何值时, PQ =4 cm ?(3)在动点P ,Q 运动过程中,是否存在某个时刻使五边形 APQCD 的面积为矩形面积的 23?若存在,请求出此时t 的值;若不存在,请说明理由.23.(10分)小明大学毕业后和同学创业,合伙开了一家网店,暑期销售原创设计的手绘图案T 恤衫.已知每件T 恤衫的成本价为60元,当销售价为100元时,每天能售出20件;经过一段时间销售发现,当销售价每降低1元时,每天就能多售出2件.(1)若降价8元,则每天销售T 恤衫的利润为多少元?(2)小明希望每天获得的利润达到1050元并且优惠最大,则每件T 恤衫的销售价应该定为多少?(3)为了保证每件T 恤衫的利润率不低于55%,小明每天能否获得1200元的利润?若能,求出定价;若不能,请说明理由.(利润率=利润成本×100%)参考答案:。

人教版数学九年级上册第21章《一元二次方程》单元检测题含答案解析

人教版数学九年级上册第21章《一元二次方程》单元检测题含答案解析

九年级数学第21章《一元二次方程》单元检测题分值:120分时间:90分钟一、选择题(本大题共12道小题,共36分)1.关于x的方程是一元二次方程的条件是A. B. C. D. a为任意实数2.把一元二次方程化成一般形式,其中a,b,c分别为A. 2,3,B. 2,,C. 2,,1D. 2,3,13.已知是关于x的一元二次方程的一个根,则m的值是A. 1B.C. 0D. 无法确定4.若方程中,a,b,c满足和,则方程的根是A. 1,0B. ,0C. 1,D. 无法确定5.用配方法解一元二次方程,配方正确的是A. B. C. D.6.一元二次方程的根的情况为A. 有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 没有实数根7.已知,是关于x的一元二次方程的两个实数根,且,,则a,b的值分别是A. ,1B. 3,1C. ,D. ,18.关于x的方程的两个根是和1,则的值为A. B. 8 C. 16 D.9.王叔叔从市场上买了一块长80cm,宽70cm的矩形铁皮,准备制作一个工具箱.如图,他将矩形铁皮的四个角各剪掉一个边长xcm的正方形后,剩余的部分刚好能围成一个底面积为的无盖长方形工具箱,根据题意列方程为A. B.C. D.11.某县以“重点整治环境卫生”为抓手,加强对各乡镇环保建设的投入,计划从2019年起到2021年累计投入4250万元,已知2019年投入1500万元,设投入经费的年平均增长率为x,根据题意,下列所列方程正确的是A.B.C.D.12.关于x的一元二次方程有两个整数根且乘积为正,关于y的一元二次方程同样也有两个整数根且乘积为正.给出三个结论:这两个方程的根都是负根;;其中正确结论的个数是A. 0个B. 1个C. 2个D. 3个二、填空题(本大题共6小题,共18分)13.已知关于x的方程没有实数根,则m的取值范围是______.14.已知方程的一根为,则方程的另一根为______.15.已知,是一元二次方程的两实数根,则的值是______.16.在中,,,,且关于x的方程有两个相等的实数根,则AC边上的中线长为.17.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元假设该公司2、3月每个月生产成本的下降率都相同,则每个月生产成本的下降率是.18.定义符号的含义为:当时,当时,,如:,,则方程的解是______.三、解答题(本大题共7小题,共66分)19.解下列方程:.20.已知关于x的一元二次方程,求证:无论实数m取得何值,方程总有两个实数根;若方程有一个根的平方等于1,求m的值.21.若要建一个矩形养鸡场,养鸡场的一面靠墙,如图所示,墙长18 m,墙对面有一个2 m宽的门,另三边用竹篱笆围成,篱笆总长33 m,且围成的养鸡场的面积为,则鸡场的长和宽各为多少米.22.已知实数a,b,c满足:,,又,为方程的两个实根,试求的值.23.某生物实验室需培育一群有益菌现有60个活体样本,经过两轮培植后,有益菌总和达24000个,其中每个有益菌每一轮可分裂出若干个相同数目的有益菌.每轮分裂中每个有益菌可分裂出多少个有益菌按照这样的分裂速度,经过三轮培植后共有多少个有益菌24.某菜市场有平方米和4平方米两种摊位,平方米的摊位数是4平方米摊位数的2倍.管理单位每月底按每平方米20元收取当月管理费,该菜市场全部摊位都有商户经营且各摊位均按时全额缴纳管理费.菜市场毎月可收取管理费4500元,求该菜市场共有多少个4平方米的摊位?为推进环保袋的使用,管理单位在5月份推出活动一:“使用环保袋送礼物”,平方米和4平方米两种摊位的商户分别有和参加了此项活动.为提高大家使用环保袋的积极性,6月份准备把活动一升级为活动二:“使用环保袋抵扣管理费”,同时终止活动一.经调査与测算,参加活动一的商户会全部参加活动二,参加活动二的商户会显著增加,这样,6月份参加活动二的平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加,毎个摊位的管理费将会减少;6月份参加活动二的4平方米摊位的总个数将在5月份参加活动一的同面积个数的基础上增加,每个摊位的管理费将会减少这样,参加活动二的这部分商户6月份总共缴纳的管理费比他们按原方式共缴纳的管理费将减少,求a的值.25.己知的一条边BC的长为5,另两边AB、AC的长是关于x的一元二次方程的两个实数根,求证:无论k为何值时,方程总有两个不相等的实数根:为何值时,是以BC为斜边的直角三角形;为何值时,是等腰三角形,并求的周长.参考答案一、选择题(本大题共12道小题,共36分)1-5 CBBCA 6-10 BDCCC 11-12 DD二、填空题(本大题共6小题,共18分)13、14、15、616、217、18、或三、解答题(本大题共7小题,共66分)19、解:因式分解,得.或.,;移项,得.提公因式,得.解得,;将看作一个整体,分解因式,得,即.解得.20、证明:,,所以无论实数m取得何值,方程总有两个实数根;解:方程有一个根的平方等于1,此根是,当根是1时,代入得:,即,此时m为任何数;当根是时,,解得:.21、解:设养鸡场的宽为xm,根据题意得:,解得:,,当时,,当时,舍去,答:养鸡场的宽是10m,长为15m.22、解:,即,,2 ab为方程的两根,,由得,或即,由根与系数的关系得:23、设每轮分裂中每个有益菌可分裂出x个有益菌,根据题意,得.解得,不合题意,舍去.答:每轮分裂中每个有益菌可分裂出19个有益菌.个.答:经过三轮培植后共有480000个有益菌.24、解:设该菜市场共有x个4平方米的摊位,则有2x个平方米的摊位,依题意,得:,解得:.答:该菜市场共有25个4平方米的摊位.由可知:5月份参加活动一的平方米摊位的个数为个,5月份参加活动一的4平方米摊位的个数为个.依题意,得:整理,得:,解得:舍去,.答:a的值为50.25、解:因为,所以方程总有两个不相等的实数根.根据根与系数的关系:,,则,即,解得或.根据三角形的边长必须是正数,因而两根的和且两根的积,解得,.若时,5是方程的实数根,根据一元二次方程根与系数的关系可得:,当时,,则周长是;当时,则周长是.。

人教版九年级数学上册第二十一章《一元二次方程》测试卷(含答案)

人教版九年级数学上册第二十一章《一元二次方程》测试卷(含答案)

人教版九年级数学上册第二十一章《一元二次方程》测试卷(含答案)一.选择题1.一元二次方程2x2﹣5x+1=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法确定2.若关于x的一元二次方程(k﹣2)x2+x+k2﹣4=0有一个根是0,则k的值是()A.﹣2B.2C.0D.﹣2或23.关于x的一元二次方程x2﹣2x﹣5=0有()A.两个相等的实数根B.两个不相等的正数根C.两个不相等的负数根D.一个正数根和一个负数根4.已知关于x的一元二次方程(m﹣1)x2+2x﹣3=0有实数根,则m的取值范围是()A.m≥B.m<C.m>且m≠1D.m≥且m≠1 5.关于x的多项式N=x﹣1,M=2x2﹣ax﹣2,a为任意实数,则下列结论中正确的有()个.①若M•N中不含x2项,则a=﹣2;②不论x取何值,总有M≥N;③若关于x的方程M=0的两个解分别为x1=t2,x2=2t﹣3,则实数a的最小值为﹣8;④不论a取何值,关于x的方程(M+N)2﹣(M+N)=6始终有4个不相同的实数解.A.1B.2C.3D.46.下列配方中,变形正确的是()A.x2+2x=(x+1)2B.x2﹣4x﹣3=(x﹣2)2+1C.2x2+4x+3=2(x+1)2+1D.﹣x2+2x=﹣(x+1)2﹣17.某公司今年10月的营业额为2500万元,按计划第四季度的总营业额要达到9100万元,求该公司11、12两个月营业额的月均增长率,设该公司11、12两个月营业额的月均增长率为x,则根据题意可列的方程为()A.2500(1+x)2=9100B.2500[1+(1+x)+(1+x)2]=9100C.2500[(1+x)+(1+x)2]=9100D.9100(1+x)2=25008.已知A=x2+6x+n2,B=2x2+4x+2n2+3,下列结论正确的个数为()①若A=x2+6x+n2是完全平方式,则n=±3;②B﹣A的最小值是2;③若n是A+B=0的一个根,则4n2+=;④若(2022﹣A)(A﹣2019)=2,则(2022﹣A)2+(A﹣2019)2=4.A.1个B.2个C.3个D.4个9.已知关于x的方程x2+(k+3)x+k+2=0,则下列说法正确的是()A.不存在k的值,使得方程有两个相等的实数解B.至少存在一个k的值,使得方程没有实数解C.无论k为何值,方程总有一个固定不变的实数根D.无论k为何值,方程有两个不相等的实数根10.满足(x﹣3)2+(y﹣3)2=6的所有实数对(x,y),使取最小值,此最小值为()A.B.C.D.二.填空题11.对于实数m,n,先定义一种运算“⊗”如下:,若x⊗(﹣2)=10,则实数x的值为.12.德尔塔(Delta)是一种全球流行的新冠病毒变异毒株,其传染性极强.某地有1人感染了德尔塔,因为没有及时隔离治疗,经过两轮传染后,一共有144人感染了德尔塔病毒,如果不及时控制,照这样的传染速度,经过三轮传染后,一共有人感染德尔塔病毒.13.已知m,n是方程x2﹣3x=2的两个根,则式子的值是.14.如图,某生物兴趣小组要在长40米、宽30米的矩形园地种植蔬菜,为便于管理,要在中间开辟一横两纵共三条等宽小路,若蔬菜种植面积为1008平方米,则小路的宽为米.15.欧几里得在《几何原本》中,记载了用图解法解方程x2+ax=b2的方法,类似地我们可以用折纸的方法求方程x2+x﹣1=0的一个正根.如图,一张边长为1的正方形的纸片ABCD,先折出AD,BC的中点E,F,再沿过点A的直线折叠使AD落在线段AF上,点D 的对应点为点H,折痕为AG,点G在边CD上,连接GH,GF,线段BF、DG、CG和GF 中,长度恰好是方程x2+x﹣1=0的一个正根的线段为.三.解答题16.已知a是方程x2﹣2020x+1=0的一个根.求:(1)2a2﹣4040a﹣3的值;(2)代数式a2﹣2019a+的值.17.解方程:(1)2x2﹣4x﹣1=0;(2)3x(x﹣1)=2﹣2x.18.在理解例题的基础上,完成下列两个问题:例题:若m2+2mn+2n2﹣4n+4=0,求m和n的值;解:由题意得:(m2+2mn+n2)+(n2﹣4n+4)=0,∴(m+n)2+(n﹣2)2=0∴,解得.请解决以下问题:(1)若x2+4xy+5y2﹣4y+4=0,求y x的值;(2)若a,b,c是△ABC的边长,满足a2+b2=12a+8b﹣52,c是△ABC的最长边,且c为偶数,则c可能是哪几个数?19.【阅读材料】“我们把多项式a2+2ab+b2及a2﹣2ab+b2叫做完全平方式”.如果一个多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式中出现完全平方式,再减去这个项,使整个式的值不变,这种方法叫做配方法,配方法是一种重要的解决问题的数学方法.例如:求当a取何值,代数式a2+6a+8有最小值?最小值是多少?解:a2+6a+8=a2+6a+32﹣32+8=(a+3)2﹣1因为(a+3)2≥0,所以a2+6a+8≥﹣1,因此,当a=﹣3时,代数式a2+6a+8有最小值,最小值是﹣1.【问题解决】利用配方法解决下列问题:(1)当x取何值时,代数式x2﹣2x﹣1有最小值?最小值是多少?(2)当x=时,代数式2x2+8x+12有最小值,最小值为.20.近几年,全社会对空气污染问题越来越重视,空气净化器的销量也在逐年增加.某商场从厂家购进了A,B两种型号的空气净化器,两种净化器的销售相关信息如表:A型销售数量(台)B型销售数量(台)总利润(元)51025001052750(1)每台A型空气净化器的销售利润是元;每台B型空气净化器的销售利润是元;(2)该商场计划一次购进两种型号的空气净化器共80台,其中B型空气净化器的进货量不少于A型空气净化器的2倍,为使该商场销售完这80台空气净化器后的总利润最大,那么应该购进A型空气净化器台;B型空气净化器台.(3)已知A型空气净化器的净化能力为300m3/小时,B型空气净化器的净化能力为200m3/小时.某长方体室内活动场地的总面积为300m2,室内墙高3m.该场地负责人计划购买7台空气净化器,每天花费30分钟将室内空气净化一新,如不考虑空气对流等因素,他至少要购买A型空气净化器多少台?参考答案一.选择题1.【解答】解:∵Δ=(﹣5)2﹣4×2×1=25﹣8=17>0,∴一元二次方程2x2﹣5x+1=0有两个不相等的实数根,故选:C.2.【解答】解:把x=0代入(k﹣2)x2+x+k2﹣4=0得:k2﹣4=0,解得k1=2,k2=﹣2,而k﹣2≠0,所以k=﹣2.故选:A.3.【解答】解:x2﹣2x﹣5=0,Δ=b2﹣4ac=(﹣2)2﹣4×1×(﹣5)=24>0,所以方程有两个不相等的实数根,设方程x2﹣2x﹣5=0的两个根为e、f,则ef=﹣5<0,则e和f异号,即方程有一个正数根和一个负数根,故选:D.4.【解答】解:∵关于x的一元二次方程(m﹣1)x2+2x﹣3=0有实数根,∴,解得:m≥且m≠1.故选:D.5.【解答】解:M•N=(x﹣1)(2x2﹣ax﹣2)=2x3﹣(a+2)x2+(a﹣2)x+2,若M•N中不含x2项,则a+2=0,∴a=﹣2,故①正确;当x=0时,N=﹣1,M=﹣2,此时M<N,故②错误;若关于x的方程2x2﹣ax﹣2=0的两个解分别为x1=t2,x2=2t﹣3,则t2+2t﹣3=,∴a=2(t+1)2﹣8,∴当t=﹣1时,a的最小值是﹣8,故③正确;由(M+N)2﹣(M+N)=6得(M+N﹣3)(M+N+2)=0,∴M+N﹣3=0或M+N+2=0,由M+N﹣3=0得2x2+(1﹣a)x﹣6=0,Δ=(1﹣a)2+48>0,∴M+N﹣3=0有两个不相同的实数根,由M+N+2=0得2x2+(1﹣a)x﹣1=0,Δ=(1﹣a)2+8>0,∴M+N+2=0有两个不同的实数根,∴(M+N)2﹣(M+N)=6始终有4个不相同的实数解,故④正确,∴正确的有①③④,共3个,故选:C.6.【解答】解:x2+2x=x2+2x+1﹣1=(x+1)2﹣1,A错误.x2﹣4x﹣3=x2﹣4x+4﹣4﹣3=(x2﹣4x+4)+(﹣4﹣3)=(x﹣2)2﹣7.B错误.2x2+4x+3=2(x2+2x)+3=2(x2+2x+1﹣1)+3=2(x2+2x+1)﹣2×1+3=2(x+1)2﹣2+3=2(x+1)2+1.C正确.﹣x2+2x=﹣(x2﹣2x+1﹣1)=﹣(x2﹣2x+1)+1=﹣(x+1)2+1D错误.故选:C.7.【解答】解:设该公司11、12两个月营业额的月均增长率为x,则可列方程为2500[1+(1+x)+(1+x)2]=9100,故选:B.8.【解答】解:①∵A=x2+6x+n2是完全平方式,∴n=±3,故结论正确;②∵B﹣A=2x2+4x+2n2+3﹣(x2+6x+n2)=x2﹣2x+n2+3=(x﹣1)2+n2+2,而(x﹣1)2+n2≥0,∴B﹣A≥2,∴B﹣A的最小值是2,故结论正确;③∵A+B=x2+6x+n2+2x2+4x+2n2+3=3x2+10x+3n2+3,把x=n代入3x2+10x+3n2+3=0,得3n2+10n+3n2+3=0,即6n2+10n+3=0,解得n=,当n=时,2n+=+=﹣,∴4n2+=(2n+)2﹣4=﹣4=;当n=时,2n+=+=﹣,∴4n2+=(2n+)2﹣4=﹣4=;故结论错误;④∵(2022﹣A+A﹣2019)2=(2022﹣2019)2=(2022﹣A)2+(A﹣2019)2+2(2022﹣A)(A﹣2019)=(2022﹣A)2+(A﹣2019)2+2×2=9,∴(2022﹣A)2+(A﹣2018)2=5;故结论错误;故选B.9.【解答】解:关于x的方程x2+(k+3)x+k+2=0,Δ=(k+3)2﹣4×1×(k+2)=k2+2k+1=(k+1)2≥0,A、当k=﹣1时,Δ=0,此时方程有两个相等的实数解,故此选项错误;B、因为Δ≥0,所以不存在k的值,使得方程没有实数解.故此选项错误;C、解方程得:x1=﹣1,x2=﹣k﹣2,所以无论k为何值,方程总有一个固定不变的实数根﹣1,故此选项正确;D、当k≠﹣1时,方程有两个不相等的实数解,故此选项错误;故选:C.10.【解答】解:令=t,则(x﹣3)2+(y﹣3)2=6可变形为:(x﹣3)2+(tx﹣3)2=6,整理得:(t2+1)x2﹣6(t+1)x+12=0,则Δ=[﹣6(t+1)]2﹣4×(t2+1)×12=36(t+1)2﹣48(t2+1)≥0,t2﹣6t+1≤0,由t2﹣6t+1=[t﹣(3﹣2)][t﹣(3+2)]知t2﹣6t+1≤0的解集为3﹣2≤t≤3+2,故取最小值,此最小值为3﹣2;故选:A.二.填空题11.【解答】解:分两种情况:当x≥﹣2时,∵x⊗(﹣2)=10,∴x2+x﹣2=10,x2+x﹣12=0,(x+4)(x﹣3)=0,x+4=0或x﹣3=0,x1=﹣4(舍去),x2=3,当x<﹣2时,∵x⊗(﹣2)=10,∴(﹣2)2+x﹣2=10,x=8(舍去),综上所述:x=3,故答案为:3.12.【解答】解:设每轮传染中平均一个人传染了x个人,依题意得:1+x+x(1+x)=144,整理得:x2+2x﹣143=0,解得:x1=11,x2=﹣13(不合题意,舍去).144+11×144=1728(人).答:经过三轮传染后,一共有1728人感染德尔塔病毒.故答案为:1728.13.【解答】解:∵m,n是方程x2﹣3x=2的两个根,∴m2=3m+2,n2﹣2=3n,m+n=3,∴m3﹣10m+n=m(3m+2)﹣10m+n=3m2﹣8m+n=3(3m+2)﹣8m+n=m+n+6=3+6=9,n﹣===3,原式=9×3=27.故答案为:27.14.【解答】解:小路的宽为x米.由题意可得:(40﹣2x)(30﹣x)=1008,解得:x1=2,x2=48(不合题意,舍去),答:小路的宽为2米,故答案为:2.15.【解答】解:设DG=m,则GC=1﹣m.由题意可知:△ADG≌△AHG,F是BC的中点,∴DG=GH=m,FC=0.5,根据勾股定理得AF=.∵S正方形=S△ABF+S△ADG+S△CGF+S△AGF,∴1×1=×1×+×1×m+××(1﹣m)+××m,∴m=.∵x2+x﹣1=0的解为:x=,∴取正值为x=.∴这条线段是线段DG.故答案为:DG.三.解答题16.【解答】解:(1)∵a是方程x2﹣2020x+1=0的一个根,∴a2=2020a﹣1,∴a2=2020a﹣1,∴2a2﹣4040a﹣3=2(2020a﹣1)﹣4040a﹣3=4040a﹣2﹣4040a﹣3=﹣5;(2)原式=2020a﹣1﹣2019a+=a+﹣1=﹣1=﹣1=2020﹣1=2019.17.【解答】解:(1)2x2﹣4x﹣1=0,x2﹣2x﹣=0,x2﹣2x=,x2﹣2x+1=,(x﹣1)2=,x﹣1=,∴x1=1+,x2=1﹣;(2)3x(x﹣1)=2﹣2x,3x(x﹣1)+2(x﹣1)=0,(x﹣1)(3x+2)=0,∴x﹣1=0或3x+2=0,∴x1=1,x2=﹣.18.【解答】解:(1)∵x2+4xy+5y2﹣4y+4=0,∴x2+4xy+4y2+y2﹣4y+4=0,∴(x+2y)2+(y﹣2)2=0,∴x+2y=0,y﹣2=0,解得x=﹣4,y=2,∴y x=2﹣4=;(2)已知等式整理得:(a﹣6)2+(b﹣4)2=0,解得:a=6,b=4,由△ABC中最长的边是c,∴6≤c<10,∵c为偶数,∴c可能是6或8.19.【解答】解:(1)x2﹣2x﹣1=x2﹣2x+1﹣1﹣1=(x﹣1)2﹣2,因为(x﹣1)2≥0,所以x2﹣2x﹣1≥﹣2,因此,当x=1时,代数式x2﹣2x﹣1有最小值,最小值是﹣2;(2)2x2+8x+12=2(x2+4x)+12=2(x2+4x+4﹣4)+12=2[(x+2)2﹣4]+12=2(x+2)2﹣8+12=2(x+2)2+4,因为(x+2)2≥0,所以2x2+8x+12≥4,因此,当x=﹣2时,代数式2x2+8x+12有最小值,最小值是4;故答案为:﹣2;4.20.【解答】解:(1)设每台A型空气净化器的销售利润是x元,每台B型空气净化器的销售利润是y元,根据题意得:,解得:故答案为:200,150;(2)设购进a台A型空气净化器,总利润为w元,则:w=200a+150(80﹣a)=50a+12000,∵80﹣a≥2a,∴a≤26,∴a的最大值为:26,∵w随a的增大而增大,∴当a=26时,w有最大值,此时.80﹣a=54,故答案为:26,54;(3)设要购买A型空气净化器a台,由题意得:150a+100(7﹣a)≥300×3,解得:a≥4,所以a的最小值为:4,答:至少要购买A型空气净化器4台.。

人教版九年级上册数学第21章《一元二次方程》 单元测试(含答案)

人教版九年级上册数学第21章《一元二次方程》 单元测试(含答案)

试卷第1页,总3页 第二十一章《一元二次方程》 测试题一、单选题(共12小题,每小题3分,共36分)1.下列方程为一元二次方程的是 ( )A .ax 2+bx+c=0B .x 2-2x -3C .2x 2=0D .xy +1=02.把方程x (3-2x )+5=1化成一般式后二次项系数与常数项的积是( )A .3B .-8C .-10D .153.若关于x 的一元二次方程(a +1)x 2+x +a 2-1=0的一个解是x =0,则a 的值为( )A .1B .-1C .±1D .04.若a-b+c=0,则方程ax 2+bx+c=0(a 0≠)必有一个根是( )A .0 B .1C .-1 D .b a -5.用配方法解一元二次方程2x 2﹣4x+1=0,变形正确的是( )A .(x ﹣12)2=0 B .(x ﹣12)2=12 C .(x ﹣1)2=12 D .(x ﹣1)2=06.已知直角三角形的两边长是方程x 2﹣7x+12=0的两根,则第三边长为( ) A .7 B .5C 7D .577.若关于 x 的一元二次方程x 2﹣x ﹣3m =0有两个不相等的实数根,则 m 的取值范围是()A .m 12>B .m 112<C .m >﹣112D .m 112< 8.若方程x 2-3x -1=0的两根为x 1、x 2,则11x +21x 的值为( ) A .3 B .-3 C .13 D .-139.已知关于x 的一元二次方程(2a -1)x 2+(a +1)x +1=0的两个根相等,则a 的值等于( )A .-1或-5B .-1或5C .1或-5D .1或510.如图,在长为33米宽为20米的矩形空地上修建同样宽的道路(阴影部分),余下的部分为草坪,要使草坪的面积为510平方米,则道路的宽为( )A .1米B .2米C .3米D .4米11.是下列哪个一元二次方程的根( ) A .3x 2+5x+1=0、 B .3x 2﹣5x+1=0、 C .3x 2﹣5x ﹣1=0、 D .3x 2+5x ﹣1=012.已知m ,n 是方程x 2﹣2018x +2019=0的两个根,则(m 2﹣2019m +2018)(n 2﹣2019n +2018)的值是( )A .1B .2C .4037D .4038二、填空题(共4小题,每小题5分,共20分)13.一元二次方程4x 2= 3x 的解是_____________.14.圣诞节时,某班一个小组有x 人,他们每两人之间互送贺卡一张,已知全组共送贺卡110张,则可列方程为_____.15.关于a 的方程2420a a ++=的两个解为1a 、2a ,则2212a a +=_____. 16.已知两数的积是12,这两数的平方和是25, 以这两数为根的一元二次方程是___________.三、解答题(共6小题,第17题8分,第18题12分,第19题6分,第20题6分,第21题8分,第22题12分,共52分)17、解下列方程 (1) x 2-2x-5=0 (用配方法) (2)2x 2+3x=4(公式法)18、已知关于x 的方程||(2)210m m x x ++-=.(1)当m 为何值时是一元一次方程?(2)当m 为何值时是一元二次方程?19、 已知两个方程20x px q ++=和20x qx p ++=仅有一个相同的根,求p q +的值.20、小刚在做作业时,不小心将方程2350x bx --=的一次项系数用墨水覆盖住了,但从题目的答案中,他知道方程的一个解为5x =,请你帮助小刚求出被覆盖住的数试卷第3页,总3页 21、已知关于x 的一元二次方程22(51)40x m x m m -+++=. 求证:无论m 取任何实数时,原方程总有两个实数根;22、现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?参考答案1.考点:一元二次方程试题解析:解析:A 选二次项系数为字母,要强调不为0;B 选项不是等式;D 选项有两个未知数,故选C .答案:C2..考点:一元二次方程的一般形式试题解析:解析:x (3-2x )+5=1 -2x 2+3x+4=0 -2×4=-8 故选B .答案:B3.考点:一元二次方程的解试题解析:解析:将x =0代入原方程得a 2-1=0且a +1≠0所以a=1故选A .答案:A4.考点:一元二次方程试题解析:解析:A 选二次项系数为字母,要强调不为0;B 选项不是等式;D 选项有两个未知数,故选C .答案:C5.考点:配方法答案第4页,总3页试题解析:解析x 2﹣2x+12=0 x 2﹣2x+1=12(x ﹣1)2=12故选C .答案:C6.考点:解一元二次方程和勾股定理试题解析:解析:解方程得x 1 =3, x 2=4.当3和4为直角边时,第三边为5,当4为斜边故选D .答案:D7.考点:一元二次方程根的判别式和一元一次不等式的解法试题解析:解析:∆= b ²-4ac >0即1+12m >0 m >﹣112故选C . 答案:C8.考点:一元二次方程根与系数的关系 试题解析:解析:11x +21x =(x ₁+x ₂)/(x ₁x ₂)=﹣3 故选B . 答案:B9.考点:一元二次方程根的判别式和解一元二次方程试题解析:解析:(a +1)²- 4(2a -1)=0解得a ₁=1a ₂=5故选D .答案:D10.考点:一元二次方程的应用试题解析:解析:设路宽为x,依题可得:(20-x )(33-x)=510解得x 1 =3, x 2=50(舍去)故选C .答案:C11.考点:一元二次方程求根公式试题解析:解析:由一元二次方程求根公式与方程给出的根可找出a=3 b=5 c = - 1 故选D .答案:D12.考点:一元二次方程的解和根与系数的关系试题解析:解析:将m 和n 分别代入方程变形得m 2﹣2018m =-2019n 2﹣2018n =-2019将原式变形后整体代入(-2019-m+2018(-2019-n+2018)=(-1-m)(-1-n)=1+m+n+mn∵m+n=2018 mn=2019∴原式=1+2018+2019=4038故选D .答案:D13.考点:解一元二次方程(因式分解法)试题解析:解析:4x 2 -3x= 0 x(4x-3)=0 x 1 =0, x 2=34答案:x 1 =0, x 2=3414.考点:一元二次方程的应用试题解析:答案:x (x ﹣1)=11015.考点:一元二次方程根与系数的关系和完全平方公式试题解析:解析:2212a a +=(a ₁+a ₂)²-2a ₁a ₂答案:1216.考点:一元二次方程解法和根与系数的关系试题解析:解析:∵ x₁x₂=12 x₁²+x₂²=25∴x ₁+x ₂=7或-7答案:x 2-7x+12=0或x 2+7x+12=017.考点:一元二次方程解法答案:(1)11x =21x =;(2)134x -=,234x -= 18.考点:一元一次方程和一元二次方程的概念试题解析:解析:(1)注意分三种情况讨论(2)注意指数和系数答案:(1)-2或±1或0 (2)2 19.考点:一元二次方程根和方程组试题解析:解析:x ²+px+q= x ²+qx+p (p-q)x=p-q x=1代入原方程1+p+q=0 ∴p+q=-1答案:-1;.20.考点:一元二次方程解试题解析:解析:答案:1421.考点:一元二次方程根的判别式和完全平方公式试题解析:解析:答案:∵∆= b ²-4ac =(5m+1)²-4(4m ²+m )=9m ²+6m+1=(3m+1)²≥0∴不论m 取任何实数,原方程总有两个实数根22.考点:一元二次方程的应用和一元一次不等式试题解析:解析:(1)设增长率为x ,依题可得10(1+x )²=12.1解得x 1 =0.1, x 2=-2.1(舍去)故增长率为10%;(2)6月总数12.1×(1+10%)=13.31>21×0.6所以不能完成任务。

秋九年级数学上册 第21章 一元二次方程检测卷 (新版)新人教版-(新版)新人教版初中九年级上册数学

第二十一章检测卷时间:120分钟满分:150分班级:__________ 某某:__________ 得分:__________一、选择题(本题共12小题,每小题3分,共36分)1.关于x的方程(m+1)x2+2mx-3=0是一元二次方程,则m的取值是()A.任意实数 B.m≠1C.m≠-1 D.m>12.方程x2-9=0的解是()A.x1=x2=3 B.x1=x2=9C.x1=3,x2=-3 D.x1=9,x2=-93.若x1,x2是一元二次方程x2+10x+16=0的两个根,则x1+x2的值是()A.-10 B.10C.-16 D.164.下列方程中,是关于x的一元二次方程的是()A.(x+1)2=2(x+1) B.1x2+1x-2=0C.ax2+bx+c=0 D.x2+2x=x2-15.用配方法解方程x2+4x=3,配方正确的是()A.(x+2)2=3 B.(x+2)2=4C.(x+2)2=7 D.(x+1)2=46.将方程(x-1)(x+3)=12化为ax2+bx+c=0的形式后,a、b、c的值分别为()A.1、2、-15 B.1、-2、-15C.-1、-2、-15 D.-1、2、-157.一元二次方程4x2+1=4x的根的情况是()A.没有实数根 B.只有一个实数根C.有两个相等的实数根 D.有两个不相等的实数根8.若关于x的方程x2+2x+a=0不存在实数根,则a的取值X围是()A.a<1 B.a>1C.a≤1 D.a≥19.某旅游景点8月份共接待游客25万人次,10月份共接待游客64万人次,设游客每月的平均增长率为x,则下列方程正确的是()A.25(1+x)2=64 B.25(1+x2)=64C.64(1-x)2=25 D.64(1-x2)=2510.有一个人患了流感,经过两轮传染后新增120个人患了流感,则每轮传染中平均一个人传染人的个数为()A.10 B.11C.60 D.1211.一个三角形的两边长分别为3和6,第三边的边长是方程x2-6x+8=0的根,则这个三角形的周长是()A.11 B.11或13C.13 D.以上选项都不正确12.若两个不相等的实数m、n满足m2-6m=4,n2-4=6n,则mn的值为()A.6 B.-6C.4 D.-4二、填空题(本大题共6小题,每小题4分,共24分)13.已知关于x的一元二次方程x2-23x-k=0有两个相等的实数根,则k的值为.14.若a是方程x2-2x-1=0的解,则代数式2a2-4a+2016的值为.15.若正数a是一元二次方程x2-5x+m=0的一个根,-a是一元二次方程x2+5x-m =0的一个根,则a的值是.16.已知关于x的一元二次方程x2+(m+3)x+m+1=0的两个实数根为x1,x2,若x21+x22=4,则m的值为.17.如图,邻边不等的矩形花圃ABCD,它的一边AD2,则AB的长度是m(可利用的围墙长度超过6m).18.如图,每个正方形由边长为1的小正方形组成,正方形中黑色、白色小正方形的排列规律如图所示,在边长为n(n≥1)的正方形中,设黑色小正方形的个数为P1,白色小正方形的个数为P2,当偶数n=时,P2=5P1.三、解答题(本题共8小题,共90分,解答时应写出必要的文字说明、证明过程或演算步骤)19.(10分)解下列方程:(1)x2+4x-5=0; (2)x(x-4)=2-8x.20.(10分)已知关于x的一元二次方程(m+1)x2-x+m2-3m-3=0有一个根是1,求m 的值及另一根.21.(10分)一个长方体的一种表面积展开图如图所示,已知它的长与宽的比为2∶1,高为3cm,表面积为22cm2,试求这个长方体的长与宽.22.(10分)已知关于x 的方程3x 2-(a -3)x -a =0(a >0). (1)求证:方程总有两个不相等的实数根; (2)若方程有一个根大于2,求a 的取值X 围.23.(12分)嘉淇同学用配方法推导一元二次方程ax 2+bx +c =0(a ≠0)的求根公式时,对于b 2-4ac >0的情况,她是这样做的:由于a ≠0,方程ax 2+bx +c =0变形为:x 2+b a x =-ca,……第一步x 2+b a x +⎝ ⎛⎭⎪⎫b 2a 2=-c a +⎝ ⎛⎭⎪⎫b 2a 2,……第二步⎝ ⎛⎭⎪⎫x +b 2a 2=b 2-4ac 4a 2,……第三步 x +b2a=b 2-4ac4a2,……第四步 x =-b +b 2-4ac 2a.……第五步(1)嘉淇的解法从第________步开始出现错误;事实上,当b 2-4ac >0时,方程ax 2+bx +c =0(a ≠0)的求根公式是__________________________;(2)用公式法解方程:x 2-2x -24=0.24.(12分)电动自行车已成为市民日常出行的首选工具.据某市某品牌电动自行车经销商1至3月份统计,该品牌电动自行车1月份销售150辆,3月份销售216辆.(1)求该品牌电动自行车销售量的月均增长率;(2)若该品牌电动自行车的进价为2300元,售价为2800元,则该经销商1至3月共盈利多少元?25.(12分)已知关于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=-1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.26.(14分)如图,已知A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C同时出发,点P以3cm/s的速度向点B移动,一直到点B为止,点Q以2cm/s 的速度向点D移动.问:(1)P 、Q 两点从开始出发多长时间时,四边形PBCQ 的面积是33cm 2?(2)P 、Q 两点从开始出发多长时间时,点P 与点Q 之间的距离是10cm?答案1.18.12 解析:观察图形可知:n 为奇数时,黑色小正方形的个数为:1,5,9,13,…;n 为偶数时P 1的值为4,8,12,16,….由上可知n 为偶数时P 1=2n ,白色与黑色的总数为n 2,∴P 2=n 2-2n ,根据题意假设存在符合条件的n ,则n 2-2n =5×2n ,n 2-12n =0,解得n =12,n =0(不合题意,舍去).故存在偶数n =12,使得P 2=5P 1.故答案为12.19.解:(1)x 1=1,x 2=-5;(5分) (2)x 1=-2+6,x 2=-2- 6.(10分)20.解:∵(m +1)x 2-x +m 2-3m -3=0有一根为1,∴(m +1)×12-1+m 2-3m -3=0,整理得m 2-2m -3=0,∴(m -3)(m +1)=0.(4分)又∵方程(m +1)x 2-x +m 2-3m -3=0为一元二次方程,∴m +1≠0,(5分)∴m -3=0,∴m =3.(8分)∴原方程为4x 2-x -3=0,两根之积为-34,∴另一根为-34.(10分)21.解:设这个长方体的长、宽分别为2x cm 、x cm ,(1分)依题意有2(3×2x +3x +2x ·x )=22,(5分)整理得2x 2+9x -11=0,解得x 1=1,x 2=-112(舍去).(9分)答:这个长方体长为2cm ,宽为1cm.(10分)22.(1)证明:Δ=(a -3)2-4×3×(-a )=(a +3)2.(2分)∵a >0,∴(a +3)2>0,即Δ>0,∴方程总有两个不相等的实数根.(5分)(2)解:解方程,得x 1=-1,x 2=a 3.(8分)∵方程有一个根大于2,∴a3>2.∴a >6.(10分)23.解:(1)四(2分) x =-b ±b 2-4ac2a(4分)(2)a =1,b =-2,c =-24,∴Δ=b 2-4ac =4+96=100>0,(8分)∴x 1=2+102×1=6,x 2=2-102×1=-4.(12分) 24.解:(1)设该品牌电动自行车销售量的月均增长率为x ,根据题意得150(1+x )2=216,(3分)解得x 1=-2.2=-220%(不合题意,舍去),x 2=0.2=20%.(5分)答:该品牌电动自行车销售量的月平均增长率为20%;(6分)(2)二月份的销量是150×(1+20%)=180(辆),(8分)所以该经销商1~3月共盈利(2800-2300)×(150+180+216)=273000(元).(11分)答:该经销商1至3月共盈利273000元.(12分)25.解:(1)△ABC 是等腰三角形;(1分)理由如下:∵x =-1是方程的根,∴(a +c )×(-1)2-2b +(a -c )=0,∴a +c -2b +a -c =0,∴a -b =0,∴a =b ,∴△ABC 是等腰三角形;(4分)(2)△ABC 是直角三角形.(5分)理由如下:∵方程有两个相等的实数根,∴(2b )2-4(a +c )(a -c )=0,∴4b 2-4a 2+4c 2=0,∴a 2=b 2+c 2,∴△ABC 是直角三角形;(8分)(3)当△ABC 是等边三角形,方程(a +c )x 2+2bx +(a -c )=0可整理为2ax 2+2ax =0,∵a ≠0,∴x 2+x =0,解得x 1=0,x 2=-1.(12分)26.解:(1)设P 、Q 两点从开始经过x s ,四边形PBCQ 的面积为33cm 2.(1分)则由题意得(16-3x +2x )×6×12=33,(3分)解得x =5.∵16÷3=163>5,∴x =5符合题意.(5分)答:出发5s 时四边形PBCQ 的面积是33cm 2;(6分)(2)设P 、Q 两点从开始出发y s ,点P 与点Q 之间的距离是10cm.(7分)过点Q 作QH ⊥AB 于H ,∴∠QHA =90°.∵四边形ABCD 是矩形,∴∠A =∠D =90°,∴四边形ADQH 是矩形,∴AH=DQ=(16-2y)cm,QH=AD=6cm,∴PH=|16-2y-3y|=|16-5y|(cm).(9分)在Rt△PQH中,有(16-5y)2+62=102,(11分)解得y1=1.6,y2=4.8.(13分)答:出发1.6s或4.8s时,点P与点Q之间的距离是10cm.(14分)。

2018-2019学年度九年级数学上册 第二十一章 一元二次方程 21.3 实际问题与一元二次方

21.3 实际问题与一元二次方程学校:___________姓名:___________班级:___________一.选择题(共12小题)1.某企业2018年初获利润300万元,到2020年初计划利润达到507万元.设这两年的年利润平均增长率为x.应列方程是()A.300(1+x)=507 B.300(1+x)2=507C.300(1+x)+300(1+x)2=507 D.300+300(1+x)+300(1+x)2=5072.某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()A.2% B.4.4% C.20% D.44%3.如图,有一张矩形纸片,长10cm,宽6cm,在它的四角各减去一个同样的小正方形,然后折叠成一个无盖的长方体纸盒.若纸盒的底面(图中阴影部分)面积是32cm2,求剪去的小正方形的边长.设剪去的小正方形边长是xcm,根据题意可列方程为()A.10×6﹣4×6x=32 B.(10﹣2x)(6﹣2x)=32 C.(10﹣x)(6﹣x)=32 D.10×6﹣4x2=324.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜产量的年平均增长率为x,则可列方程为()A.80(1+x)2=100 B.100(1﹣x)2=80 C.80(1+2x)=100 D.80(1+x2)=100 5.宾馆有50间房供游客居住,当毎间房毎天定价为180元时,宾馆会住满;当毎间房毎天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的毎间房毎天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价定为x元.则有()A.(180+x﹣20)(50﹣)=10890 B.(x﹣20)(50﹣)=10890C.x(50﹣)﹣50×20=10890 D.(x+180)(50﹣)﹣50×20=108906.某汽车生产商新推出一款新型电动低能耗汽车,由于该型号汽车经济适用性强,销量快速增长,1月份该型号汽车的销量为2000辆,3月份该型号汽车的销量达4500辆.设该型号汽车销量的月平均增长率为x,则根据题意可列方程为()A.2000(1+x)2=4500 B.2000(1+2x)=4500C.2000(1﹣x)2=4500 D.2000x2=45007.云南省某市2018年现有森林和人工绿化面积为20万亩,为了响应十九大的“绿水青山就是金山银山”,现计划在两年后将本市的绿化面积提高到24.2万亩,设每年平均增长率为x,则列方程为()A.20(1+x)×2=24.2 B.20(1+x)2=24.2×2C.20+20(1+x)+20(1+x)2=24.2 D.20(1+x)2=24.28.如图,在宽为20m,长为32m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪.要使草坪的面积为540m2,求道路的宽.如果设小路宽为x,根据题意,所列方程正确的是()A.(20﹣x)(32﹣x)=540 B.(20﹣x)(32﹣x)=100 C.(20+x)(32﹣x)=540 D.(20+x)(32﹣x)=1009.如图,某小区规划在一个长16m,宽9m的矩形场地ABCD上,修建同样宽的小路,使其中两条与AB平行,另一条与AD平行,其余部分种草.若草坪部分总面积为112m2,设小路宽为xm,那么x满足的方程是()A.2x2﹣25x+16=0 B.x2﹣25x+32=0 C.x2﹣17x+16=0 D.x2﹣17x﹣16=010.某厂一月份生产产品50台,计划二、三月份共生产产品120台,设二、三月份平均每月增长率为x,根据题意,可列出方程为()A.50(1+x)2=60 B.50(1+x)2=120C.50+50(1+x)+50(1+x)2=120 D.50(1+x)+50(1+x)2=12011.近年来某市不断加大对城市绿化的经济收入,使全市绿地面积不断增加,从2015年底到2017年底的城市绿化面积变化如图所示,则这两年绿地面积的年平均增长率是()A.10% B.15% C.20% D.25%12.用总长10m的铝合金型材做一个如图所示的窗框(不计损耗),窗框的外围是矩形,上部是两个全等的正方形,窗框的总面积为3.52m2(材料的厚度忽略不计).若设小正方形的边长为xm,下列方程符合题意的是()A.2x(10﹣7x)=3.52 B.C.D.2x2+2x(10﹣9x)=3.52二.填空题(共6小题)13.为应对金融危机,某工厂从2008年到2010年把某种产品的成本下降了19%,则平均每年下降的百分数为.14.某商品的原价为120元,如果经过两次降价,且每次降价的百分率都是m,那么该商品现在的价格是元(结果用含m的代数式表示).15.某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是.16.某商品原售价为100元,经连续两次涨价后售价为121元,设平均每次涨价的百分率为x,则依题意所列的方程是.17.某县2015年农民人均年收入为10000元,计划到2017年,农民人均年收入达到12 100元.设人均年收入的平均增长率为x,则可列方程.18.如图,某小区有一块长为36m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为600m2,两块绿地之间及周边有宽度相等的人行通道,则人行通道的宽度为m.三.解答题(共8小题)19.为积极响应新旧动能转换,提高公司经济效益,某科技公司近期研发出一种新型高科技设备,每台设备成本价为30万元,经过市场调研发现,每台售价为40万元时,年销售量为600台;每台售价为45万元时,年销售量为550台.假定该设备的年销售量y(单位:台)和销售单价x(单位:万元)成一次函数关系.(1)求年销售量y与销售单价x的函数关系式;(2)根据相关规定,此设备的销售单价不得高于70万元,如果该公司想获得10000万元的年利润,则该设备的销售单价应是多少万元?20.在美丽乡村建设中,某县政府投入专项资金,用于乡村沼气池和垃圾集中处理点建设.该县政府计划:2018年前5个月,新建沼气池和垃圾集中处理点共计50个,且沼气池的个数不低于垃圾集中处理点个数的4倍.(1)按计划,2018年前5个月至少要修建多少个沼气池?(2)到2018年5月底,该县按原计划刚好完成了任务,共花费资金78万元,且修建的沼气池个数恰好是原计划的最小值.据核算,前5个月,修建每个沼气池与垃圾集中处理点的平均费用之比为1:2.为加大美丽乡村建设的力度,政府计划加大投入,今年后7个月,在前5个月花费资金的基础上增加投入10a%,全部用于沼气池和垃圾集中处理点建设.经测算:从今年6月起,修建每个沼气池与垃圾集中处理点的平均费用在2018年前5个月的基础上分别增加a%,5a%,新建沼气池与垃圾集中处理点的个数将会在2018年前5个月的基础上分别增加5a%,8a%,求a的值.21.某市创建“绿色发展模范城市”,针对境内长江段两种主要污染源:生活污水和沿江工厂污染物排放,分别用“生活污水集中处理”(下称甲方案)和“沿江工厂转型升级”(下称乙方案)进行治理,若江水污染指数记为Q,沿江工厂用乙方案进行一次性治理(当年完工),从当年开始,所治理的每家工厂一年降低的Q值都以平均值n计算.第一年有40家工厂用乙方案治理,共使Q值降低了12.经过三年治理,境内长江水质明显改善.(1)求n的值;(2)从第二年起,每年用乙方案新治理的工厂数量比上一年都增加相同的百分数m,三年来用乙方案治理的工厂数量共190家,求m的值,并计算第二年用乙方案新治理的工厂数量;(3)该市生活污水用甲方案治理,从第二年起,每年因此降低的Q值比上一年都增加个相同的数值a.在(2)的情况下,第二年,用乙方案所治理的工厂合计降低的Q值与当年因甲方案治理降低的Q值相等,第三年,用甲方案使Q值降低了39.5.求第一年用甲方案治理降低的Q值及a的值.22.在美丽乡村建设中,某县通过政府投入进行村级道路硬化和道路拓宽改造.(1)原计划今年1至5月,村级道路硬化和道路拓宽的里程数共50千米,其中道路硬化的里程数至少是道路拓宽的里程数的4倍,那么,原计划今年1至5月,道路硬化的里程数至少是多少千米?(2)到今年5月底,道路硬化和道路拓宽的里程数刚好按原计划完成,且道路硬化的里程数正好是原计划的最小值.2017年通过政府投人780万元进行村级道路硬化和道路拓宽的里程数共45千米,每千米的道路硬化和道路拓宽的经费之比为1:2,且里程数之比为2:1.为加快美丽乡村建设,政府决定加大投入.经测算:从今年6月起至年底,如果政府投入经费在2017年的基础上增加10a%(a>0),并全部用于道路硬化和道路拓宽,而每千米道路硬化、道路拓宽的费用也在2017年的基础上分别增加a%,5a%,那么道路硬化和道路拓宽的里程数将会在今年1至5月的基础上分别增加5a%,8a%,求a的值.23.今年本市蜜桔大丰收,某水果商销售一种蜜桔,成本价为10元/千克,已知销售价不低于成本价,且物价部门规定这种产品的销售价不高于18元/千克,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)之间的函数关系如图所示:(1)求y与x之间的函数关系式;(2)该经销商想要每天获得150元的销售利润,销售价应定为多少?(销售利润=销售价﹣成本价)24.无锡市新区某桶装水经营部每天的房租、人员工资等固定成本为250元,每桶水的进价是5元,规定销售单价不得高于12元/桶,也不得低于7元/桶,调查发现日均销售量p(桶)与销售单价x(元)的函数图象如图所示.(1)求日均销售量p(桶)与销售单价x(元)的函数关系;(2)若该经营部希望日均获利1350元,那么销售单价是多少?25.2017年5月14日﹣﹣﹣5月15日.“一带一路”国际合作高峰论坛在北京成功举办,高峰论坛期间及前夕,各国政府、地方、企业等达成一系列合作共识、重要举措及务实成果.中方对其中具有代表性的一些成果进行了梳理和汇总,形成高峰论坛成果清单.清单主要涵盖政策沟通、设施联通、贸易畅通、资金融通、民心相通5大类,共76大项、270多项具体成果.我市新能源产业受这一利好因素,某企业的利润逐月提高.据统计,2017年第一季度的利润为2000万元,第三季度的利润为2880万元.(1)求该企业从第一季度到第三季度利润的平均增长率;(2)若第四季度保持前两季度利润的平均增长率不变,该企业2017年的年利润总和能否突破1亿元?26.成都市中心城区“小游园,微绿地”规划已经实施,武侯区某街道有一块矩形空地进入规划试点.如图,已知该矩形空地长为 90m,宽为 60m,按照规划将预留总面积为 4536m2的四个小矩形区域(阴影部分)种植花草,并在花草周围修建三条横向通道和三条纵向通道,各通道的宽度相等.(1)求各通道的宽度;(2)现有一工程队承接了对这 4536m2的区域(阴影部分)进行种植花草的绿化任务,该工程队先按照原计划进行施工,在完成了 536m2的绿化任务后,将工作效率提高 25%,结果提前 2 天完成任务,求该工程队原计划每天完成多少平方米的绿化任务?参考答案与试题解析一.选择题(共12小题)1.解:设这两年的年利润平均增长率为x,根据题意得:300(1+x)2=507.故选:B.2.解:设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,根据题意得:2(1+x)2=2.88,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:该市2018年、2019年“竹文化”旅游收入的年平均增长率约为20%.故选:C.3.解:设剪去的小正方形边长是xcm,则纸盒底面的长为(10﹣2x)cm,宽为(6﹣2x)cm,根据题意得:(10﹣2x)(6﹣2x)=32.故选:B.4.解:由题意知,蔬菜产量的年平均增长率为x,根据2016年蔬菜产量为80吨,则2017年蔬菜产量为80(1+x)吨,2018年蔬菜产量为80(1+x)(1+x)吨,预计2018年蔬菜产量达到100吨,即:80(1+x)(1+x)=100或80(1+x)2=100.故选:A.5.解:设房价定为x元,根据题意,得(x﹣20)(50﹣)=10890.故选:B.6.解:依题意得3月份该型号汽车的销量为:2000(1+x)2,则2000(1+x)2=4500.故选:A.7.解:由题意可得,20(1+x)2=24.2,故选:D.8.解:由题意,得种草部分的长为(32﹣x)m,宽为(20﹣x)m,∴由题意建立等量关系,得(20﹣x)(32﹣x)=540.故A答案正确,故选:A.9.解:设小路的宽度为xm,那么草坪的总长度和总宽度应该为16﹣2x,9﹣x;根据题意即可得出方程为:(16﹣2x)(9﹣x)=112,整理得:x2﹣17x+16=0.故选:C.10.解:设二、三月份每月的平均增长率为x,则二月份生产机器为:50(1+x),三月份生产机器为:50(1+x)2;又知二、三月份共生产120台;所以,可列方程:50(1+x)+50(1+x)2=120.故选:D.11.解:设这两年绿地面积的年平均增长率是x,根据题意得:300(1+x)2=363,解得:x1=0.1=10%,x2=﹣2.1(不合题意,舍去).答:这两年绿地面积的年平均增长率是10%.故选:A.12.解:设小正方形的边长为xm,则小矩形的宽为2xm,长为: m,依题意得:.故选:B.二.填空题(共6小题)13.解:设每年下降的百分率为x,由题意,可得(1﹣x)2=1﹣19%,解得x1=0.1,x2=1.9(不合题意舍去).所以平均每年下降的百分率为10%.故答案为:10%.14.解:设每次降价的百分率都是m,该商品现在的价格是;120(1﹣m)2.故答案为:120(1﹣m)2.15.解:设该药品平均每次降价的百分率为x,由题意可知经过连续两次降价,现在售价每盒16元,故25(1﹣x)2=16,解得x=0.2或1.8(不合题意,舍去),故该药品平均每次降价的百分率为20%.16.解:由题意可知:100(1+x)2=121故答案为:100(1+x)2=12117.解:设人均年收入的平均增长率为x,根据题意得:10000(1+x)2=12100.故答案为:10000(1+x)2=12100.18.解:设人行通道的宽度为x,将脸矩形绿地平移,如图所示,∴AB=2x,GD=3x,ED=24﹣2x由题意可列出方程:36×24﹣600=2x×36+3x(24﹣2x)解得:x=2或x=22(不合题意,舍去)故答案为:2三.解答题(共8小题)19.解:(1)设年销售量y与销售单价x的函数关系式为y=kx+b(k≠0),将(40,600)、(45,550)代入y=kx+b,得:,解得:,∴年销售量y与销售单价x的函数关系式为y=﹣10x+1000.(2)设此设备的销售单价为x万元/台,则每台设备的利润为(x﹣30)万元,销售数量为(﹣10x+1000)台,根据题意得:(x﹣30)(﹣10x+1000)=10000,整理,得:x2﹣130x+4000=0,解得:x1=50,x2=80.∵此设备的销售单价不得高于70万元,∴x=50.答:该设备的销售单价应是50万元/台.20.解:(1)设2018年前5个月要修建x个沼气池,则2018年前5个月要修建(50﹣x)个垃圾集中处理点,根据题意得:x≥4(50﹣x),解得:x≥40.答:按计划,2018年前5个月至少要修建40个沼气池.(2)修建每个沼气池的平均费用为78÷[40+(50﹣40)×2]=1.3(万元),修建每个垃圾处理点的平均费用为1.3×2=2.6(万元).根据题意得:1.3×(1+a%)×40×(1+5a%)+2.6×(1+5a%)×10×(1+8a%)=78×(1+10a%),设y=a%,整理得:50y2﹣5y=0,解得:y1=0(不合题意,舍去),y2=0.1,∴a的值为10.21.解:(1)由题意可得:40n=12,解得:n=0.3;(2)由题意可得:40+40(1+m)+40(1+m)2=190,解得:m1=,m2=﹣(舍去),∴第二年用乙方案新治理的工厂数量为:40(1+m)=40(1+50%)=60(家),(3)设第一年用乙方案治理降低了100n=100×0.3=30,则(30﹣a)+2a=39.5,解得:a=9.5,则Q=20.5.设第一年用甲方案整理降低的Q值为x,第二年Q值因乙方案治理降低了100n=100×0.3=30,解法一:(30﹣a)+2a=39.5a=9.5x=20.5解法二:解得:22.解:(1)设道路硬化的里程数是x千米,则道路拓宽的里程数是(50﹣x)千米,根据题意得:x≥4(50﹣x),解得:x≥40.答:原计划今年1至5月,道路硬化的里程数至少是40千米.(2)设2017年通过政府投人780万元进行村级道路硬化和道路拓宽的里程数分别为2x千米、x千米,2x+x=45,x=15,2x=30,设每千米的道路硬化和道路拓宽的经费分别为y元、2y元,30y+15×2y=780,y=13,2y=26,由题意得:13(1+a%)•30(1+5a%)+26(1+5a%)•15(1+8a%)=780(1+10a%),设a%=m,则390(1+m)(1+5m)+390(1+5m)(1+8m)=780(1+10m),45m2﹣m=0,m1=,m2=0(舍),∴a=.23.解:(1)设y与x之间的函数关系式y=kx+b(k≠0),把(10,40),(18,24)代入得:,解得:,∴y与x之间的函数关系式y=﹣2x+60(10≤x≤18);(2)根据题意得:(x﹣10)(﹣2x+60)=150,整理,得:x2﹣40x+375=0,解得:x1=15,x2=25(不合题意,舍去).答:该经销商想要每天获得150元的销售利润,销售价应定为15元.24.解:(1)设日均销售量p(桶)与销售单价x(元)的函数关系为p=kx+b,根据题意得解得k=﹣50,b=850,所以日均销售量p(桶)与销售单价x(元)的函数关系为p=﹣50x+850;(2)根据题意得一元二次方程(x﹣5)(﹣50x+850)﹣250=1350,解得x1=9,x2=13(不合题意,舍去),∵销售单价不得高于12元/桶,也不得低于7元/桶,∴x=13不合题意,答:若该经营部希望日均获利1350元,那么销售单价是9元.25.解:(1)设该企业从第一季度到第三季度利润的平均增长率为x,根据题意得:2000(1+x)2=2880,解得:x=0.2=20%或x=﹣2.2(不合题意,舍去).答:该企业从第一季度到第三季度利润的平均增长率为20%.(2)2000+2000×(1+20%)+2880+2880×(1+20%)=10736(万元),10736万元>1亿元.答:该企业2017年的年利润总和突破1亿元.26.解:(1)设各通道的宽度为x米,根据题意得:(90﹣3x)(60﹣3x)=4536,解得:x1=2,x2=48(不合题意,舍去).答:各通道的宽度为2米.(2)设该工程队原计划每天完成y平方米的绿化任务,根据题意得:﹣=2,解得:y=400,经检验,y=400是原方程的解,且符合题意.答:该工程队原计划每天完成400平方米的绿化任务.。

人教版2019学年度九年级数学上册第二十一章一元二次方程21.2解一元二次方程21.2.5解一元二次方程_换元法同

21.2.5解一元二次方程-换元法学校:___________姓名:___________班级:___________一.选择题(共15小题)1.已知方程x2+3x﹣4=0的解是x1=1,x2=﹣4,则方程(2x+3)2+3(2x+3)﹣4=0的解是()A.x1=﹣1,x2=﹣3.5 B.x1=1,x2=﹣3.5C.x1=1,x2=3.5 D.x1=﹣1,x2=3.52.已知实数a、b满足(a2﹣b2)2﹣2(a2﹣b2)=8,则a2﹣b2的值为()A.﹣2 B.4 C.4或﹣2 D.﹣4或23.已知x、y都是实数,且(x2+y2)(x2+y2+2)﹣3=0,那么x2+y2的值是()A.﹣3 B.1 C.﹣3或1 D.﹣1或34.已知方程x2+2x﹣3=0的解是x1=1,x2=﹣3,则另一个方程(x+3)2+2(x+3)﹣3=0的解是()A.x1=﹣1,x2=3 B.x1=1,x2=﹣3 C.x1=2,x2=6 D.x1=﹣2,x2=﹣65.如果(x+2y)2+3(x+2y)﹣4=0,那么x+2y的值为()A.1 B.﹣4 C.1或﹣4 D.﹣1或36.已知x是实数且满足(x2+3x)2+2(x2+3x)﹣3=0,那么x2+3x的值为()A.3 B.﹣3或1 C.1 D.﹣1或37.若实数x、y满足(x2+y2+2)(x2+y2﹣2)=0,则x2+y2的值为()A.1 B.2 C.2或﹣1 D.2或﹣28.若实数x、y满足(x+y﹣3)(x+y)+2=0,则x+y的值为()A.﹣1或﹣2 B.﹣1或2 C.1或﹣2 D.1或29.已知方程ax2+bx+c=0的解是x1=2,x2=﹣3,则方程a(x+1)2+b(x+1)+c=0的解是()A.x1=1,x2=﹣4 B.x1=﹣1,x2=﹣4 C.x1=﹣1,x2=4 D.x1=1,x2=410.设(x2+y2)(x2+y2+2)﹣15=0,则x2+y2的值为()A.﹣5或3 B.﹣3或5 C.3 D.511.(m2+n2)(m2+n2﹣2)﹣8=0,则m2+n2=()A.4 B.2 C.4或﹣2 D.4或212.用“整体法”求得方程(2x+5)2﹣4(2x+5)+3=0的解为()A.x1=1,x2=3 B.x1=﹣2,x2=3 C.x1=﹣3,x2=﹣1 D.x1=﹣2,x2=﹣113.若实数x满足方程(x2+2x)•(x2+2x﹣2)﹣8=0,那么x2+2x的值为()A.﹣2或4 B.4 C.﹣2 D.2或﹣414.已知x为实数,且满足(x2+x+1)2+2(x2+x+1)﹣3=0,那么x2+x+1的值为()A.1 B.﹣3 C.﹣3或1 D.﹣1或315.若(x2+y2﹣2)2=9,则x2+y2的值为()A.1 B.﹣1 C.5 D.5或﹣1二.填空题(共5小题)16.若实数a,b满足(2a+2b)(2a+2b﹣2)﹣8=0,则a+b= .17.设x,y是一个直角三角形两条直角边的长,且(x2+y2)(x2+y2﹣1)=20,则这个直角三角形的斜边长为.18.已知(x2+y2)(x2+y2﹣1)=12,则x2+y2的值是.19.若(x2+y2+3)2﹣6(x2+y2+3)+8=0,则x2+y2﹣5= .20.如果(m+n)(m+n+5)=6,则m+n= .三.解答题(共4小题)21.阅读下面的材料,回答问题:解方程x4﹣5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2﹣5y+4=0 ①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=﹣1,x3=2,x4=﹣2.(1)在由原方程得到方程①的过程中,利用法达到的目的,体现了数学的转化思想.(2)解方程(x2+x)2﹣4(x2+x)﹣12=0.22.(3x﹣2)2﹣5(3x﹣2)+4=0.23.已知实数x,y满足(x2+y2)(x2+y2﹣12)=45,求x2+y2的值.24.阅读下面的材料,解答后面的问题材料:“解方程x4﹣3x2+2=0”解:设x2=y,原方程变为y2﹣3y+2=0,(y﹣1)(y﹣2)=0,得y=1或y=2当y=1时,即x2=1,解得x=±1;当y=2时,即x2=2,解得x=±综上所述,原方程的解为x1=1,x2=﹣1,x3=.x4=﹣问题:(1)上述解答过程采用的数学思想方法是A.加减消元法 B.代入消元法 C.换元法 D.待定系数法(2)采用类似的方法解方程:(x2﹣2x)2﹣x2+2x﹣6=0.2018-2019学年度人教版数学九年级上册同步练习:21.2.5解一元二次方程-换元法参考答案与试题解析一.选择题(共15小题)1.解:把方程(2x+3)2+2(2x+3)﹣3=0看作关于2x+3的一元二次方程,所以2x+3=1或2x+3=﹣4,所以x1=﹣1,x2=﹣3.5.故选:A.2.解:设y=a2﹣b2,原式化为y2﹣2y﹣8=0,即(y﹣4)(y+2)=0,可得y﹣4=0或y+2=0,解得:y1=4,y2=﹣2,∴a2﹣b2=4或﹣2.故选:C.3.解:(x2+y2)(x2+y2+2)﹣3=0,(x2+y2)2+2(x2+y2)﹣3=0,(x2+y2+3)(x2+y2﹣1)=0,x2+y2﹣1=0,x2+y2=1,故选:B.4.解:∵方程x2+2x﹣3=0的解是x1=1,x2=﹣3,∴方程(x+3)2+2(x+3)﹣3=0中x+3=1或﹣3,解得:x=﹣2或﹣6,即x1=﹣2,x2=﹣6,故选:D.5.解:设x+2y=a,则原方程变形为a2+3a﹣4=0,解得a=﹣4或a=1.故选C.6.解:由y=x2+3x,则(x2+3x)2+2(x2+3x)﹣3=0,可化为:y2+2y﹣3=0,分解因式,得,(y+3)(y﹣1)=0,解得,y1=﹣3,y2=1,当x2+3x=﹣3时,经△=32﹣3×4=﹣3<0检验,可知x不是实数当x2+3x=1时,经检验,符合题意.故选:C.7.解:设t=x2+y2,则t≥0,原方程变形为(t+2)(t﹣2)=0,解得:t=2或t=﹣2(舍去).故选:B.8.解:t=x+y,则由原方程,得t(t﹣3)+2=0,整理,得(t﹣1)(t﹣2)=0.解得t=1或t=2,所以x+y的值为1或2.故选:D.9.解:设t=x+1,则方程a(x+1)2+b(x+1)+c=0化为at2+at+c=0,因为方程ax2+bx+c=0的解是x1=2,x2=﹣3,所以t1=2,t2=﹣3,当t=2时,x+1=2,解得x=1;当t=﹣3时,x+1=﹣3,解得x=﹣4,所以方程a(x+1)2+b(x+1)+c=0的解是x1=1,x2=﹣4.故选:A.10.解:设t=x2+y2,则原方程可化为t2+2t﹣15=0,∴t=x2+y2=3或t=x2+y2=﹣5,又∵t≥0,∴x2+y2=3.故选:C.11.解:设m2+n2=t(t≥0),由原方程,得t(t﹣2)﹣8=0,整理,得(t﹣4)(t+2)=0,解得t=4或t=﹣2(舍去),所以m2+n2=4.故选:A.12.解:(2x+5)2﹣4(2x+5)+3=0,设2x+5=y,则原方程变形为y2﹣4y+3=0,解得:y1=1,y2=3,当y=1时,2x+5=1,解得:x=﹣2,当y=3时,2x+5=3,解得:x=﹣1,即原方程的解为x1=﹣2,x2=﹣1,故选:D.13.解:设x2+2x=y,则原方程化为y(y﹣2)﹣8=0,解得:y=4或﹣2,当y=4时,x2+2x=4,此时方程有解,当y=﹣2时,x2+2x=﹣2,此时方程无解,舍去,所以x2+2x=4.故选:B.14.解:设y=x2+x+1=y,则(x2+x+1)2+2(x2+x+1)﹣3=0,可化为:y2+2y﹣3=0,分解因式得:(y+3)(y﹣1)=0,解得:y1=﹣3,y2=1,当x2+x+1=﹣3时,经△=12﹣4×1×4<0检验,可知x不是实数,当x2+x+1=1时,经检验,符合题意.故选:A.15.解:设t=x2+y2(t≥0),由原方程得:(t﹣2)2=9,解得t﹣2=±3,解得t=5或t=﹣1(舍去).故选:C.二.填空题(共5小题)16.解:设a+b=x,则由原方程,得2x(2x﹣2)﹣8=0,整理,得4x2﹣4x﹣8=0,即x2﹣x﹣2=0,分解得:(x+1)(x﹣2)=0,解得:x1=﹣1,x2=2.则a+b的值是﹣1或2.故答案是:﹣1或2.17.解:设x2+y2=t,则原方程可化为:t(t﹣1)=20,∴t2﹣t﹣20=0,即(t+4)(t﹣5)=0,∴t1=5,t2=﹣4(舍去),∴x2+y2=5,∴这个直角三角形的斜边长为,故答案为:.18.解:(x2+y2)(x2+y2﹣1)=12,(x2+y2)2﹣(x2+y2)﹣12=0,(x2+y2+3)(x2+y2﹣4)=0,x2+y2+3=0,x2+y2﹣4=0,x2+y2=﹣3,x2+y2=4,∵不论x、y为何值,x2+y2不能为负数,∴x2+y2=4,故答案为:4.19.解:设x2+y2+3=t∵(x2+y2+3)2﹣6(x2+y2+3)+8=0,∴t2﹣6t+8=0∴t=2或t=4当t=2时,x2+y2+3=2∴x2+y2=﹣1故t=2舍去当t=4时,x2+y2+3=4∴x2+y2=1∴原式=1﹣5=﹣4故答案为:﹣420.解:设m+n为x则(m+n)(m+n+5)=6变形为x(x+5)=6 移项去括号得x2+5x﹣6=0因式分解得(x+6)(x﹣1)=0解得x=1或﹣6即m+n=1或﹣6.三.解答题(共4小题)21.解:(1)换元,降次(2)设x2+x=y,原方程可化为y2﹣4y﹣12=0,解得y1=6,y2=﹣2.由x2+x=6,得x1=﹣3,x2=2.由x2+x=﹣2,得方程x2+x+2=0,b2﹣4ac=1﹣4×2=﹣7<0,此时方程无实根.所以原方程的解为x1=﹣3,x2=2.22.解:设(3x﹣2)=y,原方程等价于y2﹣5y+4=0因式分解,得(y﹣4)(y﹣1)=0,于是,得y﹣4=0或y﹣1=0,解得y=4或y=1,3x﹣2=4,3x﹣2=1,解得x1=2,x2=1.23.解:设x2+y2=a,则a(a﹣12)=45,a2﹣12a﹣45=0,(a﹣15)(a+3)=0,a1=15,a2=﹣3,∵x2+y2=a≥0,∴x2+y2=15.24.解:(1)上述解答过程采用的数学思想方法是换元法.故答案是:C;(2)设x2﹣2x=y,原方程化为y2﹣y﹣6=0,整理,得(y﹣3)(y+2)=0,得y=3或y=﹣2当y=3时,即x2﹣2x=3,解得x=﹣1或x=3;当y=﹣2时,即x2﹣2x=2,解得x=1±综上所述,原方程的解为x1=﹣1,x2=3,x3=1+.x4=1﹣.。

2019秋季人教版九年级数学上册 第21章《一元二次方程》单元测试题 (含答案解析)


B.(10﹣2x)(6﹣2x)=32 D.10×6﹣4x2=32
10.(4 分)某市从 2017 年开始大力发展“竹文化”旅游产业.据统计,该市 2017 年“竹文化”旅
游收入约为 2 亿元.预计 2019“竹文化”旅游收入达到 2.88 亿元,据此估计该市 2018 年、2019 年
“竹文化”旅游收入的年平均增长率约为( )
【解答】解:y2﹣y﹣ 3 =0 4
y2﹣y= 3 4
y2﹣y+ 1 =1 4
(y﹣ 1 )2=1 2
故选:B. 【点评】本题考查一元二次方程的配方法,解题的关键是熟练运用配方法,本题属于基础题型.
6. 【分析】求出方程的解,求出方程的最小值,即可求出答案.
【解答】解:2x2﹣4x= 5 , 4
8x2﹣16x﹣5=0,
2. 【分析】一元二次方程 ax2+bx+c=0(a,b,c 是常数且 a≠0)中 a、b、c 分别是二次项系数、一次 项系数、常数项. 【解答】解:化为一般式,得 x2﹣5x﹣9=0, 一次项系数为﹣5, 故选:A. 【点评】本题考查了一元二次方程的一般形式:ax2+bx+c=0(a,b,c 是常数且 a≠0)特别要注意 a ≠0 的条件.这是在做题过程中容易忽视的知识点.在一般形式中 ax2 叫二次项,bx 叫一次项,c 是 常数项.其中 a,b,c 分别叫二次项系数,一次项系数,常数项.

∵x1 为一元二次方程 2x2﹣4x= 5 较小的根, 4

∵5< 26 <6,
∴﹣1<x1<0. 故选:B. 【点评】本题考查了求一元二次方程的解和估算无理数的大小的应用,关键是求出方程的解和能估 算无理数的大小.
7. 【分析】先移项,再将方程左边进行因式分解,转化成一次方程,求解即可. 【解答】解:移项得:x2+2x﹣3=0, 方程左边因式分解得:(x+3)(x﹣1)=0, x+3=0 或 x﹣1=0, 解得:x1=﹣3,x2=1, 较适宜的方法是因式分解法, 故选:C. 【点评】本题考查解一元二次方程,掌握多种方法解一元二次方程,并针对不同的题目找到最适宜 的方法是解决本题的关键.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自我小测
复习巩固
1.某种衬衣原价168元,连续两次降价a%后售价为128元.下面所列方程中正确的是( )
A.168(1+a%)2=128 B.168(1-a%)2=128
C.168(1-2a%)=128 D.168(1-a2%)=128
2.某农机厂4月份生产零件50万个,第二季度共生产零件182万个.设该厂5,6月份平均每月的增长率为x,那么x满足的方程是( )
A.50(1+x)2=182
B.50+50(1+x)+50(1+x)2=182
C.50(1+2x)=182
D.50+50(1+x)+50(1+2x)=182
3.初中毕业时,九年级(1)班的每个同学都将自己的相片向全班其他同学各送1张留作纪念,全班共送了2 070张相片,如果全班有x名学生,根据题意,列出方程为( ) A.x(x-1)=2 070 B.x(x+1)=2 070
C.2x(x+1)=2 070 D.
(1)
2
x x
=2 070
4.某种植物的主干长出若干数目的支干,每个支干又长出相同数目的小分支,若小分支、支干和主干的总数目是73,则每个支干长出的小分支的数目为( ) A.7 B.8 C.9 D.10
5.兰州市政府为解决老百姓看病难的问题,决定下调药品的价格,某种药品经过两次降价,由每盒72元调至56元.若每次平均降价的百分率为x,由题意可列方程为__________.6.一个多边形有9条对角线,则这个多边形的边数为__________.
7.某种商品的进价为10元,当售价为x元时,能销售该商品(x+10)个,此时获利1 500元,则该商品的售价为__________元.
8.一个两位数,十位数字与个位数字之和是5,把这个两位数的个位数字与十位数字对调后,所得的新两位数与原来两位数的乘积为736,求原来的两位数.
能力提升
9.一个两位数等于它的个位数的平方,且个位数字比十位数字大3,则这个两位数为( )
A.25 B.36 C.25或36 D.-25或36
10.用锤子以均匀的力敲击铁钉入木板.随着铁钉的深入,铁钉所受的阻力会越来越大,
使得每次钉入木板的钉子的长度后一次为前一次的k(0<k <1)倍.已知一个钉子受击3次后恰好全部进入木板,且第一次受击后进入木板部分的铁钉长度是钉长的
47,设铁钉的长度为1,那么符合这一事实的一个方程是( )
A .2444=1777k k ++
B .44=177
k + C .244=177k k + D .48=177
k + 11.某市为了增强学生体质,开展了乒乓球比赛活动.部分同学进入了半决赛,赛制为单循环式(即每两个选手之间都赛一场),半决赛共进行了6场,则共有__________人进入半决赛.
12.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?
13.山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2 240元,请回答:
(1)每千克核桃应降价多少元?
(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?
14.据统计,某小区2011年底拥有私家车125辆,2013年底私家车的拥有量达到180辆.
(1)若该小区2011年底到2014年底私家车拥有量的年平均增长率相同,则该小区到2014年底私家车将达到多少辆?
(2)为了缓解停车矛盾,该小区决定投资3万元再建若干个停车位,据测算,建造费用分别为室内车位1 000元/个,露天车位200元/个.考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,则该小区最多可建两种车位各多少个?试写出所有可能的方案.
参考答案
复习巩固
1.B 2.B
3.A 由题意可知,每名同学都送出(x -1)张照片,所以全班共送出x(x -1)张照片,于是有x(x -1)=2 070.故选A.
4.B 设每个支干长出n 个小分支,则据题意得1+n +n 2=73,解得n =8.
5.72(1-x)2=56
6.6 设这个多边形的边数为n ,则392
n n (-)=,解得n =6. 7.40 由题意,得x(x +10)-10(x +10)=1 500.解得x 1=40,x 2=-40(舍去).
8.解:设原来两位数的十位数字为x ,则个位数字为5-x.
根据题意,得[10x +(5-x)]·[10(5-x)+x]=736.
整理,得x 2-5x +6=0.解得x 1=2,x 2=3.
当x =2时,5-x =3,符合题意,原来的两位数是23.
当x =3时,5-x =2,符合题意,原来的两位数是32.
答:原来的两位数是23或32.
能力提升
9.C 设这个两位数的十位数字为x ,则个位数字为x +3.依题意,得10x +(x +3)=(x +3)2,解得x 1=2,x 2=3.
故这个两位数为25或36.
10.A 第一次进入木板的铁钉长度为47,第二次进入木板的铁钉长度为47k ,第三次进入木板的铁钉长度为247
k , 所以24441777
k k ++=.故选A. 11.4 设共有n 人进入半决赛,则需进行
12n n (-)场比赛.因此12n(n -1)=6,解得n =4或n =-3(舍去).
12.解:设每轮感染中平均每一台电脑会感染x 台电脑,依题意,得
1+x +(1+x)x =81.
(1+x)2
=81.
x +1=9,或x +1=-9.
解得x 1=8,x 2=-10(舍去).
(1+x)3=(1+8)3=729>700.
答:每轮感染中平均每一台电脑会感染8台电脑,3轮感染后,被感染的电脑会超过700台.
13.解:(1)设每千克核桃应降价x 元,根据题意,得
(60-x -40)100202x ⎛⎫+
⨯ ⎪⎝⎭=2 240. 化简,得x 2-10x +24=0,解得x 1=4,x 2=6.
答:每千克核桃应降价4元或6元.
(2)由(1)可知每千克核桃可降价4元或6元.
因为要尽可能让利于顾客,所以每千克核桃应降价6元.
此时,售价为60-6=54(元),5460
×100%=90%. 答:该店应按原售价的九折出售.
14.解:(1)设私家车拥有量的年平均增长率为x ,
则125(1+x)2=180,
解得x 1=0.2=20%,x 2=-2.2(不合题意,舍去).
故180(1+20%)=216(辆).
答:该小区到2014年底私家车将达到216辆.
(2)设该小区可建室内车位a 个,露天车位b 个,
则1000200=300002 2.5a b a b a +⎧⎨≤≤⎩,①,②
由①得b =150-5a , 代入②得20≤a ≤
1507, 因为a 是正整数,所以a =20或21.
当a =20时,b =50;当a =21时,b =45.
所以方案一:建室内车位20个,露天车位50个;
方案二:建室内车位21个,露天车位45个.。

相关文档
最新文档