数学---江苏省盐城市2016-2017学年高一下学期期末考试试题
山东省济南市2016-2017学年高一数学下学期期末考试试题(含解析)

2016—2017学年度第二学期期末考试高一数学试题第I卷(选择题,每题5分,共60分)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有.. 一项是符合题目要求的,请将正确选项填涂在答题卡上)1. -HI.: -:":1的值是()A. B. C. D.2 2【答案】A【解析】由题意可得:.ii、二、.iii —T-二'.in ri = ■. -i ='.本题选择A选项.2. 已知I.::. li ■:.H.I :■::',且丄-「一L;,则".的值分别为()A. - 7,—5B. 7 , - 5C. —7, 5D. 7 , 5【答案】C【解析】试题分析:沁:iQ,,」「■;.■<:, ,解得:—一‘,故选C.考点:向量相等3. 在区间上随机取一个数,「:的值介于0到之间的概率为()A. B. C. D.【答案】A【解析】在区间上随机取一个数x,即x€时,要使:左;的值介于0到之间,」I 7T TTX TI 卜TT TTX TI需使或:'■■■;2 2或:冬詔,区间长度为,TT¥由几何概型知:•「•一的值介于0到之间的概率为.本题选择A选项.4. 已知圆._ + ||r.[:上任意一点M关于直线• I . ■的对称点N也再圆上,则的值为()A. |B. 1C. :'D. 2【答案】D【解析】T圆x2+y2- 2x+my=0上任意一点M关于直线x+y=0的对称点N也在圆上,•••直线x+y=0经过圆心I ,故有[- ■,解得m=2,本题选择D选项•5. 下列函数中,周期为,且在 |上单调递增的奇函数是()A. -;|||;:;- - :B. _ I :;C. . - ;D. . -din --;【答案】C【解析】化简所给函数的解析式:A. --…凡,该函数周期为,函数为偶函数,不合题意;B. ■. |~ ■-,该函数周期为,在|上单调递减,不合题意;C. . - ' :: - ..ii ■■-,该函数周期为,在|上单调递增,函数是奇函数符合题意;D. ■■■ - siix::-:'一:汎汽喪,该函数周期为.':i,不合题意;本题选择C选项•6. 已知7血中,i",t;分别是角-F; <的对边,讥山,则=()A. L 辽B. I:.C. J.35 或£D.【答案】B【解析】由题意结合正弦定理可得,汕" ,a<b,则A<B=60°A=45°.本题选择B选项.点睛:1 •在解三角形的问题中,三角形内角和定理起着重要作用,在解题时要注意根据这个定理确定角的范围及三角函数值的符号,防止出现增解或漏解.2 •正、余弦定理在应用时,应注意灵活性,尤其是其变形应用时可相互转化•如a2= b2+ c2—2bccos A可以转化为sin2 A = sin2 B+ sin2 C —2sin Bsin CCos A 利用这些变形可进行等式的化简与证明.7. 将函数• -,「:.的图象向右平移个单位长度,再向上平移1个单位长度,则所得的图象对应的解析式为()•A. 二I wB. . - ' ■ iii ■C. . - I .:■!. -D. .-11 -【答案】B【解析】将函数• -的图象向右平移个单位长度,所得的图象对应的解析式为:=|'二in'-,再向上平移1个单位长度,所得的图象对应的解析式为.- I本题选择B选项.点睛:由y= sin x的图象,利用图象变换作函数y= Asin( w x +© )( A> 0, 3> 0)( x€ R)的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象沿x轴的伸缩量的区别•先平移变换再周期变换(伸缩变换),平移的量是| 0 |个单位;而先周期变换(伸缩变换)再平移变换,平移的量是A个单位.8. 如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件)•若这两组数据的中位数相等,且平均值也相等,则x和y的值分别为()甲组S62 516 1 ? yX 4?gA. 3 , 5B. 5 , 5C. 3 , 7D. 5 , 7【答案】C【解析】由已知中甲组数据的中位数为"h,故乙数据的中位数为即一二,,可得乙数据的平均数为'-,即甲数据的平均数为■-,故’「r-... ■=■■,故选.【方法点睛】本题主要考查茎叶图的应用、中位数、平均数的求法,属于难题•要解答本题首先要弄清中位数、平均数的定义,然后根据定义和公式求解,(1)中位数,如果样本容量是奇数中间的数既是中位数,如果样本容量为偶数中间两位数的平均数既是中位数;(2)众数是一组数据中出现次数最多的数据; (3)平均数既是样本数据的算数平均数「 .9. 在;中,点在上,且汕二j| ,点Q 是AC 的中点,若:-.二:丄工, 贝g"等于()•A. ( — 6,21)B. (6 , - 21)C. (2, - 7) D. (— 2,7)【答案】A【解析】由题意可得:I I 7「I 、: ,则:N 二,结合题意可得::」.,「: I-.,.:.本题选择A 选项.10. 从某高中随机选取 5名高一男生,其身高和体重的数据如下表所示: 身高x(cm)160165170175180身高y(kq)63 66 70 72 74根据上表可得回归直线方程 ,「:一....据此模型预报身高为172cm 的高一男生的体重为 A. 70.09 B. 70.12 C. 70.55 D. 71.05 【答案】B【解析】由表中数据可得样本中心点一定在回归直线方程上故'.■: 解得 W 1故「二门in当 x=172 时,:I! ::•「丨:工J 门|丄、, 本题选择B 选项.点睛: (1)正确理解计算;「•的公式和准确的计算是求线性回归方程的关键. ⑵ 回归直线方程 li-. - 1必过样本点中心■■- •63^ 55 + 70 + 72 + 7-15-〔-心,(3)在分析两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关系,若具有线性相关关系,则可通过线性回归方程来估计和预测. 11.函数匸-:1、|门 +- ■. I--: 的最大值为( )A. B. 1 C. D. 【答案】A【解析】整理函数的解析式:t(x) = |sin(x + 鲁)+ cosjx-^ = |sin(x + ^ + sin(x + ^ 6 . i lit 6 二評叫X+詁弓 本题选择A 选项•12. 已知是两个单位向量,且■■ I. ..I i| . ii.若点C 在一,1 •内,且—二二,则------------ »------------ K-------------- 1- mOC 二 mOA + nOBfrn.in 曲),则R 二()A. B. 3 C. D. :;因为I :-是两个单位向量,且■ '■■■ - ■: .'I ■.所以'' :'K ,故可建立直角坐标系如图所示。
江苏省盐城市2013-2014学年高一下学期期末考试 数学(四星) Word版含答案(苏教版)

四星高中使用2013/2014学年度第二学期高一年级期终考试数 学 试 题注意事项:1.本试卷考试时间为120分钟,试卷满分160分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.参考公式:柱体体积公式:V Sh =一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上. 1.直线30x y -+=在y 轴上的截距为 ▲ . 2.若角α的终边经过点(3,2)P ,则tan α的值为 ▲ .3.已知圆柱的底面半径为1,母线长与底面的直径相等,则该圆柱的体积为 ▲ . 4.已知点)2,1(A ,)5,3(B ,向量()=,6a x ,若a //AB ,则实数x 的值为 ▲ . 5.过点(2,1)A ,且与直线230x y -+=平行的直线方程为 ▲ .6.已知向量与的夹角为120,且||2a =,1||=b ,则=+|2| ▲ . 7.若等比数列{}n a 的前n 项和为n S ,且141,8a a ==,则5S = ▲ . 8.若54)6sin(=+πx ,则=-)3cos(πx ▲ .9.直线+10x =被圆032:22=--+x y x C 截得的弦长为 ▲ . 10.设,m n 是两条不同的直线,βα,是两个不重合的平面,给定下列四个命题: ①若n m ⊥,α⊂n ,则α⊥m ; ②若m α⊥,m β⊂,则βα⊥; ③若α⊥m ,α⊥n ,则n m //; ④若α⊂m ,β⊂n ,βα//,则n m //. 其中真命题的序号为 ▲ .11.在平面直角坐标系xOy 中,若圆C 的圆心在第一象限,圆C 与x 轴相交于(1,0)A 、(3,0)B 两点,且与直线01=+-y x 相切,则圆C 的标准方程为 ▲ .12.在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,若,,a b c 成等差数列,30B ∠=,1b =,则BA BC ⋅=uu r uu u r▲ .13.已知点()5,0A -,()1,3B --,若圆()2220x y r r +=>上恰有两点M ,N ,使得M AB∆和NAB ∆ 的面积均为5,则r 的取值范围是 ▲ . 14.若单调递增数列{}n a 满足1236n n n a a a n ++++=-,且2112a a =,则1a 的取值范围是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)如图,在三棱锥P ABC -中,90ABC ∠=,PA ⊥平面ABC ,E ,F 分别为PB ,PC 的中点.(1)求证://EF 平面ABC ; (2)求证:平面AEF ⊥平面PAB .16.(本小题满分14分)已知函数()2sin cos f x x x x +,x R ∈. (1)求函数()f x 的最小正周期; (2)求函数()f x 在区间⎥⎦⎤⎢⎣⎡4,0π上的值域.A17.(本小题满分14分)在四边形ABCD 中,已知9=AB ,6=BC ,PD CP 2=. (1)若四边形ABCD 是矩形,求BP AP ⋅的值;(2)若四边形ABCD 是平行四边形,且6=⋅BP AP ,求AB 与AD 夹角的余弦值.18.(本小题满分16分)为绘制海底地貌图,测量海底两点C ,D 间的距离,海底探测仪沿水平方向在A ,B 两点进行测量,A ,B ,C ,D 在同一个铅垂平面内. 海底探测仪测得30,BAC ∠=45,DAC ∠=45,ABD ∠=75,DBC ∠=A ,B 两点的距离为3海里.(1)求ABD ∆的面积; (2)求C ,D 之间的距离. 19.(本小题满分16分)DCBA设n S 是数列{}n a 的前n 项和,且22n n a S An Bn C +=++. (1)当0A B ==,1C =时,求n a ; (2)若数列{}n a 为等差数列,且1A =,2C =-. ①求n a ;②设n b ,且数列{}n b 的前n 项和为n T ,求60T 的值.20.(本小题满分16分)已知圆O 的方程为1322=+y x ,直线:l 00+13x x y y =,设点00(,)A x y . (1)若点A 在圆O 外,试判断直线l 与圆O 的位置关系;(2)若点A 在圆O 上,且02x =,00y >,过点A 作直线,AM AN 分别交圆O 于,M N 两点,且直线AM 和AN 的斜率互为相反数; ① 若直线AM 过点O ,求tan MAN ∠的值;② 试问:不论直线AM 的斜率怎样变化,直线MN 的斜率是否为定值?若是,求出该定值;若不是,说明理由.四星高中使用高一数学参考答案一、填空题:每小题5分,共计70分.1.3 2.233.2π 4.4 5.230x y --= 6.2 7. 31 8.549. 10.②③ 11. 2)1()2(22=-+-y x 12. 13.()15,14.123(,)52-- 二、解答题:本大题共6小题,共计90分.15.证明:(1)在PBC ∆中,F E , 分别为PC PB ,的中点BC EF //∴………………3分 又⊂BC 平面ABC ,⊄EF 平面ABC //EF ∴平面ABC …………………………………7分(2)由条件,⊥PA 平面ABC ,⊂BC 平面ABCBC PA ⊥∴︒=∠90ABC ,即BC AB ⊥,………………………………………………10分 由//EF BC ,∴EF AB ⊥,EF PA ⊥又A AB PA =⋂,AB PA ,都在平面PAB 内 EF ∴⊥平面PAB又⊂EF 平面AEF ∴平面AEF ⊥平面PAB ………………………………………………14分16.解: (1)由条件可得sin22sin(2)3y x x x π=+=+, (4)分所以该函数的最小正周期22T ππ==………………………………………………………6分 (2)⎥⎦⎤⎢⎣⎡∈4,0πx ,⎥⎦⎤⎢⎣⎡∈+∴65,332πππx ,……………………………………………………8分 当12π=x 时,函数y 取得最大值为2,当4π=x 时,函数y 取得最小值为1∴函数y的值域为[]2,1…………………………………………………………………………14分17.解:(1)因为四边形ABCD 是矩形,所以0=⋅由PD CP 2=得:DC DP 31=,3232-==.………………………………3分∴ BP AP ⋅)()(CP BC DP AD +⋅+=)32()31(-⋅+= 229231-⋅-=18819236=⨯-=. (7)分(2)由题意,DP AD AP +=AB AD DC AD 3131+=+= AB AD CD BC CP BC BP 3232-=+=+=∴ )32()31(-⋅+=⋅221239AD AB AD AB =-⋅-136183AB AD =-⋅-1183AB AD =-⋅………………………………………………10分 又6=⋅BP AP ,∴ 11863AB AD -⋅=, ∴ 36AB AD ⋅=.又θθθcos 54cos 69cos =⨯⨯==⋅AD AB ∴ 54cos 36θ=,即2cos 3θ=.(利用坐标法求解,同样给分)………………………14分18.解:(1)如图所示,在ABD ∆中︒=︒+︒=∠+∠=∠754530DAC BAC BAD ︒=∠∴60ADB由正弦定理可得,ABD AD ADB AB ∠=∠sin sin ,260sin 45sin 3=︒︒=AD (4)分则ABD ∆的面积113sin 2244S AB AD BAD =⋅∠==(平方海里)…………8分(2)︒=︒+︒=∠+∠=∠1207545DBC ABD ABC ,︒=∠=∠30BCA BAC3==∴AB BC 3=∴AC …………………………………………………………………12分在ACD ∆中,由余弦定理得,5cos 2222=∠⋅-+=DAC AD AC AD AC CD即5=CD (海里) 答:ABD ∆的面积为433+平方海里,C ,D 间的距离为5海里.……………………16分19.解:(1)由题意得,21n n a S +=,∴1121(2)n n a S n --+=≥,两式相减,得123n n a a -=,……………………………………………………………………3分 又当1n =时,有131a =,即113a =,∴数列{}n a 为等比数列,∴112=33n n a -⎛⎫⎪⎝⎭.………………………………………………5分(2)①Q 数列{}n a 为等差数列,由通项公式与求和公式,得2211113222(1)()()222222n n d d d da S a n d n a n n a n a d +=+-++-=+++-, Q 1,2A C ==-,∴12d=,12a d -=-,∴2d =,11a =,∴21n a n =-.………10分②n b=12=…………………………………………………………………………13分则111=+=12122n T n ⎛⎛ -⎝⎝, ∴6011115==1=2121111T ⎛⎛⎫-- ⎪ ⎝⎭⎝……………………………………………………16分20.解:(1)当点A 在圆O 外时,得132020>+y x ,即132020>+y x∴ 圆心到直线l 的距离r yx d =<+=1313202,∴ 直线l 与圆O 相交.…………………………………………………………………………5分(2)①由点A 在圆O 上,且02x =,00y >,得03y =,即)3,2(A .记直线AM 的倾斜角为α,则3tan 2α=,…………………………………………………7分 又∵ 0AM AN k k +=, ∴ 直线AN 的倾斜角为πα-,∴22tan 312tan tan(2)tan 291tan 514MAN απααα∠=-=-=-=-=--.…………10分 ②记直线AM 的斜率为k ,则直线AM 的方程为:32y kx k =+-. 将32y kx k =+-代入圆O 的方程得:22(12)33kx x k +-+=, 化简得:22232(1)2(32)(130)k x k k x k ++-+-=-,∵ 2是方程的一个根, ∴ 2232)2(131M k x k -=+-, ∴226221M x k k k --+=, 由题意知:k k AN-=,同理可得,226221N x k k k +-+=,…………………………………13分∴ 32(32)4M N M N MN MN M N M N M Ny y kx k kx k x x k k x x x x x x -+---+++-===⋅---, ∴ 2222222222228421222362621116262111MN k k k k k k k k k k k k k k k k k k --+-+++---+-=⋅=⋅=--+-+++, ∴ 不论直线AM 的斜率怎样变化,直线MN 的斜率总为定值23.………………………16分。
四川省成都外国语学校2016-2017学年高一下期期末考试数学(理)试题 Word版含答案

四川省成都外国语学校2016-2017学年高一下期期末考试数学(理)试题 Word版含答案1.直线 $xcos\theta+ysin\theta+a=0$ 和 $xsin\theta-ycos\theta+b=0$ 的位置关系是()A。
平行 B。
垂直 C。
重合 D。
与 $a,b,\theta$ 的值有关2.若 $a,b\in R$,且 $ab>0$,则下列不等式中,恒成立的是()A。
$a+b>2ab$ B。
$\frac{2}{\sqrt{2}}\sqrt{ab}\leq a+b$ C。
$a+\frac{1}{b}\geq 2$ D。
$a+\frac{1}{b}\geq 2\sqrt{ab}$3.一个空间几何体的三视图如图所示,则该几何体的体积为A。
$\frac{2\pi}{3}$ B。
$\frac{4\pi}{3}$ C。
$2\pi+\frac{2}{3}$ D。
$4\pi+\frac{2}{3}$4.在 $\triangle ABC$ 中,若 $\sin(A-B)=1+2\cos(B+C)\sin(A+C)$,则 $\triangle ABC$ 的形状一定是A。
等边三角形 B。
不含 $60^\circ$ 的等腰三角形 C。
钝角三角形 D。
直角三角形5.设 $a,b$ 是空间中不同的直线,$\alpha,\beta$ 是不同的平面,则下列说法正确的是A。
$a//b,b\perp\alpha$,则 $a\perp\alpha$ B。
$a\perp\alpha,b\perp\beta,\alpha//\beta$,则 $a//b$ C。
$a\perp\alpha,b\perp\beta,a//\beta,b//\beta$,则$\alpha//\beta$ D。
$\alpha//\beta,a\perp\alpha$,则 $a//\beta$6.设数列 $\{a_n\}$ 是首项为 $m$,公比为 $q(q\neq 1)$ 的等比数列,它的前 $n$ 项和为 $S_n$,对任意 $n\in N^*$,点$(a,S_{2n})$ 位于A。
江苏省淮安市2016-2017学年高二下学期期末考试数学(理)试卷 Word版含答案

数学试卷(理科)一、填空题:(本大题共14小题,每小题5分,共70分)1. 已知复数1iz i+=(i 为虚数单位),则复数z 的实部为 . 3.若346n n A C =,则n 的值为 . 4.已知向量()()1,1,0,1,0,2a b ==-,若ka b +与b 相互垂直,则k 的值是 .5.已知二项式61x x ⎛⎫- ⎪⎝⎭,则它的展开式中的常数项为 .6.在3名男教师和3名女教师中选取3人参加义务献血,要求男、女教师都有,则有 种不同的选取方法(用数字作答).7.已知曲线()22:1C x y y -+=在矩阵2201A -⎡⎤⎢⎥⎣⎦对应的变换下得到曲线C ',则曲线C '的方程为 .8.甲、乙、丙三人各自独立的破译一个密码,假定它们译出密码的概率都是15,且相互独立,则至少两人译出密码的概率为 .11.现有10件产品,其中6件一等品,4件二等品,从中随机选出3件产品,其中一等品的件数记为随机变量X,则X 的数学期望()E X = .12.从3名男生和3名女生中选出4人分别分别担任辩论赛中的一、二、三、四辩手,其中男生甲不能担任一辩手,那么不同的编队形式有 种.(用数字作答)13.已知1232727272727S C C C C =++++,则S 除以9所得的余数是 .14.利用等式()111,,k k n n kC nC k n k n N -*-=≤≤∈可以化简12111222n n n n n C C n C -⋅+⋅+⋅ ()101122111111222123.n n n n n n n n nC n C n C n C n n -------=+⋅+⋅++⋅=+=⋅等式11k k n n kC nC --=有几种变式,如:1111k k n n C C k n--=又如将1n +赋给n ,可得到()111,k k n n kC n C -+=+,类比上述方法化简等式:23101211111115253515n n n n n n C C C C n +⎛⎫⎛⎫⎛⎫⋅+⋅+⋅++⋅= ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭.二、解答题:本大题共6小题,共90分.解答应写出必要的文字说明或推理、验算过程.17.(本题满分14分)在某次问卷调查中,有a,b 两题为选做题,规定每位被调查者必须且只需在其中选做一题,其中包括甲乙在内的4名调查者选做a 题的概率均为23,选做b 题的概率均为1.3(1)求甲、乙两位被调查者选做同一道题的概率;(2)设这4名受访者中选做b 题的人数为ξ,求ξ的概率分布和数学期望.18.(本题满分16分)如图,直三棱柱111ABC A B C -中,底面ABC 为等腰直角三角形,1,2,3,AB AC AB AC AA M ⊥===是侧棱1CC 上一点.(1)若1BM A C ⊥,求1C MMC的值;(2)若2MC =,求直线1BA 与平面ABM 所成角的正弦值.19.(本题满分16分)已知()()()()()201211112,.nn x n a a x a x a x n n N *+=+-+-+++≥∈.(1)当3n =时,求31223222a a a ++的值; (2)设232,.2nn n n n a b T b b b -==+++①求n b 的表达式;②使用数学归纳法证明:当2n ≥时,()()11.6n n n n T +-=20.(本题满分16分)设函数()()(),10,0.xf x y my m y =+>>(1)当2m =时,求()7,f y 的展开式中二项式系数最大的项;(2)已知()2,f n y 的展开式中各项的二项式系数和比(),f n y 的展开式中各项的二项式系数和大992,若()01,nn f n y a a y a y =+++,且240a =,求1ni ai =∑;(3)已知正整数n 与正实数t ,满足()1,1,,n f n m f n t ⎛⎫= ⎪⎝⎭求证:162017,.f f t ⎛⎛⎫>- ⎪ ⎝⎭⎝.数学试卷(理科)参考答案与评分标准一、填空题:1.1 2.()2,0 3. 7 4. 5. 5. -20 6.18 7.2214x y += 8.13125 9. 10.,骣÷ç÷ç÷ç桫121255 11.95 12.300 13.7. 14.116()115n n +⎡⎤-⎢⎥+⎣⎦二、解答题:17.(1)设事件A 表示“甲选做第a 题”,事件B 表示“乙选做第a 题”,则甲、乙2名受访者选做同一道题的事件为“AB AB +”,且事件A 、B 相互独立.所以()()()()()P AB AB P A P B P A P B +=+=2211533339⨯+⨯= ………………5分答:甲、乙两位被调查者选做同一道题的概率59……………………………………6分(2)随机变量ξ的可能取值为0,1,2,3,4,且ξ~1(4,)3B . (8)分所以44441112()()(1)()()(0,1,2,3,4)3333k k k k k kP k C C k ξ--==-==, …………10分所以变量ξ的分布表为:……12分所以1632248140123481818181813E ξ=⨯+⨯+⨯+⨯+⨯=(或14433E np ξ==⨯=)…14分18.(1)以A 为坐标原点,以射线AB 、AC 、1AA分别为x 、y 、z 轴建立空间直角坐标系,…………………………………………1分如图所示,则()2,0,0B()0,0,3,设MC h =,则 (0,2,M ()10,2,3AC =- 由1BM AC ⊥得1BM AC ⋅,即22⨯解得43h =故154C M MC =; (2) 因为2MC =,所以M ,()()(2,0,0,0,2,2,2,0,3AB AM BA ===-第18题图x设平面ABM 的一个法向量为(),,n x y z =,由0{0n AB n AM ⋅=⋅=得0{0x y z =+=,所以()0,1,1n =-,………………………………………………………………………10分 112,n BA n BA n BA ⋅==⋅-14分 设直线1BA 与平面ABM 所成的角为θ,所以13sin cos ,n BA θ==, 所以直线1BA 与平面ABM . ……………………………16分. 19.(1)记3()(1)f x x =+,令01,8x a ==得, …………………………………………2分令31223312522228a a a x =+++=0得 a ,……………………………………………………4分 故3122312561822288a a a ++=-=; ………………………………………………………5分 (2)设y x =-1,则原展开式变为:()n n ny a y a y a a y ++++=+...22210,则2222-=n n C a , ………………………………………………………………………7分 所以222(1)22n n n a n n b C --===,………………………………………………………9分 证明:①当2=n 时,221,1T b ==,结论成立;……………………………………10分②假设k n =时成立,即(1)(1)6k k k k T +-=,那么1+=k n 时,11(1)(1)(1)62k k k k k k k k T T b +++-+=+=+[][](1)(1)1(1)1(1)(2)66k k k k k k ++++-++==所以当1n k =+时结论也成立.…………………………………………………………14分综上①②当2n ≥时,(1)(1)6n n n n T +-=. …………………………………………16分20.(1)因为f (7,y )=()712y +,故展开式中二项式系数最大的项分别是第4项和第5项,即T 4=()3372C y =3280y ,()444572560T C y y ==; ……………………………5分(2)由题意知,22n -2n =992,即(2n -32)(2n +31)=0,所以2n =32,解得n =5, ………………………………………………………………7分则由()5(5,)1f y my =+=5015a a y a y +++,又222540a C m ==,且0m >,所以2m =,则51i i a ==∑()5512131+-=-=242; …………………………………………10分(3)证明:由1(,1)(,)nf n m f n t=,得(1+m )n =m n(1+m t )n =(m +m 2t )n ,则1+m =m +m2t ,所以m =t , ………………………………………………………12分又f =(1+m 1 000t )2 017=(1+11 000)2 017>1+12017C 11 000+22017C (11 000)2+32017C (11 000)3>1+2+2+1=6,而1(2017,)f t-=20171m t -⎛⎫+ ⎪⎝⎭=(1+1t )-2 017<1, 所以f >16(2017,)f t -.………………………………………………16分。
河南省郑州市2016-2017学年高一上学期期末考试数学试题 Word版含答案

河南省郑州市2016-2017学年高一上学期期末考试数学试题 Word版含答案数学试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若$\{1,2\}\subset A\subset\{1,2,3,4,5\}$,则满足条件的集合$A$的个数是()A。
6B。
8C。
7D。
92.设$a,b\in\mathbb{R}$,集合$A=\{1,a+b,a\},B=\{0,\frac{b}{a},b\}$,若$A=B$,则$b-a=$()A。
2B。
$-1$C。
1D。
$-2$3.下列各组函数中$f(x)$与$g(x)$的图象相同的是()A。
$f(x)=x,g(x)=|x|$B。
$f(x)=x^2,g(x)=\begin{cases}x,&(x\geq 0)\\-x,&(x<0)\end{cases}$C。
$f(x)=1,g(x)=x$D。
$f(x)=x,g(x)=\begin{cases}x,&(x\geq0)\\0,&(x<0)\end{cases}$4.下列函数中,既是偶函数又在$(-\infty,0)$内为增函数的是()A。
$y=-\frac{1}{2}$B。
$y=x^2$C。
$y=x+1$D。
$y=\log_3(-x)^2$5.三个数$a=0.32,b=\log_2 0.3,c=2^0.3$之间的大小关系为()A。
$a<c<b$B。
$a<b<c$C。
$b<a<c$D。
$b<c<a$6.下列叙述中错误的是()A。
若点$P\in\alpha,P\in\beta$且$\alpha\cap\beta=l$,则$P\in l$B。
三点$A,B,C$能确定一个平面C。
若直线$a\parallel b$,则直线$a$与$b$能够确定一个平面D。
若点$A\in l,B\in l$且$A\in\alpha,B\in\alpha$,则$l\subset\alpha$7.方程$\log_3 x+x=3$的解所在区间是()A。
江苏省盐城市2024-2025学年高一下学期期末考试物理试题

2024/2024学年度其次学期高一年级期终考试物理试题一、单项选择题:每小题只有—个选项符合题意(本部分23小题,每小题3分,共69分).1.两金属小球所带电荷量分别为+3Q和-Q,将两小球接触后,它们所带的电荷量总共为A.+3Q B.+2Q C.+Q D.-Q2.电场中下列物理量与检验电荷q有关的是A.电场强度E B.电势 C.电势能p E D.电势差U3. 在科学的发展历程中,很多科学家做出了杰出的贡献.下列叙述符合历史事实的是A.法拉第首先提出了“场”的概念B.卡文迪许发觉了万有引力定律C.伽利略发觉了行星运动的三大定律D.牛顿首先比较精确地测算出了引力常量的数值4.如图所示是一款避雷针原理演示器,上下金属板之间用绝缘材料固定,尖端电极和球形电极与下金属板连接,给上下金属板接感应圈并渐渐上升电压,当电压渐渐上升时A.尖端电极先放电B.球形电极先放电C.两电极同时放电D.两电极都不放电5.如图所示,在匀强电场中,绝缘丝线一端固定于地面,另一端系住一个带电小球,张紧的丝线使小球处于静止状态.忽视空气阻力,剪断丝线后小球将做A.类平抛运动B.匀速圆周运动C.匀加速直线运动D.变加速曲线运动6.如图所示,内壁光滑的牛顿管抽成真空后,让牛顿管竖直倒立的同时水平向右匀速移动,地面上静止的人视察到管中羽毛的运动轨迹可能是7.地球和四周大气层中的电离层构成一个“地球电容器”.现已测得大地带5×105C 左右的负电,电离层和地球间的电压为3×105V 左右.“地球电容器”的电容约为 A .3 FB .1.7 FC .3.4FD .0.6 F8.不计空气阻力,将一石块从H 高处水平抛出,物体下降高度为h ,下列图象中描述石块重力势能E P 随h 改变关系可能正确的是9.由开普勒定律可知,行星绕恒星运行轨道半长轴a 的三次方与周期T 的二次方之比为常数,即k Ta 23,其中k 的大小 A .只与行星的质量有关 B .只与恒星的质量有关C .与恒星和行星的质量都有关D .与恒星的质量及行星的速率有关10.“天舟一号”货运飞船于2024年4月20日文昌航天放射中心胜利放射升空,与“天宫二号”空间试验室对接前,“天舟一号”在距地面约380km 的圆轨道上飞行,同步卫星的轨道高度为36000km ,则“天舟一号”与同步卫星相比较,较小的物理量是 A .角速度B .线速度C .周期D .向心加速度11.家用洗衣机的脱水桶如图所示,脱水桶高速旋转把衣物甩干.下列说法正确的是A .脱水时水做向心运动,脱水后衣物在桶中心B .脱水时水做离心运动,脱水后衣物在桶中心C .脱水时水做向心运动,脱水后衣物在桶壁旁边D .脱水时水做离心运动,脱水后衣物在桶壁旁边A .B. C. D.hOE phOE phOE phOE pA .B.C.D.12.半径不同的光滑半圆形槽,其圆心均在同一水平面上,如图所示,质量相等的两小球可看成质点,分别自半圆形槽左边缘的最高点无初速度地释放.以水平面为零势能面,在两小球下滑到最低点时A .机械能相同,动能相同B .机械能不同,动能相同C .机械能不同,动能不同D .机械能相同,动能不同13.如图所示,悬挂在天花板上的电风扇正常转动时,扇叶上P 、Q 两点绕轴做匀速圆周运动的线速度大小分别为P υ、Q υ,向心加速度大小分别为P a 、Q a ,则A .P υ>Q υ,P a >Q aB .P υ>Q υ,P a <Q aC .P υ<Q υ,P a >Q aD .P υ<Q υ,P a <Q a 14.一带电粒子从电场中的A 点运动到B 点,轨迹如图中虚线所示,不计粒子所受的重力,则A .A 点电势高,粒子在A 点加速度大B .B 点电势高,粒子在B 点加速度大C .A 点电势高,粒子在B 点加速度大D .B 点电势高,粒子在A 点加速度大15.“探究加速度与力、质量的关系”试验中,同学们在坐标纸上画出了四种F a -关系图线.其中因在试验中未平衡摩擦力的是16.某人在自行车车把上挂有一只水壶,静止时悬绳及壶中液面状态如图甲所示,若他骑车沿平直坡路向下匀速滑行,不计空气阻力,此时水壶状态正确的是FOaFOaFOaFOaA .B.C.D.A . B.C.D.EAB图甲 图乙17.在用落体法验证机械能守恒定律的试验中,小明获得的纸带如图所示,他依据点迹标上了计数点,则计算哪两点间的平均速度可代表B 点的瞬时速度A .ABB .BCC .ACD .AE18.如图所示,在“探究力的平行四边形定则”的试验中,利用了等效性原理,其等效性是指A .两个弹簧秤拉时弹簧秤发生相同的形变B .一个弹簧秤拉和两个弹簧秤拉时簧秤发生相同的形变C .一个弹簧秤拉和两个弹簧秤拉时橡皮筋伸长的长度相等D .一个弹簧秤拉和两个弹簧秤拉时橡皮筋与细绳套的结点位置相同19.一质量为m 的物体与斜面间的动摩擦因数为μ,斜面倾角为θ,重力加速度为g .物体在斜面上运动轨迹如图所示,在图示时刻物体受到斜面摩擦力的大小为A .θsin mgB .θμsin mgC .θμcos mgD .θcos mg请阅读下列材料,回答第20~23小题.航空母舰航空母舰是可以供应军用飞机起飞和着陆的军舰,是现代海军不行或缺的武器,是一个国家综合国力的象征.2024年4月26日中国首艘国产航空母舰在中国船舶重工集团公司大连造船厂下水.20.航母飞行甲板前端上翘,水平部分与上翘部分通过一段圆弧平滑连接, D 为圆弧最低点,圆弧半径为R .飞机以速度υ越过D 点时AO BCDEF上翘跑道阻拦索木板 A橡皮筋细线A .R 越大,υ越大,飞机起落架承受的作用力越小B .R 越大,υ越小,飞机起落架承受的作用力越大C .R 越小,υ越大,飞机起落架承受的作用力越大D .R 越小,υ越小,飞机起落架承受的作用力越小 21.以下做法中,有助于飞机起飞的方案,不正确的是A .飞机顺着风向起飞B .减小飞机装载货物的质量C .起飞时航空母舰以肯定的速度向前运动D .起飞时利用弹射装置使飞机获得肯定的初速度22.飞机以肯定的水平初速度着陆甲板时,若飞机勾住阻拦索减速,飞机在甲板上滑行的距离将大大减小.着舰运用阻拦索时,飞机动能 A .削减得多B .削减得少C .削减得快D . 削减得慢23.如图所示,质量为m 的飞机在水平甲板上,受到与竖直方向成θ角的斜向下的拉力F 作用,沿水平方向移动了距离s ,飞机与水平面之间的摩擦力大小为f ,则在此过程中 A .摩擦力做的功为fsB .力F 做的功为Fs cos θC .重力做的功为mgsD .力F 做的功为Fs sin θ二、 填空题:(本大题2小题,其中24小题4分,25小题6分,共10分)24.(4分)如图所示,用绝缘支架固定的小球A 带正电,带正电小球用丝线悬挂在B 或C 位置,丝线将向________(选填“左”、“右”)偏转,悬挂在 ________(选填“B”、 “C”) 位置处的丝线与竖直方向的夹角较大.24.(6分)用如图甲所示的装置验证机械能守恒定律.将直径为d ,质量为m 的小球从A 点由静止下落,下方H (H >>d )处固定一个光电门B,小球经过光电门的挡光时间t 可由计时器测出,取td=υ作为小球经过光电门时的速度.重力加速度为g .CAB sF甲 乙 丙(1)如图乙为10分度游标卡尺测量小球的直径,结果为d = mm .(2)小球从A 下落到B 的过程中,重力势能削减量p E ∆= (用题中字母表示). (3)小球下落时由于球心偏向光电门激光束的左侧,俯视图如图丙所示.由此测量小球经过光电门B 时的动能比真实值 (选填“大”、“小”或“相等”).三、论述计算题:解答时请写出必要的文字说明、方程式和重要的演算步骤只写出最终答案的不能得分.有数值计算的题,答案中必需明确写出数值和单位(本部分3小题,其中26小题6分,27小题7分,28小题8分,共21分)26.(6分)如图所示,边长为L 的正方形电场ABCD ,电场强度为E ,方向竖直向下,质量为m ,带电量大小为q 的带电粒子,从AD 中点O 垂直于电场方向射入,恰好从C 点离开电场.带电粒子的重力不计,求带电粒子 (1)带电性质; (2)所受电场力做的功; (3)在电场中的运动时间.27.(7分)如图所示,光滑杆一端固定在水平面B 点,与地面成θ=30°角,原长为L 的轻质橡皮筋一端固定在地面上的O 点,另一端与质量为m 的圆球相连,圆球套在杆上.圆球处于A 点时,橡皮筋竖直且无形变.让圆球从A 点由静止释放,运动到B 点时速度为零,橡皮筋始终在弹性限度内,重力加速度取g .求: (1)运动过程中杆对圆球的最小弹力; (2)圆球运动到B 点时,橡皮筋的弹性势能; (3)圆球运动到杆的中点时,重力的瞬时功率.34 cm510激光束小球光电门 A B小球光电门接计时器AB28.(8分)如图所示,用长为l 的轻质细线将质量为m 的小球悬挂于O 点,细线能承受的最大拉力大小为7mg .小球在外力作用下静止于A 处,此时细线偏离竖直方向的夹角为60°.撤去外力,让小球由静止释放,摆到最低点B 时,细线被O 点正下方的光滑小钉子拦住,钉子离O 点的距离满意肯定条件时,小球能接着运动且细线不松弛.不计空气阻力,重力加速度为g .求:(1)小球静止于A 处时所受最小外力;(2)小球运动过程中离A 处位移的范围; (3)钉子离O 点距离应当满意的条件.2024/2024学年度其次学期高一年级期终考试物理参考答案一、选择题(共23小题,每小题3分,共69分)B题号 13 14 15 16 17 18 19 20 21 22 23 答案AAABCDCCACD二、填空题(共2小题,共10分,其中第24题4分,第25题6分) 24.右 B ………(每空2分)25.(1)24.4…………(2分) (2)mgH ……(2分) (3)大………(2分) 三、计算题:本题共3小题,共计21分.26.(1)因为带电粒子向电场线方向偏转,故带正电……………………………(1分) (2)带电粒子受电场力qE F =电场力做功qEl l F w 212=⨯=……………………………………………………………(2分) (3)带电粒子沿电场方向上的分运动ma qE =,mqE a =22121at l = 解得qEmlt =…………………………………………………………………(3分)27.(1)在橡皮筋没有拉伸过程中,对小球θcos mg F N =…………………………………………………………………(2分)(2)小球运动到最低点的过程中,重力势能转化为橡皮筋的弹性势能mgl E P =………………………………………………………………………(2分)(3)小球运动到中点过程中,橡皮筋没有被拉伸,机械能守恒221sin υθm mgl =重力势能gl mgmg P 2sin ==θυ……………………………………………(3分)28.(1)当外力与绳垂直斜向上时最小。
河北省衡水市高一数学下学期期末试卷 理(含解析)-人教版高一全册数学试题
2016-2017学年某某省某某市高一(下)期末数学试卷(理科)一、选择题:(每题只有一个正确选项.共12个小题,每题5分,共60分.)1.下列数列中不是等差数列的为()A.6,6,6,6,6 B.﹣2,﹣1,0,1,2 C.5,8,11,14 D.0,1,3,6,10.2.已知m和2n的等差中项是4,2m和n的等差中项是5,则m和n的等差中项是()A.2 B.3 C.6 D.93.在△A BC中内角A,B,C所对各边分别为a,b,c,且a2=b2+c2﹣bc,则角A=()A.60° B.120°C.30° D.150°4.已知等差数列{a n}中,a2=2,d=2,则S10=()A.200 B.100 C.90 D.805.已知{a n}是等比数列,其中|q|<1,且a3+a4=2,a2a5=﹣8,则S3=()A.12 B.16 C.18 D.246.大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和.是中华传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0、2、4、8、12、18、24、32、40、50…,则此数列第20项为()A.180 B.200 C.128 D.1627.定义为n个正数p1,p2,…,p n的“均倒数”.若已知正数数列{a n}的前n项的“均倒数”为,又b n=,则+++…+=()A.B.C.D.8.在△ABC中,b2=ac,且a+c=3,cosB=,则•=()A.B.﹣ C.3 D.﹣39.一艘海轮从A处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是()海里.A.10B.20C.10D.2010.数列{a n}满足,则a n=()A.B.C.D.11.在△ABC中,若sin(A+B﹣C)=sin(A﹣B+C),则△ABC必是()A.等腰三角形B.直角三角形C.等腰或直角三角形 D.等腰直角三角形12.△ABC外接圆半径为R,且2R(sin2A﹣sin2C)=(a﹣b)sinB,则角C=()A.30° B.45° C.60° D.90°二、填空题(共4个小题,每题5分,共20分.)13.边长为5、7、8的三角形的最大角与最小角之和为.14.若数列{a n}满足,则a2017=.15.已知正项等比数列{a n}中,a1=1,其前n项和为S n(n∈N*),且,则S4=.16.△ABC的内角A,B,C的对边分别为a,b,c,若cosA=,cosC=,a=1,则b=.三、解答题:(解答题应写出必要的文字说明和演算步骤)17.在△ABC中,a,b,c分别为A、B、C的对边,且满足2(a2﹣b2)=2accosB+bc(1)求A(2)D为边BC上一点,CD=3BD,∠DAC=90°,求tanB.18.已知数列{a n}的前n项和为S n,且S n=2a n﹣3n(n∈N+).(1)求a1,a2,a3的值;(2)是否存在常数λ,使得{a n+λ}为等比数列?若存在,求出λ的值和通项公式a n,若不存在,请说明理由.19.已知数列{a n}的前n项和为S n,且n+1=1+S n对一切正整数n恒成立.(1)试求当a1为何值时,数列{a n}是等比数列,并求出它的通项公式;(2)在(1)的条件下,当n为何值时,数列的前n项和T n取得最大值.20.在△ABC中,AC=6,cosB=,C=.(1)求AB的长;(2)求cos(A﹣)的值.21.已知{a n}是等差数列,{b n}是等比数列,且b2=3,b3=9,a1=b1,a14=b4.(1)求{a n}的通项公式;(2)设=a n+b n,求数列{}的前n项和.22.在△ABC中,内角A,B,C的对边分别为a,b,c,已知sin2.(Ⅰ)求角A的大小;(Ⅱ)若b+c=2,求a的取值X围.2016-2017学年某某省某某市安平中学高一(下)期末数学试卷(理科)参考答案与试题解析一、选择题:(每题只有一个正确选项.共12个小题,每题5分,共60分.)1.下列数列中不是等差数列的为()A.6,6,6,6,6 B.﹣2,﹣1,0,1,2 C.5,8,11,14 D.0,1,3,6,10.【考点】83:等差数列.【分析】根据等差数列的定义,对所给的各个数列进行判断,从而得出结论.【解答】解:A,6,6,6,6,6常数列,公差为0;B,﹣2,﹣1,0,1,2公差为1;C,5,8,11,14公差为3;D,数列0,1,3,6,10的第二项减去第一项等于1,第三项减去第二项等于2,故此数列不是等差数列.故选:D.2.已知m和2n的等差中项是4,2m和n的等差中项是5,则m和n的等差中项是()A.2 B.3 C.6 D.9【考点】8F:等差数列的性质.【分析】由等差中项的性质,利用已知条件,能求出m,n,由此能求出m和n的等差中项.【解答】解:∵m和2n的等差中项是4,2m和n的等差中项是5,∴,解得m=4,n=2,∴m和n的等差中项===3.故选:B.3.在△A BC中内角A,B,C所对各边分别为a,b,c,且a2=b2+c2﹣bc,则角A=()A.60° B.120°C.30° D.150°【考点】HR:余弦定理.【分析】由已知及余弦定理可求cosA的值,结合X围A∈(0°,180°),利用特殊角的三角函数值即可得解A的值.【解答】解:在△A BC中,∵a2=b2+c2﹣bc,∴可得:b2+c2﹣a2=bc,∴cosA===,∵A∈(0°,180°),故选:A.4.已知等差数列{a n}中,a2=2,d=2,则S10=()A.200 B.100 C.90 D.80【考点】85:等差数列的前n项和.【分析】由等差数列的通项公式,可得首项,再由等差数列的求和公式,计算即可得到所求和.【解答】解:等差数列{a n}中,a2=2,d=2,a1+d=2,解得a1=0,则S10=10a1+×10×9d=0+45×2=90.故选:C.5.已知{a n}是等比数列,其中|q|<1,且a3+a4=2,a2a5=﹣8,则S3=()A.12 B.16 C.18 D.24【考点】88:等比数列的通项公式.【分析】推导出a3,a4是方程x2﹣2x﹣8=0的两个根,|a3|>|a4|,解方程,得a3=4,a4=﹣2,由等比数列通项公式列出方程组,求出,由此能求出S3.【解答】解:∵{a n}是等比数列,其中|q|<1,且a3+a4=2,a2a5=﹣8,∴a3a4=a2a5=﹣8,∴a3,a4是方程x2﹣2x﹣8=0的两个根,|a3|>|a4|,解方程,得a3=4,a4=﹣2,∴,解得,∴S3===12.6.大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.主要用于解释中国传统文化中的太极衍生原理.数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和.是中华传统文化中隐藏着的世界数学史上第一道数列题.其前10项依次是0、2、4、8、12、18、24、32、40、50…,则此数列第20项为()A.180 B.200 C.128 D.162【考点】81:数列的概念及简单表示法.【分析】0、2、4、8、12、18、24、32、40、50…,可得偶数项的通项公式:a2n=2n2.即可得出.【解答】解:由0、2、4、8、12、18、24、32、40、50…,可得偶数项的通项公式:a2n=2n2.则此数列第20项=2×102=200.故选:B.7.定义为n个正数p1,p2,…,p n的“均倒数”.若已知正数数列{a n}的前n项的“均倒数”为,又b n=,则+++…+=()A.B.C.D.【考点】8E:数列的求和.【分析】直接利用给出的定义得到=,整理得到S n=2n2+n.分n=1和n ≥2求出数列{a n}的通项,验证n=1时满足,所以数列{a n}的通项公式可求;再利用裂项求和方法即可得出.【解答】解:由已知定义,得到=,∴a1+a2+…+a n=n(2n+1)=S n,即S n=2n2+n.当n=1时,a1=S1=3.当n≥2时,a n=S n﹣S n﹣1=(2n2+n)﹣[2(n﹣1)2+(n﹣1)]=4n﹣1.当n=1时也成立,∴a n=4n﹣1;∵b n==n,∴==﹣,∴+++…+=1﹣+﹣+…+﹣=1﹣=,∴+++…+=,故选:C8.在△ABC中,b2=ac,且a+c=3,cosB=,则•=()A.B.﹣ C.3 D.﹣3【考点】HR:余弦定理;9R:平面向量数量积的运算.【分析】利用余弦定理列出关系式,再利用完全平方公式变形,把已知等式及cosB的值代入求出ac的值,原式利用平面向量的数量积运算法则变形,将各自的值代入计算即可求出值.【解答】解:∵在△ABC中,b2=ac,且a+c=3,cosB=,∴由余弦定理得:cosB=====,即ac=2,则•=﹣cacosB=﹣.故选:B.9.一艘海轮从A处出发,以每小时40海里的速度沿南偏东40°的方向直线航行,30分钟后到达B处,在C处有一座灯塔,海轮在A处观察灯塔,其方向是南偏东70°,在B处观察灯塔,其方向是北偏东65°,那么B,C两点间的距离是()海里.A.10B.20C.10D.20【考点】HU:解三角形的实际应用.【分析】根据题意画出图象确定∠BAC、∠ABC的值,进而可得到∠ACB的值,根据正弦定理可得到BC的值.【解答】解:如图,由已知可得,∠BAC=30°,∠ABC=105°,AB=20,从而∠ACB=45°.在△ABC中,由正弦定理可得BC=×sin30°=10.故选:A.10.数列{a n}满足,则a n=()A.B.C.D.【考点】8H:数列递推式.【分析】利用数列递推关系即可得出.【解答】解:∵,∴n≥2时,a1+3a2+…+3n﹣2a n﹣1=,∴3n﹣1a n=,可得a n=.n=1时,a1=,上式也成立.则a n=.故选:B.11.在△ABC中,若sin(A+B﹣C)=sin(A﹣B+C),则△ABC必是()A.等腰三角形B.直角三角形C.等腰或直角三角形 D.等腰直角三角形【考点】HX:解三角形.【分析】结合三角形的内角和公式可得A+B=π﹣C,A+C=π﹣B,代入已知sin(A+B﹣C)=sin (A﹣B+C)化简可得,sin2C=sin2B,由于0<2B<π,0<2C<π从而可得2B=2C或2B+2C=π,从而可求【解答】解:∵A+B=π﹣C,A+C=π﹣B,∴sin(A+B﹣C)=sin(π﹣2C)=sin2Csin(A﹣B+C)=sin(π﹣2B)=sin2B,则sin2B=sin2C,B=C或2B=π﹣2C,即.所以△ABC为等腰或直角三角形.故选C12.△ABC外接圆半径为R,且2R(sin2A﹣sin2C)=(a﹣b)sinB,则角C=()A.30° B.45° C.60° D.90°【考点】HR:余弦定理.【分析】先根据正弦定理把2R(sin2A﹣sin2C)=(a﹣b)sinB中的角转换成边可得a,b和c的关系式,再代入余弦定理求得cosC的值,进而可得C的值.【解答】解:△ABC中,由2R(sin2A﹣sin2C)=(a﹣b)sinB,根据正弦定理得a2﹣c2=(a﹣b)b=ab﹣b2,∴cosC==,∴角C的大小为30°,故选A.二、填空题(共4个小题,每题5分,共20分.)13.边长为5、7、8的三角形的最大角与最小角之和为120°.【考点】HR:余弦定理.【分析】直接利用余弦定理求出7所对的角的余弦值,求出角的大小,利用三角形的内角和,求解最大角与最小角之和.【解答】解:根据三角形中大角对大边,小角对小边的原则,所以由余弦定理可知cosθ==,所以7所对的角为60°.所以三角形的最大角与最小角之和为:120°.故答案为:120°.14.若数列{a n}满足,则a2017= 2 .【考点】8H:数列递推式.【分析】数列{a n}满足a1=2,a n=1﹣,可得a n+3=a n,利用周期性即可得出.【解答】解:数列{a n}满足a1=2,a n=1﹣,可得a2=1﹣=,a3=1﹣2=﹣1,a4=1﹣(﹣1)=2a5=1﹣=,…,∴a n+3=a n,数列的周期为3.∴a2017=a672×3+1=a1=2.故答案为:215.已知正项等比数列{a n}中,a1=1,其前n项和为S n(n∈N*),且,则S4= 15 .【考点】89:等比数列的前n项和.【分析】由题意先求出公比,再根据前n项和公式计算即可.【解答】解:正项等比数列{a n}中,a1=1,且,∴1﹣=,即q2﹣q﹣2=0,解得q=2或q=﹣1(舍去),∴S4==15,故答案为:15.16.△ABC的内角A,B,C的对边分别为a,b,c,若cosA=,cosC=,a=1,则b=.【考点】HX:解三角形.【分析】运用同角的平方关系可得sinA,sinC,再由诱导公式和两角和的正弦公式,可得sinB,运用正弦定理可得b=,代入计算即可得到所求值.【解答】解:由cosA=,cosC=,可得sinA===,sinC===,sinB=sin(A+C)=sinAcosC+cosAsinC=×+×=,由正弦定理可得b===.故答案为:.三、解答题:(解答题应写出必要的文字说明和演算步骤)17.在△ABC中,a,b,c分别为A、B、C的对边,且满足2(a2﹣b2)=2accosB+bc (1)求A(2)D为边BC上一点,CD=3BD,∠DAC=90°,求tanB.【考点】HT:三角形中的几何计算.【分析】(1)将2(a2﹣b2)=2accosB+bc化解结合余弦定理可得答案.(2)因为∠DAC=,所以AD=CD•sinC,∠DAB=.利用正弦定理即可求解.【解答】解:(1)由题意2accosB=a2+c2﹣b2,∴2(a2﹣b2)=a2+c2﹣b2+bc.整理得a2=b2+c2+bc,由余弦定理:a2=b2+c2﹣2bccosA可得:bc=﹣2bccosA∴cosA=﹣,∵0<A<π∴A=.(Ⅱ)∵∠DAC=,∴AD=CD•sinC,∠DAB=.在△ABD中,有,又∵CD=3BD,∴3sinC=2sinB,由C=﹣B,得cosB﹣sinB=2sinB,整理得:tanB=.18.已知数列{a n}的前n项和为S n,且S n=2a n﹣3n(n∈N+).(1)求a1,a2,a3的值;(2)是否存在常数λ,使得{a n+λ}为等比数列?若存在,求出λ的值和通项公式a n,若不存在,请说明理由.【考点】8D:等比关系的确定;81:数列的概念及简单表示法.【分析】(1)分别令n=1,2,3,依次计算a1,a2,a3的值;(2)假设存在常数λ,使得{a n+λ}为等比数列,则(a2+λ)2=(a1+λ)(a3+λ),从而可求得λ,根据等比数列的通项公式得出a n+λ,从而得出a n.【解答】解:(1)当n=1时,S1=a1=2a1﹣3,解得a1=3,当n=2时,S2=a1+a2=2a2﹣6,解得a2=9,当n=3时,S3=a1+a2+a3=2a3﹣9,解得a3=21.(2)假设{a n+λ}是等比数列,则(a2+λ)2=(a1+λ)(a3+λ),即(9+λ)2=(3+λ)(21+λ),解得λ=3.∴{a n+3}的首项为a1+3=6,公比为=2.∴a n+3=6×2n﹣1,∴a n=6×2n﹣1﹣3.19.已知数列{a n}的前n项和为S n,且n+1=1+S n对一切正整数n恒成立.(1)试求当a1为何值时,数列{a n}是等比数列,并求出它的通项公式;(2)在(1)的条件下,当n为何值时,数列的前n项和T n取得最大值.【考点】8E:数列的求和.【分析】(1)由已知数列递推式可得a n+1=2a n,再由数列{a n}是等比数列求得首项,并求出数列通项公式;(2)把数列{a n}的通项公式代入数列,可得数列是递减数列,可知当n=9时,数列的项为正数,n=10时,数列的项为负数,则答案可求.【解答】解:(1)由a n+1=1+S n得:当n≥2时,a n=1+S n﹣1,两式相减得:a n+1=2a n,∵数列{a n}是等比数列,∴a2=2a1,又∵a2=1+S1=1+a1,解得:a1=1.得:;(2),可知数列是一个递减数列,∴,由此可知当n=9时,数列的前项和T n取最大值.20.在△ABC中,AC=6,cosB=,C=.(1)求AB的长;(2)求cos(A﹣)的值.【考点】HX:解三角形;HP:正弦定理;HR:余弦定理.【分析】(1)利用正弦定理,即可求AB的长;(2)求出cosA、sinA,利用两角差的余弦公式求cos(A﹣)的值.【解答】解:(1)∵△ABC中,cosB=,∴sinB=,∵,∴AB==5;(2)cosA=﹣cos(C+B)=sinBsinC﹣cosBcosC=﹣.∵A为三角形的内角,∴sinA=,∴cos(A﹣)=cosA+sinA=.21.已知{a n}是等差数列,{b n}是等比数列,且b2=3,b3=9,a1=b1,a14=b4.(1)求{a n}的通项公式;(2)设=a n+b n,求数列{}的前n项和.【考点】8M:等差数列与等比数列的综合.【分析】(1)设{a n}是公差为d的等差数列,{b n}是公比为q的等比数列,运用通项公式可得q=3,d=2,进而得到所求通项公式;(2)求得=a n+b n=2n﹣1+3n﹣1,再由数列的求和方法:分组求和,运用等差数列和等比数列的求和公式,计算即可得到所求和.【解答】解:(1)设{a n}是公差为d的等差数列,{b n}是公比为q的等比数列,由b2=3,b3=9,可得q==3,b n=b2q n﹣2=3•3n﹣2=3n﹣1;即有a1=b1=1,a14=b4=27,则d==2,则a n=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1;(2)=a n+b n=2n﹣1+3n﹣1,则数列{}的前n项和为(1+3+…+(2n﹣1))+(1+3+9+…+3n﹣1)=n•2n+=n2+.22.在△ABC中,内角A,B,C的对边分别为a,b,c,已知sin2.(Ⅰ)求角A的大小;(Ⅱ)若b+c=2,求a的取值X围.【考点】HR:余弦定理;HP:正弦定理.【分析】(Ⅰ)由已知利用三角函数恒等变换的应用化简可得,由0<B+C<π,可求,进而可求A的值.(Ⅱ)根据余弦定理,得a2=(b﹣1)2+3,又b+c=2,可求X围0<b<2,进而可求a的取值X围.【解答】(本小题满分12分)解:(Ⅰ)由已知得,化简得,整理得,即,由于0<B+C<π,则,所以.(Ⅱ)根据余弦定理,得=b2+c2+bc=b2+(2﹣b)2+b(2﹣b)=b2﹣2b+4=(b﹣1)2+3.又由b+c=2,知0<b<2,可得3≤a2<4,所以a的取值X围是.。
江苏省盐城市2016-2017学年高一下学期期末考试数学-含答案-精编
2016/2017学年度第二学期高一年级期终考试数 学 试 题注意事项:1.本试卷考试时间为120分钟,试卷满分160分,考试形式闭卷. 2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上.参考公式:锥体体积公式:13V Sh =,其中S 为底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分. 请把答案填写在答题卡相应位置上.1.函数()2sin(2)3f x x π=-的最小正周期为 ▲ .2.已知直线l 过定点(1,0),且倾斜角为3π,则直线l 的一般式方程为 ▲ . 3.若2sin()23πα+=,则cos2α= ▲ . 4.在Rt ABC ∆中,2A π=,4AB =,3AC =,则CA CB ⋅= ▲ .5.设等差数列{}n a 的前n 项和为n S ,若首项13a =-,公差2d =,5k S =,则正整数k = ▲ .6.设a 、b 表示两条直线,α、β表示两个平面,则下列命题正确的是 ▲ .(填写所有正确命题的序号)①若a //b ,a //α,则b //α; ②若a //b ,a α⊂,b β⊥,则αβ⊥; ③若α//β,a α⊥,则a β⊥;④若αβ⊥,a b ⊥,a α⊥,则b β⊥. 7.已知正项等比数列{}n a ,且153537225a a a a a a ++=,则35a a += ▲ . 8.若圆锥的侧面展开图是半径为5、圆心角为65π的扇形,则该圆锥的体积为 ▲ . 9.已知向量a 是与向量b =(-3,4)同向的单位向量,则向量a 的坐标是 ▲ . 10.已知函数3cos(2)y x ϕ=+是奇函数,则||ϕ的最小值为 ▲ .11.在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线2410mx y m --+=()m R ∈相切的所有圆中,半径最大的圆的标准方程为 ▲ .12.已知数列{}n a 满足1122,211,2n n n a n k a a n k ---=+⎧=⎨+=⎩(*k N ∈),若11a =,则20S = ▲ .13.如图,点P 是正六边形ABCDEF 的边上的一个动点,设AP xAB y AE =+,则x y +的最大值为 ▲ .14.在锐角ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,若22a b bc =+,则ab的取值范围是 ▲ .二、解答题:本大题共6小题,共计90分. 请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)如图,已知平行四边形ABCD 中,BC =6,正方形ADEF 所在平面与平面ABCD 垂直,G 、H 分别是DF 、BE 的中点.(1)求证:GH ∥平面CDE ;(2)若CD =2,DB =F -ABCD 的体积.16.(本小题满分14分)已知向量2x ka b =+和y a b =-,其中(1,2)a =-,(4,2)b =,k R ∈. (1)当k 为何值时,有x ∥y ;(2)若向量x 与y 的夹角为钝角,求实数k 的取值范围.FABCEDH GABCDE F(第13题图)如图,在平面直角坐标系xOy 中,点P 是圆O :221x y +=与x 轴正半轴的交点,半径OA 在x 轴的上方,现将半径OA 绕原点O 逆时针旋转3π得到半径OB .设POA x ∠=(0x π<<),()()f x OA OB OP =+⋅.(1)若2x π=,求点B 的坐标; (2)求函数()f x 的最小值,并求此时x 的值.18.(本小题满分16分)如图,OA 、OB 是两条公路(近似看成两条直线),3AOB π∠=,在A O B ∠内有一纪念塔P(大小忽略不计),已知P 到直线OA 、OB 的距离分别为PD 、PE ,PD =6千米,PE =12千米.现经过纪念塔P 修建一条直线型小路,与两条公路OA 、OB 分别交于点M 、N . (1)求纪念塔P 到两条公路交点O 处的距离; (2)若纪念塔P 为小路MN 的中点,求小路MN 的长.x设无穷等差数列{}n a 的前n 项和为n S ,已知11a =,312S =. (1)求24a 与7S 的值;(2)已知m 、n 均为正整数,满足m n a S =.试求所有n 的值构成的集合.20.(本小题满分16分)如图,已知动直线l 过点1(0,)2P ,且与圆22:1O x y +=交于A 、B 两点. (1)若直线l,求OAB ∆的面积;(2)若直线l 的斜率为0,点C 是圆O 上任意一点,求22CA CB +的取值范围; (3)是否存在一个定点Q (不同于点P ),对于任意不与y 轴重合的直线l ,都有PQ 平分AQB ∠,若存在,求出定点Q 的坐标;若不存在,请说明理由.2016/2017学年度第二学期高一年级期终考试高一数学参考答案一、填空题:每小题5分,共计70分. 1、π20y -3、19-4、95、56、②③7、58、12π9、34(,)55- 10、2π11、22(1)2x y -+=12、205613、214、二、解答题:本大题共6小题,共计90分.15. 解: (1)证明:连接FC ,∵EF ∥AD ,AD ∥BC ,∴EF ∥BC . 又EF =AD =BC ,∴四边形EFBC 是平行四边形, ……………2分 又H 为BE 的中点 ∴H 为FC 的中点.又∵G 是FD 的中点,∴HG ∥CD . ……………4分 ∵HG ⊄平面CDE ,CD ⊂平面CDE ,∴GH ∥平面CDE . ……………6分(2)∵平面ADEF ⊥平面ABCD ,交线为AD , 且FA ⊥AD ,又FA ⊂平面ADEF∴FA ⊥平面ABCD . ……………8分 ∵AD =BC =6,∴FA =AD =6.又∵CD =2,DB =42,CD 2+DB 2=BC 2,∴BD ⊥CD . ……………10分 ∵SABCD=CD·BD=82,∴V F -ABCD =13SABCD·FA=13×82×6=162. ……………14分16.解:(1)由//x y ,设x t y =,所以2()ka b t a b +=-,即()(2)t k a t b -=+, ……………2分 又(1,2)a =-,(4,2)b =,得a 与b 不共线, ……………4分 所以20t k t -=+=,解得2k =-. .……………6分(2)因向量x 与y 的夹角为钝角,所以(2)()0x y ka b a b ⋅=+⋅-<, ……………8分 又(1,2)a =-,(4,2)b =,得0a b ⋅=, ……………10分所以2225400x y ka b k ⋅=-=-<,即8k <, ……………12分 又向量x 与y 不共线,由(1)知2k ≠-,所以8k <且2k ≠-. ……………14分17.解:(1)因点P 是圆O :221x y +=与x 轴正半轴的交点,又2x π=,且半径OA 绕原点O 逆时针旋转3π得到半径OB , 所以56POB π∠=, ……………3分由三角函数的定义,得5cos16B x π=,5sin 16B y π=,解得B x =,12B y =,所以1()2B . ……………6分(2)依题意,(1,0)OP =,(cos ,sin )OA x x =,(cos(),sin())33OB x x ππ=++, (8)分所以3()cos()cos cos 322f x x x x x π=++=-,所以1()sin ))23f x x x x π-=-, ……… 12分因0x π<<,2333x πππ-<-<,所以当32x ππ-=时,即56x π=,函数()f x 取最小值 (14)分18.解法一:(1)以O 为原点,OA 所在直线为x 轴,建立直角坐标系,则直线OB 的方程为y =, (2)分又P 到直线OA 的距离PD =6千米,设(,6)P t , ……… 4分所以12=,解得t =或-(舍负),所以OP . 7分(2)因P 为小路MN 的中点,点M 在x 轴上,即0M y =,所以12N y =, ……… 9分又点N 在OB 上,所以N N y =,所以N x = ……… 10分由(1)知P ,所以M x =24MN =. ……… 14分答:(1)P 到点O 处的距离为(2)小路MN 的长为24千米. (16)分解法二:(1)设POA α∠=,则3POB πα∠=-, (2)分因P 到直线OA 、OB 的距离分别为PD 、PE ,PD =6千米,PE =12千米, 所以612sin sin()3OP παα==-, ……… 4分所以2sin sin()3παα=-,化简得tan α=又22sin cos 1αα+=,所以sin α,6sin OP α==. ………7分 (2)设PMO θ∠=,则23PMN πθ∠=-, ……… 9分因P 为小路MN 的中点,即PM PN =, 所以6122sin sin()3πθθ=-,即2sin()2sin 3πθθ-=, ……… 12分 解得6πθ=,所以12224sin6MN PM π===. (14)分答:(1)P 到点O处的距离为(2)小路MN 的长为24千米. ……… 16分19. 解:(1)因数列{}n a 是等差数列,所以32312S a ==,所以24a =, ……… 2分又11a =,所以公差3d =,所以13(1)32n a n n =+-=-,213(132)22n n nS n n -=+-=, (4)分所以2470a =,27377702S ⋅-==. (6)分(2)由(1)知32m a m =-,由m n a S =,得23322n nm --=, (8)分所以2223433442(1)6623n n n n n n n m n -++-++===--, (10)分因2(1)n n n n +=+为正偶数,22n n+为正整数, (12)分所以只需2(1)3n -为整数即可,即3整除1n -, ……… 14分所以,所有n 的值构成的集合为{}31,A n n k k N ==+∈. ……… 16分20. 解:(1)因为直线ll 213:+=x y ,则点O 到直线l 的距离412|21|==d ,……… 2分所以弦AB 的长度2154112||2=⎪⎭⎫⎝⎛-=AB ,所以16152154121=⋅⋅=∆OAB S . ………4分(2)因为直线l 的斜率为0,所以可知⎪⎪⎭⎫⎝⎛-21,23A 、⎪⎪⎭⎫ ⎝⎛21,23B , ………6分设点),(y x C ,则122=+y x ,又()222222221122222CA CB x y x y x y y ⎛⎛⎛⎫⎛⎫+=++-+-+-=++- ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭,… 8分 所以2242CA CB y +=-,又[]1,1-∈y , 所以22CA CB +的取值范围是[]2,6.……… 9分(3)法一: 若存在,则根据对称性可知,定点Q 在y 轴上,设),0(t Q 、又设),(11y x A 、),(22y x B ,因直线l 不与y 轴重合,设直线l 21:+=kx y , ……… 10分代入圆O 得043)1(:22=-++kx x k , 所以221221143,1kx x k kx x +-=+-=+(*) ……… 12分若PQ 平分AQB ∠,则根据角平分线的定义,AQ 与BQ 的斜率互为相反数有12120y t y t x x --+=,又1112y kx =+,2212y kx =+, 化简可得))(21(2:2121x x t x kx +-=,……… 14分代入(*)式得k t k )21(23:-=,因为直线l 任意,故2123-=t , 即2=t , 即(0,2)Q ……… 16分 解法二若存在,则根据对称性可知,定点Q 在y 轴上,设),0(t Q 、又设),(11y x A 、),(22y x B ,因直线l 不与y 轴重合,设直线l 21:+=kx y , ……… 10分代入圆O 得043)1(:22=-++kx x k , 所以221221143,1kx x k kx x +-=+-=+(*) ……… 12分 若PQ 平分AQB ∠,则根据角平分线的几何意义,点A 到y 轴的距离1d ,点B 到y 轴的距离2d 满足21:d QBd QA =,即||)(||)(2222212121x y t x x y t x -+=-+,化简可得))(21(2:2121x x t x kx +-=,……… 14分代入(*)式得k t k )21(23:-=,因为直线l 任意,故2123-=t , 即2=t , 即(0,2)Q ……… 16分。
数学2016-2017学年度第一学期期末考试试题
2016-2017学年度第一学期期末考试试题一、细心选一选.(每小题3分,共30分)1.在下列各式的计算中,正确的是 ( ).A .5x 3·(-2x 2)=-10x 5B .4m 2n-5mn 2 = -m 2nC .(-a)3÷(-a) =-a 2D .3a+2b=5ab2.点M 1(a-1,5)和M 2(2,b-1)关于x 轴对称,则a,b 的值分别为( ).A .3,-2B .-3,2C .4,-3D .3,-4 3.下列图案是轴对称图形的有 ( ).A. 1个 B .2个 C .3个 D .4个4.下列说法正确的是( ).A .等腰三角形任意一边的高、中线、角平分线互相重合B .顶角相等的两个等腰三角形全等C .等腰三角形的一边不可以是另一边的两倍D .等腰三角形的两底角相等5.如图所示,下列图中具有稳定性的是( ).6.下列各组线段中,能组成三角形的是( ).A . a=2,b=3,c=8B .a=7,b=6,c=13C . a=12,b=14,c=18D .a=4,b=5,c=67.下列多项式中,能直接用完全平方公式因式分解的是( ).A. x 2+2xy- y 2B. -x 2+2xy+ y 2C. x 2+xy+ y 2D. 42x -xy+y 28.在△ABC 和△DEF 中,给出下列四组条件:(1) AB=DE, BC=EF, AC=DF(2) AB=DE, ∠B=∠E, BC=EF (3)∠B=∠E , BC=EF, ∠C=∠FDC B A(4) AB=DE, AC=DF, ∠B=∠E 其中能使△ABC ≌△DEF 的条件共有 ( ).A.1组B.2组C.3组D.4组9.已知 a=833, b=1625, c=3219, 则有( ).A .a <b <cB .c <b <aC .c <a <bD .a <c <b10.如图,在直角△ABC 中,∠ACB=90°,∠A 的平分线交BC 于D .过C 点作CG ⊥AB 于G, 交AD 于E, 过D 点作DF ⊥AB 于F.下列结论:(1)∠CED=∠CDE (2)∠ADF=2∠FDB (3)CE=DF (4)△AEC 的面积与△AEG 的面积比等于AC:AG其中正确的结论是( ).A .(1)(3)(4)B .(2)(3)C .(2) (3)(4)D .(1)(2)(3)(4)二、耐心填一填.(每小题3分,共30分)11.实验表明,人体内某种细胞的形状可近似地看作球体,它的直径约为0.00000156m ,这个数用科学记数法表示为__________ m. 12. 如果把分式yx x+2中的x 和y 都扩大5倍,那么分式的值 . 13.已知ab=1,m =a +11+b+11 ,则m 2016的值是 . 14.如果一个多边形的边数增加一条,其内角和变为1260°,那么这个多 边形为 边形.15.如图,若△ACD 的周长为19cm , DE为AB 边的垂直平分线,则 AC+BC= cm.16.若(x-1)0-2(3x-6)-2有意义,则x 的取值范围是 .17.如图,在直角△ABC 中,∠BAC=90°,AD ⊥BC 于D ,将AB 边沿AD 折叠, 发现B 的对应点E 正好在AC 的垂 直平分线上,则∠C= .18.如图,在△ABC 中,∠A=50°,点D 、E 分别在AB ,AC 上,EF 平分∠CED ,DF 平分∠BDE ,则 ∠F = .19.已知等腰△ABC ,AB=AC,现将△ABC 折叠,使A 、B 两点重合,折痕所在的直 线与直线AC 的夹角为40°,则∠B 的 度数为 .E DCBAGFEDCBAF EDC BA EDCBA20.如图,在△ABC 中,AB=AC,点D 在AB 上,过点D 作DE ⊥AC 于E ,在BC 上取一点F , 且点F 在DE 的垂直平分线上,连接DF , 若∠C=2∠BFD ,BD=5,CE=11,则BC 的 长为 . 三、用心答一答.(60分) 21.(9分)(1) 分解因式: 8xy+ (2x-y)2(2)先化简,再求值:(a+b)2- b(2a+b)- 4b ,其中a=-2, b=-43;(3)先化简,再求值:(4482+-+x x x -x -21)÷xx x 232-+,其中 x=-222.(6分)图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长为1,点A 、点B 和点C 在小正方形的顶点上, 请在图1、图2中各画一个四边形,满足以下要求:(1)在图1中画出以A 、B 、C 和D 为顶点的四边形,此四边形为轴 对称图形,并画出一条直线将此四边形分割为两个等腰三角形;(2)在图2中画出以A 、B 、C 和E 为顶点的四边形,此四边形为 轴对称图形,并画出此四边形的对称轴; (3)两个轴对称图形不全等.FEDCB A图1图223.(9分)已知关于x 的方程21++x x - 1-x x = )(+1-)2(x x a的解是正数, 求a 的取值范围.24.(6分) 如图,△ABC 与△ABD 都是等边三角形,点E 、F 分别在BC ,AC 上,BE=CF,AE 与BF 交于点G.(1)求∠AGB 的度数;(2)连接DG,求证:DG=AG+BG.25.(10分)百姓果品店在批发市场购买某种水果销售,第一次用1200元购进若干千克,并以每千克8元出售,很快售完;由于水果畅销,第二次购买时,每千克进价比第一次提高10%,用1452元所购买的数量比第一次多20kg ,以每千克9元出售100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果. (1)求第一次水果的进价是每千克多少元?(2)该果品店在这次销售中,总体是盈利还是亏损?盈利或亏损了多少元?G F E DC B A26.(10分)(1)已知3x =4y =5z ,求yx y z 5332+-的值.(2)已知6122---x x x =2+x A +3-x B,其中A 、B 为常数, 求2A+5B 的值.(3)已知 x+y+z ≠0,a 、b 、c 均不为0,且zy x+=a, x z y +=b , yx z +=c 求证:a a +1+b b +1+cc +1=127.(10分)如图1,AD//BC,AB ⊥BC 于B ,∠DCB=75°,以CD 为边的等边△DCE 的另一顶点E在线段AB 上.(1)求∠ADE 的度数; (2)求证:AB=BC ;(3)如图2,若F 为线段CD 上一点,∠FBC=30°,求DF:FC 的值.D图1E CBA D图2FE CBA。
人教版数学高一第三章直线与方程单元测试精选(含答案)3
d
Ax0 By0 C A2 B2
.已知点 P1, P2
到直线 l
的有向距离分别是 d1, d2 ,给出以下命题:
试卷第 6页,总 10页
①若 d1 d2 0 ,则直线 P1P2 与直线 l 平行; ②若 d1 d2 0 ,则直线 P1P2 与直线 l 平行; ③若 d1 d2 0 ,则直线 P1P2 与直线 l 垂直;④若 d1d2 0 ,则直线 P1P2 与直线 l 相交;
25.直线 l1:x+my+6=0 与 l2:(m-2)x+3y+2m=0,若 l1//l2 则 m =__________;
【来源】[中学联盟]山东省栖霞市第一中学 2017-2018 学年高一上学期期末测试数学试 题
【答案】 1 1
26.直线 y= x 关于直线 x=1 对称的直线方程是________;
则 m 的倾斜角可以是:①15°;② 30°;③ 45°;④ 60°;⑤ 75°. 其中正确答案的序号是______.(写出所有正确答案的序号) 【来源】2011 届陕西省师大附中、西工大附中高三第七次联考文数
【答案】①或⑤
30.定义点 P(x0 , y0 ) 到直线 l : Ax By C 0( A2 B 2 0) 的有向距离为
评卷人 得分
二、填空题
22.在四边形 ABCD 中,AB = DC = (1,1),且 BA + BC =
|BA| |BC|
|B3BDD| ,则四边形 ABCD 的面积
为
.
【来源】2015 高考数学(理)一轮配套特训:4-3 平面向量的数量积及应用(带解析)
【答案】 3
23.直线 ax+2y-4=0 与直线 x+y-2=0 互相垂直,那么 a=______________ ;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省盐城市2016-2017学年度高一下学期期末考试数学试题参考公式:锥体体积公式:13V Sh =,其中S 为底面积,h 为高. 一.填空题:本大题共14小题,每小题5分,共计70分. 1.函数π()2sin(2)3f x x =-的最小正周期为 . 2.已知直线l 过定点(1,0),且倾斜角为π3,则直线l 的一般式方程为 . 3.若π2sin()23α+=,则cos 2α= . 4.在Rt ABC ∆中,π2A =,4AB =,3AC =,则CA CB ⋅= .5.设等差数列{}n a 的前n 项和为n S ,若首项13a =-,公差2d =,5k S =,则正整数k = .6.设a .b 表示两条直线,α.β表示两个平面,则下列命题正确的是 .(填写所 有正确命题的序号)①若a //b ,a //α,则b //α; ②若a //b ,a α⊂,b β⊥,则αβ⊥; ③若α//β,a α⊥,则a β⊥;④若αβ⊥,a b ⊥,a α⊥,则b β⊥. 7.已知正项等比数列{}n a ,且153537225a a a a a a ++=,则35a a += . 8.若圆锥的侧面展开图是半径为5.圆心角为6π5的扇形,则该圆锥的体积为 . 9.已知向量a 是与向量b =(-3,4)同向的单位向量,则向量a 的坐标是 . 10.已知函数3cos(2)y x ϕ=+是奇函数,则的最小值为 .11.在平面直角坐标系xOy 中,以点(1,0)为圆心且与直线2410mx y m --+=()m R ∈相 切的所有圆中,半径最大的圆的标准方程为 .12.已知数列{}n a 满足1122,211,2n n n a n k a a n k ---=+⎧=⎨+=⎩(k ∈*N ),若11a =,则20S = .13.如图,点P 是正六边形ABCDEF 的边上的一个动点,设AP xAB yAE =+,则x y +的 最大值为 .||ϕ14.在锐角ABC ∆中,角A .B .C 的对边分别为a .b .c ,若22a b bc =+,则ab的取 值范围是 .二.解答题:本大题共6小题,共计90分.解答时应写出文字说明.证明过程或演算步骤. 15.(本小题满分14分)如图,已知平行四边形ABCD 中,BC =6,正方形ADEF 所在平面与平面ABCD 垂直,G .H 分别是DF .BE 的中点.(1)求证:GH //平面CDE ;(2)若CD =2,DB =,求四棱锥F -ABCD 的体积.已知向量2x ka b =+ 和y a b =- ,其中(1,2)a =- ,(4,2)b =,k R ∈. (1)当k 为何值时,有x //y;(2)若向量x 与y的夹角为钝角,求实数k 的取值范围.17.(本小题满分14分)如图,在平面直角坐标系xOy 中,点P 是圆O :221x y +=与x 轴正半轴的交点,半径OA 在x 轴的上方,现将半径OA 绕原点O 逆时针旋转π3得到半径OB .设PO A x ∠=(0πx <<),()()f x OA OB OP =+⋅.(1)若π2x =,求点B 的坐标; (2)求函数()f x 的最小值,并求此时x 的值.如图,OA.OB是两条公路(近似看成两条直线),π3 AOB∠=,在A O B∠内有一纪念塔P(大小忽略不计),已知P到直线OA.OB的距离分别为PD.PE,PD=6千米,PE=12千米.现经过纪念塔P修建一条直线型小路,与两条公路OA.OB分别交于点M.N.(1)求纪念塔P到两条公路交点O处的距离;(2)若纪念塔P为小路MN的中点,求小路MN的长.设无穷等差数列{}n a 的前n 项和为n S ,已知11a =,312S =. (1)求24a 与7S 的值;(2)已知m .n 均为正整数,满足m n a S =.试求所有n 的值构成的集合.20.(本小题满分16分)如图,已知动直线l 过点1(0,)2P ,且与圆22:1O x y +=交于A .B 两点.(1)若直线l OAB ∆的面积;(2)若直线l 的斜率为0,点C 是圆O 上任意一点,求22CA CB +的取值范围;(3)是否存在一个定点Q (不同于点P ),对于任意不与y 轴重合的直线l ,都有PQ 平分AQB ∠,若存在,求出定点Q 的坐标;若不存在,请说明理由.【参考答案】一.填空题:每小题5分,共计70分.1.π0y - 3.19-4.95.56.②③7.58.12π9.34(,)55- 10.π211.22(1)2x y -+=12.2056 13.214.二.解答题:本大题共6小题,共计90分.15. (1)证明:连接FC ,∵EF ∥AD ,AD ∥BC ,∴EF ∥BC . 又EF =AD =BC ,∴四边形EFBC 是平行四边形, 又H 为BE 的中点 ∴H 为FC 的中点.又∵G 是FD 的中点,∴HG ∥CD . ∵HG ⊄平面CDE ,CD ⊂平面CDE ,∴GH ∥平面CDE .(2)解:∵平面ADEF ⊥平面ABCD ,交线为AD , 且F A ⊥AD ,又F A ⊂平面ADEF∴F A ⊥平面ABCD . ∵AD =BC =6,∴F A =AD =6.又∵CD =2,DB =42,CD 2+DB 2=BC 2,∴BD ⊥CD . ∵SABCD =CD ·BD =82,∴V F -ABCD =13S ABCD ·F A =13×82×6=162. 16.解:(1)由//x y ,设x t y = ,所以2()ka b t a b +=- ,即()(2)t k a t b -=+,又(1,2)a =- ,(4,2)b =,得a 与b 不共线,所以20t k t -=+=,解得2k =-. (2)因向量x 与y的夹角为钝角,所以(2)()0x y ka b a b ⋅=+⋅-<,又(1,2)a =- ,(4,2)b =,得0a b ⋅= , 所以2225400x y ka b k ⋅=-=-< ,即8k <,又向量x 与y不共线,由(1)知2k ≠-,所以8k <且2k ≠-. 17.解:(1)因点P 是圆O :221x y +=与x 轴正半轴的交点,又π2x =, 且半径OA 绕原点O 逆时针旋转3π得到半径OB ,所以5π6POB ∠=, 由三角函数的定义,得5cos 16B x π=,5πsin 16B y =,解得B x =,12B y =,所以1()2B . (2)依题意,(1,0)OP = ,(cos ,sin )OA x x = ,ππ(cos(),sin())33OB x x =++ ,所以π3()cos()cos cos 32f x x x x x =++=,所以1π()sin ))23f x x x x =-=-, 因0πx <<,ππ2π333x -<-<,所以当ππ32x -=时,即5π6x =,函数()f x 取最小值18.解法一:(1)以O 为原点,OA 所在直线为x 轴,建立直角坐标系,则直线OB 的方程为y =, 又P 到直线OA 的距离PD =6千米,设(,6)P t ,12=,解得t =-,所以OP = (2)因P 为小路MN 的中点,点M 在x 轴上,即0M y =,所以12N y =,又点N 在OB上,所以N N y =,所以N x = 由(1)知P,所以M x =,24MN =.答:(1)P 到点O处的距离为(2)小路MN 的长为24千米. 解法二:(1)设POA α∠=,则3POB πα∠=-,因P 到直线OA .OB 的距离分别为PD .PE ,PD =6千米,PE =12千米, 所以612πsin sin()3OP αα==-, 所以π2sin sin()3αα=-,化简得tan α= 又22sin cos 1αα+=,所以sin α,6sin OP α== (2)设PMO θ∠=,则23PMN πθ∠=-, 因P 为小路MN 的中点,即PM PN =, 所以612sin sin()3θθ=-,即2πsin()2sin 3θθ-=, 解得π6θ=,所以12224πsin 6MN PM ===. 答:(1)P 到点O处的距离为(2)小路MN 的长为24千米. 19. 解:(1)因数列{}n a 是等差数列,所以32312S a ==,所以24a =, 又11a =,所以公差3d =,所以13(1)32n a n n =+-=-,213(132)22n n n S n n -=+-=,所以2470a =,27377702S ⋅-==. (2)由(1)知32m a m =-,由m n a S =,得23322n nm --=,所以2223433442(1)6623n n n n n n n m n -++-++===--, 因2(1)n n n n +=+为正偶数,22n n +为正整数,所以只需2(1)3n -为整数即可,即3整除1n -,所以{}31,A n n k k N ==+∈. 20. 解:(1)因为直线ll 213:+=x y , 则点O 到直线l 的距离412|21|==d ,所以弦AB 的长度2154112||2=⎪⎭⎫⎝⎛-=AB ,所以16152154121=⋅⋅=∆OAB S .(2)因为直线l 的斜率为0,所以可知⎪⎪⎭⎫ ⎝⎛-21,23A .⎪⎪⎭⎫ ⎝⎛21,23B ,设点),(y x C ,则122=+y x ,又()222222221122222CA CB x y x y x y y ⎛⎛⎛⎫⎛⎫+=++-++-=++- ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭, 所以2242CA CB y +=-,又[]1,1-∈y , 所以22CA CB +的取值范围是[]2,6.(3)法一: 若存在,则根据对称性可知,定点Q 在y 轴上,设),0(t Q .又设),(11y x A .),(22y x B ,因直线l 不与y 轴重合,设直线l 21:+=kx y ,代入圆O 得043)1(:22=-++kx x k , 所以221221143,1k x x k k x x +-=+-=+(*)若PQ 平分AQB ∠,则根据角平分线的定义,AQ 与BQ 的斜率互为相反数 有12120y t y t x x --+=,又1112y kx =+,2212y kx =+, 化简可得))(21(2:2121x x t x kx +-=,代入(*)式得k t k )21(23:-=,因为直线l 任意,故2123-=t , 即2=t , 即(0,2)Q解法二:若存在,则根据对称性可知,定点Q 在y 轴上,设),0(t Q .又设),(11y x A .),(22y x B , 因直线l 不与y 轴重合,设直线l 21:+=kx y ,代入圆O 得043)1(:22=-++kx x k , 所以221221143,1k x x k k x x +-=+-=+(*)若PQ 平分AQB ∠,则根据角平分线的几何意义,点A 到y 轴的距离1d ,点B 到y 轴的距离2d 满足21:d QBd QA =,即||)(||)(2222212121x y t x x y t x -+=-+,化简可得))(21(2:2121x x t x kx +-=,代入(*)式得k t k )21(23:-=,因为直线l 任意,故2123-=t , 即2=t , 即(0,2)Q。