2.实际问题与二次函
《实际问题与二次函数》(拱桥问题)

2023-11-06•引言•拱桥问题建模•数值模拟与优化•实验设计与实施•结论与展望目录01引言背景介绍在过去的几十年中,随着科技的发展和工程材料的进步,拱桥设计得到了更多的创新和改进。
然而,拱桥问题仍然是一个具有挑战性的研究领域,需要进一步探索和研究。
拱桥作为一种传统的桥梁形式,具有悠久的历史和广泛的应用。
研究目的和意义研究拱桥问题的目的是为了更好地了解其力学性能和设计优化。
拱桥作为重要的交通枢纽,其安全性和可靠性对于保障人们的生命财产安全具有重要意义。
通过研究拱桥问题,有助于提高桥梁设计水平,促进交通基础设施的发展。
02拱桥问题建模拱桥结构与受力分析拱桥结构拱桥是一种常见的桥梁结构,其特点是在承受载荷时可以将压力转化为张拉力,因此具有较好的抗压性能。
拱桥的主体结构由拱圈和桥墩组成,拱圈是主要的承载结构,桥墩则起到支撑和固定拱圈的作用。
受力分析在承受载荷时,拱桥的拱圈主要承受压应力,而张拉应力则主要由钢筋承受。
桥面上的车辆等载荷通过桥面传递到拱圈上,进而传递到拱桥的支撑结构上。
根据载荷的大小和分布情况,拱桥的支撑结构需要满足一定的强度和稳定性要求。
二次函数在数学中,二次函数是一种常见的函数形式,一般形式为f(x)=ax^2+bx+c。
二次函数的图像是一个抛物线,其形状受到二次项系数a的影响。
拱桥形状拱桥的形状是一个抛物线形,其跨度和拱高受到二次函数的影响。
通过调整二次函数的系数,可以改变拱桥的形状和跨度。
在实际设计中,通常需要根据桥梁的使用要求和地理条件来确定拱桥的形状和跨度。
二次函数与拱桥形状的关联物理意义在拱桥问题中,二次函数的参数具有明确的物理意义。
例如,二次项系数a代表拱桥的跨度,一次项系数b代表拱桥的高度,常数项c代表拱桥的宽度。
这些参数不仅影响拱桥的形状,还与桥梁的性能和使用要求密切相关。
约束条件在设计和建造拱桥时,需要满足一些约束条件。
例如,桥梁需要满足承载能力、稳定性、耐久性和施工可行性等方面的要求。
实际问题与二次函数知识点总结和重难点精析

实际问题与二次函数知识点总结和重难点精析一、实际问题与二次函数的定义和基本性质在九年级数学中,我们学习了二次函数的基本概念、表示方法和性质。
二次函数是指形如y = ax²+bx+c(a≠0)的函数,其中a、b、c为实数。
二次函数的图像是一个抛物线,具有以下基本性质:1.二次项系数a决定抛物线的开口方向和大小。
2.一次项系数b和二次项系数a共同决定抛物线的对称轴位置。
3.常数项c决定抛物线与y轴的交点。
二、实际问题与二次函数的解题方法解决实际问题时,需要灵活运用二次函数的性质和解题方法。
下面列举几种常见的解题方法:1.图像法:通过观察二次函数的图像,直接得出答案。
例如,在解决几何问题时,可以通过画图直接找出答案。
2.公式法:根据二次函数的公式,直接代入已知数进行计算。
例如,在解决代数问题时,可以运用二次方程求根公式等。
3.配方法:将二次函数化为顶点式,然后根据抛物线的性质进行解题。
例如,在解决最大值或最小值问题时,可以采用配方法。
4.因式分解法:将二次函数化为两个一次因式的乘积,然后通过解方程组得出答案。
例如,在解决某些代数问题时,可以采用因式分解法。
三、重难点精析1.重难点知识点介绍(1)二次函数的图像和性质:如何根据图像判断抛物线的开口方向、对称轴、顶点坐标等;如何根据性质求出抛物线的最值、单调区间等。
(2)二次函数的应用题:如何根据实际问题建立二次函数模型;如何求解模型得出实际问题的答案;如何验证答案的正确性。
2.解题思路和技巧(1)对于图像题,可以采用数形结合的方法,将抽象的数学问题转化为形象的图像问题,从而简化解题过程。
(2)对于性质题,需要熟练掌握抛物线的各种性质,例如最值、单调性等,从而可以灵活运用到解题中。
(3)对于应用题,需要认真审题,将实际问题转化为数学问题,然后建立模型求解。
同时需要注意答案的合理性和实际意义的符合性。
3.解题错误分析(1)对于图像题,可能出现的错误是将图像中的信息误解或遗漏,导致答案错误。
二次函数与实际问题

二次函数与实际问题一、引言二次函数是高中数学中非常重要的一部分,它在实际生活中有着广泛的应用。
本文旨在介绍二次函数的基本概念、性质以及如何应用到实际问题中。
二、二次函数的定义与性质1. 二次函数的定义二次函数是形如y=ax²+bx+c(a≠0)的函数,其中a,b,c为常数,x,y为自变量和因变量。
2. 二次函数的图像特征(1)对称轴:x=-b/2a(2)顶点:(-b/2a, c-b²/4a)(3)开口方向:当a>0时,开口向上;当a<0时,开口向下。
(4)零点:即方程ax²+bx+c=0的解。
当b²-4ac>0时,有两个不相等实根;当b²-4ac=0时,有一个重根;当b²-4ac<0时,无实根。
3. 二次函数与一次函数、常数函数的比较(1)一次函数y=kx+b是一个斜率为k、截距为b的直线。
(2)常数函数y=c是一个水平直线,其值始终为c。
(3)与一次函数相比,二次函数具有更加复杂的图像特征;与常数函数相比,二次函数具有更加丰富的变化。
三、二次函数的应用1. 最值问题对于二次函数y=ax²+bx+c,当a>0时,其最小值为c-b²/4a,即顶点的纵坐标;当a<0时,其最大值为c-b²/4a。
2. 零点问题对于二次函数y=ax²+bx+c,求其零点即为求解方程ax²+bx+c=0的解。
可以使用求根公式或配方法等方式来求解。
3. 优化问题在实际生活中,很多问题都可以转化为求某个目标函数的最大值或最小值。
例如,在制作一个长方形纸箱时,如何使得纸箱的容积最大?假设纸箱长为x,宽为y,高为h,则容积V=xyh。
由于长和宽已知,因此我们只需要确定h的取值范围,并找出使得V最大的h即可。
由于纸箱需要稳定,在实际中我们还需要考虑其他因素(如纸板厚度等),从而确定出一个合适的取值范围。
2022年人教版九年级数学上册第22章二次函数课件实际问题与二次函数

B
C
3.用一块宽为1.2m的长方形铁板弯起两边 做一个水槽,水槽的横断面为底角120º的 等腰梯形。要使水槽的横断面积最大,它 的侧面AB应该是多长?
D A
B
C
4.如图3,规格为60 cm×60 cm的正方形地砖在运输过程中受
损,断去一角,量得AF=30cm,CE=45 cm。现准备从五边形
Y=(50-x/10)(180+x)-20(50-x/10)
Y=-1/10x2+34x+8000
(三)销售问题
1.某商场销售一批名牌衬衫,平均每天可售出 20件,每件盈利40元,为了扩大销售,增加 盈利,尽快减少库存,商场决定采取适当的 降价措施。经调查发现,如果每件衬衫每降 价1元,商场平均每天可多售出2件。
x(元) 15
20
30
…
y(件) 25
20
10Βιβλιοθήκη …若日销售量 y 是销售价 x 的一次函数。 (1)求出日销售量 y(件)与销售价 x(元)的函 数关系式;(6分) (2)要使每日的销售利润最大,每件产品的销售价 应定为多少元?此时每日销售利润是多少元?(6分)
(1)设此一次函数解析式为
。
1分
则
解得:k=-1,b=40。
(2).通过对所得函数关系式进行配方,指出 商场要想每天获得最大的销售利润,每件的销 售价定为多少最为合适?最大利润为多少?
某个商店的老板,他最近进了价格为30元的 书包。起初以40元每个售出,平均每个月能售 出200个。后来,根据市场调查发现:这种书包 的售价每上涨1元,每个月就少卖出10个。现在 请你帮帮他,如何定价才使他的利润最大?
w设旅行团人数为x人,营业额为y元,则
实际问题与二次函数

实际问题与二次函数引言:二次函数是高中数学中的重要内容,它在实际问题中有着广泛的应用。
本文将从几个实际问题入手,探讨二次函数在解决这些问题中的作用和应用。
第一部分:抛物线与物体运动问题一:一个物体从地面上以初速度v0竖直向上抛出,忽略空气阻力,求物体的运动轨迹。
解决方法:根据物体竖直上抛运动的运动方程,可以得到物体的高度y与时间t的关系为y=-gt^2/2+v0t,其中g是重力加速度。
这个运动方程正好是一个二次函数,它的图像是一个抛物线,描述了物体的运动轨迹。
问题二:一个人从桥上向下抛掷物体,求物体的最大高度和落地点。
解决方法:根据物体竖直抛体运动的运动方程,可以得到物体的高度与时间的关系为y=-gt^2/2+v0t,其中g是重力加速度,v0是初速度。
我们可以通过求解二次函数的顶点,得到物体的最大高度和落地点的位置。
第二部分:二次函数与开口方向问题三:一块矩形花坛,长边是20米,宽边是10米,现在要在花坛四周修建一圈高度为h的围墙,求围墙的最小高度h。
解决方法:假设围墙的高度为h,围墙的长度为L,围墙的宽度为W。
根据题意,可以得到L=2(20+2h),W=2(10+2h),围墙的面积为S=LW。
我们可以将围墙的面积S表示为关于h的二次函数,然后求解这个二次函数的最小值,即可得到围墙的最小高度h。
第三部分:二次函数与最值问题问题四:某公司生产某种产品,每生产x单位的产品需要花费C(x)=80x+2000元,售价为p(x)=0.1x^2+2000元,求使得利润最大的生产数量。
解决方法:利润等于售价减去成本,即P(x)=p(x)-C(x)=0.1x^2-80x。
我们可以求解二次函数P(x)的最大值,得到使得利润最大的生产数量。
问题五:某人在银行存款10000元,银行的年利率为r%,每年计息一次,求多少年后存款会翻倍。
解决方法:存款的本利和可以表示为S(t)=10000(1+r/100)^t,其中t为年数。
二次函数与实际问题典型例题

二次函数与实际问题典型例题摘要:一、二次函数的应用背景1.二次函数在实际问题中的重要性2.常见实际问题与二次函数的关系二、二次函数典型例题解析1.例题一:抛物线与直角三角形的面积问题2.例题二:抛物线与最值问题3.例题三:抛物线与交点问题4.例题四:抛物线与对称性问题三、解决二次函数实际问题的方法与技巧1.利用二次函数的基本性质2.代数法与几何法的结合3.合理运用已知条件四、总结1.二次函数与实际问题的紧密联系2.解决二次函数实际问题的策略与方法正文:二次函数在实际问题中有着广泛的应用,它不仅可以帮助我们理解许多现实中的现象,还能为解决实际问题提供有力的工具。
本文将通过解析几道典型的二次函数实际问题例题,来探讨如何巧妙地运用二次函数来解决实际问题。
首先来看一道抛物线与直角三角形的面积问题。
题目描述:已知抛物线y = ax^2 + bx + c 与x 轴相交于A、B 两点,且AB = 4,点C 到AB 的距离为h。
求抛物线与三角形ABC 的面积。
解析:通过将抛物线与x 轴相交的点A、B 坐标代入解析式,可以求得a、b、c 的值,进一步计算出顶点坐标。
由于已知AB = 4,可以根据顶点到AB 的距离公式求得h,最后利用三角形面积公式计算出结果。
接下来是抛物线与最值问题。
题目描述:已知抛物线y = ax^2 + bx + c 在x = 1 处取得最小值,求a、b、c 的值。
解析:根据抛物线的性质,可以知道当a > 0 时,抛物线开口向上,此时可以通过配方法将解析式转化为顶点式,从而求得最小值点的坐标。
当a < 0 时,抛物线开口向下,此时可以通过配方和换元法求得最值。
再来一道抛物线与交点问题。
题目描述:已知抛物线y = ax^2 + bx + c 与直线y = mx + n 相交于不同的两点,求a、b、c、m、n 的关系。
解析:将直线方程代入抛物线方程,消去y 得到一个关于x 的二次方程,通过求解该方程可以得到交点的横坐标,再代入直线方程求得纵坐标,从而得到交点坐标。
人教版数学九年级上册实际问题与二次函数课件
对称轴:x=2;
3
对称轴:x=− ;
2
顶点坐标:(2,-9);
顶点坐标:( − ,
最小值:-9;
3
2
最大值:
25
4
.
25
4
);
新知探究
问题:从地面竖直向上抛出一小球,小球的高度 h(单位:m)与小球的运
动时间 t(单位:s)之间的关系式是h= 30t - 5t 2 (0≤t≤6).小球的运动时间
是多少时,小球最高?小球运动中的最大高度是多少?
是多少?(铝合金型材宽度不计)
解:设矩形窗框的宽为x m,则高为
这里应有x>0,
6−3
>0,
2
6−3
m.
2
故0<x<2.
矩形窗框的透光面积y与x之间的函数关系式是:
=∙
6−3
2
x
例题探究
当 =
− 时,二次函数
2
值 =
4−2
.
4
y = ax 2 + bx + c 有最小(大)
h/m
=
−
2
=
30
−
2×(−5)
ℎ=
4−2
4
−302
4×(−5)
=
= 3,
40
= 45.
20
O
h= 30t - 5t 2 (0≤t≤6)
1
2 3
4
5 6 t/s
小球运动的时间是 3s 时,小球最高. 小球运动中的最大高度是 45 m.
墙长18m,这个矩形的长、宽
各为多少时,菜园的面积最大, 问题3 可否试设与墙平行的一边为x米?
则如何表示另一边?
最大面积是多少?
二次函数与实际问题-最大利润问题
2 实际问题的挑战与机
遇
实际问题的解决需要面对 各种挑战,但也提供了发 展和创新的机遇。
3 未来的发展趋势
随着技术的进步和需求的 变化,二次函数在解决实 际问题中的应用将继续发 展和演变。
可以引入其他约束、考虑风险和不确定性,提高决策的全面性和鲁棒性。
VI. 二次函数实践与练习
1 实际问题的解决方法和演示
通过实际案例和示例演示,帮助学习者理解 和应用二次函数解决实际问题。
2 练习题
提供一些练习题,加深对二次函数和实际问 题的理解。
VII. 二次函数与实际问题-总结与展望
1 二次函数的重要性
二次函数与实际问题-最 大利润问题
I. 二次函数概述
1 什么是二次函数?
二次函数是一个在方程中有二次项的函数,一般形式为y=ax^2+bx+c。
2 二次函数的一般式和标准式
一般式为y=ax^2+bx+c,标准式为y=a(x-h)^2+k。
3 二次函数图像
二次函数的图像可以是抛物线,开口向上或向下,取决于a的正负。
通过分析实际情况建立利润函数,将利润与决策因素相联系。
2
寻找最大值
通过求导或观察图像,找到利润函数的最大值,例,演示如何使用二次函数解决最大利润问题。
IV. 二次函数在其他问题中的应用
二次函数解决投影高度 问题
通过建立二次函数模型,可 以计算出物体的最大或最小 高度。
II. 最大利润问题简介
1 什么是最大利润问题?
最大利润问题是在实际情况中,通过优化决策来实现最大化利益的问题。
2 实际应用场景
实际问题与二次函数教案
课题:实际问题与二次函数(一)教学目标1.知识与技能:使学生会根据题意将实际问题转化为二次函数的问题来解决,会根据题意列出二次函数表达式、会求出自变量的取值范围、会使用二次函数的性质解决问题。
2. 过程与方法:经历将实际问题转化成二次函数的问题的过程完成由感性理解到理性理解的转变,实现理解上的升华。
3.情感态度与价值观:让学生体会数学与人类社会生活的密切联系,理解数学的应用价值;会建立二次函数的数学模型,进一步培养学生探索、创新、转化的水平。
(二).教学重点:根据具体的实际问题列出二次函数表达式、求出自变量的取值范围、并使用二次函数的性质解决问题。
(三).教学难点:准确的根据具体的实际问题列出二次函数表达式、求出自变量的取值范围、并使用二次函数的性质解决问题。
(四).教学方法:引导、分析、讨论、讲解、归纳(五).教学过程:一.创设问题情境,引入新课前面我们理解了二次函数,研究了它的图象与性质,今天将应用它去解决一些实际问题。
首先我们一起来作一个简要的回顾:1.二次函数y=a(x-h)2+k的图象与性质:①当a>0时,抛物线y=a(x-h)2+k的开口向___,顶点为()它是抛物线上的最___点,函数y当自变量x=____时有最___值____.②当a<0时,抛物线y=a(x-h)2+k的开口向___,顶点为()它是抛物线上的最___点,函数y当自变量x=____时有最___值____.2.二次函数y=ax2+bx+c的图象与性质:①当a>0时,抛物线y=ax2+bx+c的开口向___,顶点为()它是抛物线上的最___点,函数y当自变量x=____时有最___值____________.②当a<0时,抛物线y=ax2+bx+c的开口向___,顶点为()它是抛物线上的最___点,函数y当自变量x=____时有最___值____________.由此可知,确定了一个二次函数的解析式,我们就能够根据其性质求出相对应的函数的最大(小)值。
实际问题与二次函数最值问题
实际问题与二次函数
学习目标
1.通过实际问题与二次函数关系的探究,掌握利用顶点坐标解决最大值(或最小值)问题的方法。
2.通过对生活中实际问题的研究,体会建立数学模型的思
想
重难点:实际问题转化为二次函数问题
一.知识再现,夯实基础.
1.求下列二次函数的最大值或最小值.
(1)二次函数y=x2+4x ,当x = 时,y有最
值为.
(2)二次函数y=-x2+2x -3,当x = 时,y有最
值为
2.图中所示二次函数图像的解析式为y=2x2+8x +1
(1)当x = 时,y有最值为
(2)若-3≤x ≤3,当x = 时,y有最小值
为; x = 时,y有最大值为
(3)又若0≤x ≤3,当x = 时,y有最小
值为; x = 时,y有最大值为
二.典例分析,讨论解疑
在美化校园的活动中,某兴趣小组想用28m长的篱笆
围成一个矩形花园
问题一,若矩形的一边长为4米,它的面积是多少?
问题二,若矩形的一边长为6米,7米,9米,它的面积分别是多少?
问题三,你能找到篱笆围成的矩形的最大面积吗?
三.展示点评,拓展提升.
1.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm,花园面积为S
(1)求出S与x的函数关系式,
(2)求花园面积S的最大值,
(3)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴所求的抛物线的解析式是 y=- 0.1x2+ 0.6x+0.9.
(2)解 答
把x=3代入y=-0.1x2+0.6x+0.9得,
y=-0.1×32+0.6×3+0.9=1.8. 小华的身高是1.8米. 1<t<5 (3)答案
跳绳与抛物线
平时我们在跳绳时,绳甩到最高处的形状可 以看为抛物线.如图所示,正在甩绳的甲乙两名学 生拿绳的手间距为4米,距地面均为1米,学生丙丁 分别站在距甲拿绳的手水平距离1米、2.5米处,绳 子到最高处时刚好通过他们的头顶.已知学生丙 的身高是1.5米,求学生丁的身高?
由题意知,O、B两点的坐标依次为(0,0),(2, 2 -10)且顶点的纵坐标为 3 25 c=0 a=- 6 ∴ 解得: 4ac-b2 2 10 = 3 b= 3 4a 4a+2b+c=-10 c=0 a=- 3 2 ∵抛物线对称轴在 y轴右 或 b 侧,∴- 2a >0 b=-2 又∵抛物线开口向下,∴a<0,b>0 c=0
答
需32小时禁止船只通行.
用抛物线的知识解决运动场上或者生 活中的一些实际问题的一般步骤:
建立直角坐标系 二次函数 问题求解 找出实际问题的答案
抛物线型问题
平面直角坐标系, 解决此类问题的关键是建立恰当的______________ 应用数形结合的思想,实现图形上的点与坐标之间的 转化. 名师助学 1.解决抛物线型问题时应根据题目中的条件建立 恰当的坐标系;
实际问题
投篮与二次函数
y
20 9
( 4, 4)
1 2 y x 4 4 (0≤x≤8) 9
1 a 9
0
4
8
x
20 当x 8时, y 9
如图,建立平面 直角坐标系, 点(4,4)是图中这段抛物 线的顶点,因此可设这段抛 物线对应的函数为:
∵篮圈中心距离地面3米
答案
B
实际问题
跳绳与二次函数
【预测4】 跳绳时,绳甩到最高处时的形状是抛物 线.正在甩绳的甲、乙两名同学拿绳的手间距 AB为6米,到地面的距离AO和BD均为0.9米,身 高为1.4米的小丽站在距点O的水平距离为1米的 点F处,绳子甩到最高处时刚好通过她的头顶点 E.以点O为原点建立如图所示的平面直角坐标系, 设此抛物线的解析式为y=ax2+bx+0.9.
解:建立如图所示的坐标系,根据题意得,A点 坐标为(0,1.25),顶点B坐标为(1,2.25)
y x 1 2.25
2
y
●B(1,2.25)
A (0,1.25)
● D(-2.5,0)
数学化
o
●x C(2.5,0)
设抛物线为y=a(x-h)2+k,由待定系数法可求得抛 物线表达式为:y=- (x-1)2+2.25. 当y=0时,可求得点C的坐标为(2.5,0) ; 同理,点D的坐标为(-2.5,0) .
∴此球不能投中
y ax 4 4
2
(0≤x≤8)
20 抛物线经过点 0, 9 20 2 a0 4 4 9
若假设出手的角度和力度都不变, 则如何才能使此球命中?
探究
(1)跳得高一点 (2)向前平移一点
在出手角度和力度都不变的情况下,小明的出手高度 为多少时能将篮球投入篮圈?
6
y
(4,4)
4
20 0, 9 2
(8,3) 20 8, 9
0
1
2
3
4
5 5
6
7
8
9
10
x
-2
在出手角度、力度及高度都不变的情况下,则小明朝 着篮球架再向前平移多少米后跳起投篮也能将篮球投 入篮圈?
6
y
(4,4) (5,4)
4
20 0, 9
(2)在某次试跳时,测得运动员 在空中的运动路线是(1)中的抛物线且 10m
跳 台 支 柱
x
运动员在空中调整好入水姿势时,距池边 2 的水平距离为3 m,问此次跳水会不会失误, 5 通过计算说明理由。
1m
池边
B
水面
解:(1)在给定的直角坐标系下,设最高点为A,入水 点位B,抛物线的关系式为:y=ax2+bx+c
(1)设抛物线的方程为 y= ax2+ 11, 由题意得 B(8, 8), 3 ∴ 64a+ 11= 8,解得 a=- , 64 3 2 ∴ y=- x + 11; 64 (2)水面到顶点 C 的距离不大于 5 米时, 即水面与河底 ED 的距离 h 至多为 6, 1 ∴ 6=- (t- 19)2+ 8,解得 t1= 35, t2= 3, 128 ∴ 35- 3= 32(小时 ). 解
2
(7,3) (8,3)
●
0
1
2
3
4
5 5
6
7
8
9
10
X
-2
【预测 3】 小敏在某次投篮中, 球的运动路线是抛物线 y= 1 2 - x + 3.5 的一部分, 如图所 5 示, 若命中篮圈中心, 则她与 篮底的距离 l 是 ( )
A.3.5 m
B.4 m
C.4.5 m
D.4.6 m
1 2 解析 把 y= 3.05 代入 y=- x +3.5 中得 x1=1.5, 5 x2=-1.5(舍去). ∴ l=2.5+ 1.5=4 米.
根据对称性,如果不计其它因素,那么水池的 半径至少要2.5m,才能使喷出的水流不致落到池外.
实际问题
跳水与二次函数
例:某跳水运动员进行10米跳台训练时,身体(看成一点)在空 中的运动路线是一条抛物线如图所示(图中标出的数据为已知条 件),在跳某个 规范动作时,通常情况下,该运动员在空中的最 2 高处距水面10 3 m,入水处距池边的距离为4 m,运动员在距水面 高度为5 m以前,必须完成规范的翻腾动作,并调整好入水姿势, y 否则就会出现失误。 3m A (1)求这条抛物线对应 的二次函数解析式
丙 丁
甲
乙
实际问题
拱桥与二次函数
【例题2】 (2012· 武汉)如图,小河上 有一拱桥,拱桥及河道的截面轮廓 线由抛物线的一部分ACB和矩形的 三边AE,ED,DB组成,已知河
底ED是水平的,ED=16米,AE
=8米,抛物线的顶点C到ED的距离是11米,以ED所 在的直线为x轴,抛物线的对称轴为y轴建立平面直角 坐标系.
实际一公园要建造圆形喷水池,在水池中央垂直于 水面处安装一个柱子OA,O恰在水面中心, OA=1.25m,由柱子顶端A处的喷头向外喷水,水流 在各个方向沿形状相同的抛物线落下,为使水流形 状较为漂亮,要求设计成水流在离OA距离为1m处达 到距水面最大高度2.25m. 如果不计其它因素,那么水池的半径至少要多少 m才能使喷出的水流不致落到池外?
(1)求该抛物线的解析式;
(2)如果小华站在OD之间,且离点O的距离为3米, 当绳子甩到最高处时刚好通过他的头顶,请你算出
小华的身高;
(3)如果身高为1.4米的小丽站在OD之间,且离点O 的距离为t米,绳子甩到最高处时超过她的头顶,请 结合图象,写出t的取值范围________.
(1)解 由题意得点 E(1,1.4),B(6,0.9), 代入 y= ax2+ bx+ 0.9 得 a+ b+ 0.9= 1.4, 36a+ 6b+ 0.9= 0.9.
2.解方程组的思想是消元,包含代入消元法和加
减消元法.
二次函数应用中的常见错误
问题1.建立的坐标系不恰当;
问题2.设的函数关系式不正确; 问题3.找不清题目中隐含的等量关系; 问题4.寻找已知点代入解析式时,点的坐标不能正 确表示.
∴a=- 25 b= 10 c=0 6 3 25 2 10 ∴抛物线关系式为y=- 6 x + x 3 3 (2)当运动员在空中距池边的水平距离为3 3 m, 即 3 5 16 5 8 25 8 2 2= 5 时,y=() ×( ) + 10 × 8 =5 6 5 3 3 14 16 ∴此时运动员距水面的高为10= 3 3 因此此次跳水会出现失误
(1)求抛物线的解析式; (2)已知从某时刻开始的 40 小时内,水面与河底 ED 的距离 h(单位:米)随时间 t(单位:时)的变化满足函 1 数关系 h=- (t-19)2+8(0≤t≤40),且当水面到 128 顶点 C 的距离不大于 5 米时,需禁止船只通行,请 通过计算说明:在这一时段内,需多少小时禁止船只 通行?