南邮通达电力系统实验报告
电力系统分析实验报告

电力系统分析实验报告电力系统分析实验报告引言:电力系统是现代社会不可或缺的基础设施,它为我们的生活提供了稳定的电力供应。
为了确保电力系统的可靠性和安全性,对电力系统进行分析是非常重要的。
本实验旨在通过对电力系统的分析,探讨电力系统的性能和效能,以及可能存在的问题和改进措施。
一、电力系统的基本原理电力系统由发电厂、输电网和配电网组成。
发电厂负责将化学能、机械能等转化为电能,输电网将发电厂产生的电能输送到各个地区,配电网将电能供应给终端用户。
电力系统的基本原理是通过电压和电流的传输,实现电能的转换和分配。
二、电力系统的分析方法1. 潮流计算潮流计算是电力系统分析中最基本的方法之一。
通过潮流计算,可以确定电力系统中各节点的电压和电流分布情况,从而评估系统的稳定性和负载能力。
潮流计算需要考虑各个节点的功率平衡和电压平衡,以及各个元件的参数和状态。
2. 短路分析短路分析是评估电力系统安全性的重要手段。
通过短路分析,可以确定电力系统中各个节点和支路的短路电流,从而评估设备的额定容量和保护措施的有效性。
短路分析需要考虑系统的拓扑结构、设备参数和保护装置的动作特性。
3. 阻抗分析阻抗分析是评估电力系统稳定性和负载能力的重要方法。
通过阻抗分析,可以确定电力系统中各个节点和支路的阻抗,从而评估系统的电压稳定性和电力传输能力。
阻抗分析需要考虑系统的拓扑结构、设备参数和负载特性。
三、实验结果与讨论在本实验中,我们选取了一个具体的电力系统进行分析。
通过潮流计算,我们确定了系统中各个节点的电压和电流分布情况。
通过短路分析,我们评估了系统的安全性,并确定了保护装置的动作特性。
通过阻抗分析,我们评估了系统的稳定性和负载能力。
实验结果显示,系统中存在一些节点电压偏低的问题,可能会影响设备的正常运行。
为了解决这个问题,我们建议采取增加变压器容量、调整负载分配和优化配电网结构等措施。
此外,我们还发现系统中某些支路的短路电流超过了设备的额定容量,可能导致设备的损坏和安全事故。
电力系统实验报告

一、实验目的1. 掌握电力系统基本元件的特性和参数测量方法。
2. 理解电力系统运行的基本原理,包括稳态运行和暂态过程。
3. 学习使用电力系统仿真软件进行潮流计算和分析。
4. 提高实验操作能力和数据分析能力。
二、实验内容1. 电力系统基本元件特性实验(1)实验原理本实验主要研究电力系统中常用元件的特性,包括电阻、电感、电容和变压器。
通过测量元件在不同条件下的电压、电流和功率,分析其特性。
(2)实验步骤1. 测量电阻元件的伏安特性,绘制伏安曲线。
2. 测量电感元件的伏安特性,分析其频率响应。
3. 测量电容元件的伏安特性,分析其频率响应。
4. 测量变压器变比和损耗。
(3)实验结果与分析通过实验,得到了电阻、电感、电容和变压器的伏安特性曲线,分析了其频率响应和损耗情况。
2. 电力系统稳态运行实验(1)实验原理本实验研究电力系统在稳态运行条件下的电压、电流和功率分布。
通过仿真软件模拟电力系统运行,分析稳态运行特性。
(2)实验步骤1. 建立电力系统模型,包括发电机、变压器、线路和负荷。
2. 设置电力系统运行参数,如电压、频率和负荷。
3. 运行仿真软件,观察电压、电流和功率分布情况。
4. 分析稳态运行特性,如电压分布、潮流分布和功率损耗。
(3)实验结果与分析通过仿真实验,得到了电力系统稳态运行时的电压分布、潮流分布和功率损耗情况。
分析了不同运行参数对系统性能的影响。
3. 电力系统暂态过程实验(1)实验原理本实验研究电力系统在发生故障或扰动时的暂态过程。
通过仿真软件模拟故障或扰动,分析暂态过程的电压、电流和功率变化。
(2)实验步骤1. 建立电力系统模型,包括发电机、变压器、线路和负荷。
2. 设置故障或扰动参数,如故障类型、故障位置和故障持续时间。
3. 运行仿真软件,观察电压、电流和功率变化情况。
4. 分析暂态过程特性,如电压恢复、频率变化和稳定裕度。
(3)实验结果与分析通过仿真实验,得到了电力系统发生故障或扰动时的暂态过程特性。
南邮电工实习报告

南邮电工实习报告一、实习目的与意义作为一名电子信息工程专业的学生,学习电工知识是不可或缺的一部分。
通过电工实习,我们可以将理论知识与实际操作相结合,提高自己的实践能力和创新能力。
本次实习旨在让我们了解电工电子技术的基本原理,掌握基本仪器的使用,学会基本的线路设计和安装,培养我们团结协作、严谨治学的科学态度。
二、实习内容与过程在实习过程中,我们学习了电工电子技术的基本原理,了解了各种电子元器件的性能和用途,掌握了基本仪器的使用,学会了线路设计和安装,进行了各种实际操作,如焊接、调试等。
在实习的第一阶段,我们学习了电工电子技术的基本原理,如电路的基本概念、电路定律、电路元件等。
通过理论的学习,我们对电工电子技术有了更深入的了解。
在实习的第二阶段,我们学习了各种电子元器件的性能和用途,如电阻、电容、电感、二极管、三极管等。
我们学会了如何识别这些元器件,并掌握了如何正确选用和安装它们。
在实习的第三阶段,我们学习了基本仪器的使用,如万用表、示波器、信号发生器等。
我们学会了如何正确使用这些仪器,并进行各种实际操作,如测量电阻、电容、电压等。
在实习的第四阶段,我们学习了线路设计和安装,如如何设计电路图、如何安装电路板等。
我们学会了如何根据需求设计电路,并将其安装在电路板上。
在实习的第五阶段,我们进行了各种实际操作,如焊接、调试等。
我们学会了如何正确焊接电子元件,如何进行电路调试,以保证电路的正常运行。
三、实习收获与反思通过电工实习,我们不仅学习了电工电子技术的基本原理,还掌握了基本仪器的使用,学会了线路设计和安装,提高了自己的实践能力和创新能力。
此外,我们还培养了团结协作、严谨治学的科学态度。
回顾实习过程,我认识到理论学习和实践操作相辅相成,只有掌握了理论知识,才能在实际操作中游刃有余。
同时,我也意识到实践操作需要严谨的态度,任何一个细节的失误都可能导致整个电路的故障。
因此,在今后的学习和工作中,我将更加注重理论知识的学习,同时培养严谨的态度,不断提高自己的实践能力。
电力系统分析计算实验报告

电力系统分析计算实验报告实验报告:电力系统分析计算一、实验目的本次实验的目的是通过对电力系统的分析和计算,了解电力系统的性能指标以及计算方法,为电力系统的设计、运行和维护提供理论依据。
二、实验原理1.电力系统的基本概念:电力系统由电源、输电线路、变电站以及用户组成,其主要功能是将发电厂产生的电能传输到用户处。
电力系统一般按照功率等级的不同分为高压、中压、低压电力系统。
2.电力系统的拓扑结构:电力系统的拓扑结构是指电源、变电站、输电线路等各个组成部分之间的连接关系。
常见的电力系统拓扑结构有环形、网状和辐射状等。
3.电力系统的性能指标:电力系统的性能指标包括电压、电流、功率因数、谐波等。
其中,电压是电力系统中最基本和最重要的性能指标之一,有着直接影响电力设备运行稳定性和用户用电质量的作用。
4.电力系统的计算方法:电力系统的计算方法主要包括短路电流计算、负荷流计算、电压稳定计算等。
通过这些计算方法可以了解电力系统的运行状态,为系统的运行和维护提供参考。
1.收集电力系统的基本信息:包括装置的类型、额定容量、接线方式等。
2.进行短路电流计算:根据电力系统的拓扑结构和装置参数,计算各个节点的短路电流。
3.进行负荷流计算:根据电力系统的负荷信息和装置参数,计算各个节点的负荷流值。
4.进行电压稳定计算:根据电力系统的电源参数、负载参数和线路参数,计算各个节点的电压稳定性。
5.分析计算结果,评估电力系统的性能,找出可能存在的问题。
6.根据分析结果,提出改进措施,优化电力系统的运行。
四、实验结果通过上述计算,我们得到了电力系统各节点的短路电流、负荷流值以及电压稳定性等指标。
通过对实验结果的分析,我们发现了电力系统中可能存在的问题,并提出了相应的改进方案。
五、实验结论通过本次实验,我们深入了解了电力系统的分析和计算方法,掌握了评估电力系统性能的指标和工具。
我们发现电力系统的设计和优化非常重要,可以提高系统的稳定性和可靠性,减少能源损失。
电力系统自动化实验指导书-南京邮电大学

电力系统自动化实验指导书南京邮电大学自动化学院实验一励磁控制方式及其相互切换实验一、实验目的1.加深理解同步发电机励磁调节原理和励磁控制系统的基本任务;2.了解自并励励磁方式和它励励磁方式的特点;3.熟悉三相全控桥整流、逆变的工作波形;观察触发脉冲及其相位移动;4.了解微机励磁调节器的基本控制方式;二、原理与说明同步发电机的励磁系统由励磁功率单元和励磁调节器两部分组成,它们和同步发电机结合在一起就构成一个闭环反馈控制系统,称为励磁控制系统。
励磁控制系统的三大基本任务是:稳定电压,合理分配无功功率和提高电力系统稳定性。
图1 励磁控制系统示意图实验用的励磁控制系统示意图如图1所示。
可供选择的励磁方式有两种:自并励和它励。
当三相全控桥的交流励磁电源取自发电机机端时,构成自并励励磁系统。
而当交流励磁电源取自380V市电时,构成它励励磁系统。
两种励磁方式的可控整流桥均是由微机自动励磁调节器控制的,触发脉冲为双脉冲,具有最大最小α角限制。
微机励磁调节器的控制方式有四种:恒U F(保持机端电压稳定)、恒I L(保持励磁电流稳定)、恒Q(保持发电机输出无功功率稳定)和恒α(保持控制角稳定)。
其中,恒α方式是一种开环控制方式,只限于它励方式下使用。
同步发电机并入电力系统之前,励磁调节装置能维持机端电压在给定水平。
当操作励磁调节器的增减磁按钮,可以升高或降低发电机电压;当发电机并网运行时,操作励磁调节器的增减磁按钮,可以增加或减少发电机的无功输出,其机端电压按调差特性曲线变化。
发电机正常运行时,三相全控桥处于整流状态,控制角α小于90°;当正常停机或事故停机时,调节器使控制角α大于90°,实现逆变灭磁。
三、实验项目和方法(一)不同α角(控制角)对应的励磁电压波形观测(1)合上操作电源开关,检查实验台上各开关状态:各开关信号灯应绿灯亮、红灯熄;(2)励磁系统选择它励励磁方式:操作“励磁方式开关”切到“微机它励”方式,调节器面板“它励”指示灯亮;(3)励磁调节器选择恒α运行方式:操作调节器面板上的“恒α”按钮选择为恒α方式,面板上的“恒α”指示灯亮;(4)合上励磁开关,合上原动机开关;(5)在不启动机组的状态下,松开微机励磁调节器的灭磁按钮,操作增磁按钮或减磁按钮即可逐渐减小或增加控制角α,从而改变三相全控桥的电压输出及其波形。
电力电子技术实验报告南邮

电力电子技术实验报告南邮一、实验目的本次实验旨在使学生深入了解电力电子技术的基本理论,掌握电力电子器件的工作原理及其在实际电路中的应用。
通过实践操作,培养学生的动手能力和解决实际问题的能力。
二、实验原理电力电子技术是研究利用电子技术对电能进行高效转换和控制的科学。
它涉及到半导体器件、电路设计、控制策略等多个方面。
在本次实验中,我们将重点研究整流器、逆变器等电力电子基本电路的工作原理和设计方法。
三、实验设备与材料1. 整流器模块2. 逆变器模块3. 直流电源4. 交流电源5. 电阻负载6. 示波器7. 万用表8. 连接线及工具四、实验步骤1. 检查实验设备是否完好,确保安全。
2. 根据实验要求,连接整流器和逆变器电路。
3. 调整直流电源,提供稳定的直流电压。
4. 将示波器连接到电路的输入和输出端,观察波形。
5. 改变负载电阻,记录不同负载下的输出电压和电流。
6. 根据实验数据,分析整流器和逆变器的工作特性。
7. 完成实验后,整理实验设备,确保实验室整洁。
五、实验结果在本次实验中,我们观察到了整流器和逆变器在不同负载条件下的输出波形。
通过调整负载电阻,我们发现输出电压和电流随着负载的变化而变化。
实验数据表明,整流器能够有效地将交流电转换为直流电,而逆变器则能够将直流电转换回交流电。
六、实验分析通过本次实验,我们对电力电子技术有了更深入的理解。
整流器和逆变器作为电力电子技术中的基本电路,其性能直接影响到整个系统的稳定性和效率。
在实验过程中,我们注意到了器件的选型、电路设计和控制策略对系统性能的影响。
此外,我们还学习了如何使用示波器和万用表来测量和分析电路参数。
七、实验结论本次电力电子技术实验成功地完成了预定的教学目标。
学生通过实际操作,加深了对电力电子技术的理解,并提高了解决实际问题的能力。
实验结果表明,整流器和逆变器在实际应用中具有良好的性能,能够有效地实现电能的转换和控制。
八、实验心得通过本次实验,我们不仅学习了电力电子技术的基本理论和应用,还锻炼了实际操作能力。
电力系统实验报告

电力系统综合实验实验报告1实验目的1.通过实验一,观察发电机的四种运行状态。
2.通过实验二,观察系统在不同电压和不同拓扑结构中的静稳极限,观察失稳之后各相电压和电流波形。
3.通过实验三,观察不同短路情况下,短路切除时间对于电力系统稳定性的影响。
2实验内容2.1实验一:发电机不同象限运行实验2.1.1实验内容通过改变发电机的转速和励磁分别改变发电机的有功功率P与无功功率Q,实现发电机在不同象限的运行。
2.1.2理论分析发电机的四种运行状态:1.迟相运行(常态运行):发电机向电网同时送出有功功率和无功功率(容性)。
2.进相运行(超前运行):发电机向电网送出有功功率,吸收电网无功功率。
3.调相运行:发电机吸收电网的有功功率维持同步运转,向电网送出无功功率(容性)。
4.电动机运行(非正常运行):发电机同时吸收电网的有功功率和无功功率维持同步运行。
2.1.3实验步骤1.按照双回线方式,依次接入断路器,双回线,电动机,无穷大电网,组成简易电力系统。
2.测试各个接线端子的是否能够正常使用,闭合断路器。
3.启动发电机,并网运行。
4.改变发电机设定转速改变其有用功率,改变发电机励磁改变其无功功率,使其运行在四个象限,四个象限各取三组数据。
在正常状态下,设定三组不同转速使其保持正常运行状态,记录机端电压,有功功率,无功功率;然后降低转速,使其运行于第二象限,再次记录三组调相数据;接着降低励磁电压,使发电机运行于第三象限,记录三组电动机数据;最后提高转速使点击运行与第四象限,获得3组进相数据。
2.1.4实验结果具体现象如图所示,图. 1转速设定值0.90图. 2转速设定值0.91图. 3转速设定值0.89图. 4转速设定值0.875图. 5转速设定值0.865图. 6转速设定值0.855图. 7转速设定值0.860 4.P > 0, Q < 0 第四象限图. 8转速设定值0.882图. 9转速设定值0.892图. 10转速设定值0.9022.2实验二:线路静态稳定极限测试实验2.2.1实验内容测试线路的静态稳定运行极限,测试不同电压等级和不同电抗条件下,电压静态稳定极限的变化情况。
电力系统分析实验报告

一、实验目的1. 了解电力系统的基本组成和运行原理;2. 掌握电力系统潮流计算的方法和步骤;3. 熟悉电力系统故障计算的方法和步骤;4. 培养分析电力系统问题的能力。
二、实验原理1. 电力系统潮流计算:通过求解电力系统中的潮流方程,得到系统中各节点的电压、电流、功率等参数,从而分析电力系统的运行状态。
2. 电力系统故障计算:通过求解电力系统中的故障方程,得到故障点附近的电压、电流、功率等参数,从而分析电力系统故障的影响。
三、实验仪器与设备1. 电力系统分析软件:如PSCAD/EMTDC、MATLAB等;2. 电力系统仿真设备:如电力系统仿真机、计算机等;3. 电力系统相关教材和资料。
四、实验步骤1. 建立电力系统模型:根据实验要求,利用电力系统分析软件建立电力系统模型,包括发电机、变压器、线路、负荷等元件。
2. 潮流计算:(1)设置初始条件:根据实验要求,设置电力系统运行状态,如电压、功率等;(2)求解潮流方程:利用电力系统分析软件求解潮流方程,得到系统中各节点的电压、电流、功率等参数;(3)分析潮流计算结果:根据计算结果,分析电力系统的运行状态,如电压分布、潮流分布等。
3. 故障计算:(1)设置故障条件:根据实验要求,设置电力系统故障,如短路、断路等;(2)求解故障方程:利用电力系统分析软件求解故障方程,得到故障点附近的电压、电流、功率等参数;(3)分析故障计算结果:根据计算结果,分析电力系统故障的影响,如电压波动、潮流变化等。
五、实验结果与分析1. 潮流计算结果分析:(1)电压分布:根据潮流计算结果,分析系统中各节点的电压分布情况,判断电压是否满足运行要求;(2)潮流分布:根据潮流计算结果,分析系统中各线路的潮流分布情况,判断潮流是否合理。
2. 故障计算结果分析:(1)故障点电压:根据故障计算结果,分析故障点附近的电压变化情况,判断电压是否满足运行要求;(2)故障点电流:根据故障计算结果,分析故障点附近的电流变化情况,判断电流是否过大;(3)故障点功率:根据故障计算结果,分析故障点附近的功率变化情况,判断功率是否过大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单机无穷大系统稳态实验:
一、整理实验数据,说明单回路送电和双回路送电对电力系统稳定运行的影
响,并对实验结果进行理论分析:
实验数据如下:
由实验数据,我们得到如下变化规律:
(1)保证励磁不变的情况下,同一回路,随着有功输出的增加,回路上电流也在增加,这是因为输出功率P=UIcos ,机端电压不变所以电流随着功率的增加而增加;
(2)励磁不变情况下,同一回路,随着输出功率的增大,电压损耗在增大;这是由于电压降落△U=(PR+QX)/U,而横向分量较小,所以电压损耗也随着输出功率的增大而增大。
单回路供电和双回路供电对电力系统稳定性均有一定的影响,其中双回路要稳定一些,单回路稳定性较差。
二、根据不同运行状态的线路首、末端和中间开关站的实验数据、分析、比较运行状态不同时,运行参数变化的特点和变化范围。
由实验数据,我们可以得到如下结论:
(1)送出相同无功相同有功的情况下:单回路所需励磁电压比双回路多,线路电流大小相等,单回路的电压损耗比双回路多;(eg.P=1,Q=0.5时)
(2)送出相同无功的条件下,双回路比单回路具有更好的静态稳定性,双回路能够输送的有功最大值要多于单回路;
发生这些现象的原因是:双回路电抗比单回路小,所以所需的励磁电压小一些,电压损耗也要少一些,而线路电流由于系统电压不改变;此外,由于电抗越大,稳定性越差,所以单回路具有较好的稳定性。
三、思考题:
1、影响简单系统静态稳定性的因素是哪些?
答:由静稳系数S Eq=EV/X,所以影响电力系统静态稳定性的因素主要是:系统元件电抗,系统电压大小,发电机电势以及扰动的大小。
2、提高电力系统静态稳定有哪些措施?
答:提高静态稳定性的措施很多,但是根本性措施是缩短"电气距离"。
主要措施有:
(1)、减少系统各元件的电抗:减小发电机和变压器的电抗,减少线路电
抗(采用分裂导线);
(2)、提高运行电压水平;
(3)、改善电力系统的结构;
(4)、采用串联电容器补偿;
(5)、采用自动励磁调节装置;
(6)、采用直流输电。
3、何为电压损耗、电压降落?
答:电压损耗指的是输电线路首末两端电压的数值差;
电压降落指的是首末两端电压的相量差。
4、“两表法”测量三相功率的原理是什么?它有什么前提条件?
答:原理:在测A、B、C三相总功率时,可以用两只功率表接在AB及BC间,测得的值相加即可。
前提条件:在负荷平衡的三相系统中可以用两表法测三相功率----三相三线系统可以用两表法测量,但是三相四线系统只有在三相平衡时才可以采用两表法。
电力系统暂态稳定实验
一、.整理不同短路类型下获得实验数据,通过对比,对不同短路类型进行定性分析,详细说明不同短路类型和短路点对系统的稳定性的影响。
各种短路类型获得的实验数据如下:
表5-1 单相接地短路
两相相间短路
表5-2
表5-3 两相接地短路
通过对比,我们可以看出同样的短路故障切除时间在不同短路类型下对系统稳定性的影响不一样:
不对称短路时,根据正序等效定则,相当于在正常等值电路中的短路点接入了一个附加阻抗,改变系统阻抗,影响系统输出功率,使之与正常运行情况下的输出有差别,影响功角,进而影响系统的稳定性。
由于不同短路情况下的附加电抗不一样,所以影响也不一样。
单相接地时附加电抗为负序电抗和零序电抗之和,两相短路时附加电抗为负序电抗,两相接地短路时附加电抗附加电抗为负序电抗与零序电抗并联。
由等面积定则可以得到,保持暂态稳定的条件是最大减速面积大于加速面积,附加电抗越大,故障时的功率特性曲线离原动机输出越远,在相同切除时间时,加速面积较大,而
二、通过试验中观察到的现象,说明二中提高暂态稳定的措施对系统稳定性作用机理。
答:系统发生短路故障时,发电机输出的电磁功率骤然降低,而原动机的机械输出功率来不及变化,两者失去平衡,发电机转子将加速。
强行励磁可以提高发电机的电势,增加发电机的输出功率,即可使原动机输出与发电机输出功率平衡,可以有效地减小失步引起的不利影响。
且强行励磁的速度越快、强励倍数越大,效果越好。
电力系统中的短路故障大多是由网络放电造成的,是暂时性的,在切断线路经过一段电弧熄灭和空气去游离的时间轴,短路故障便完全消除了。
这时,如果再把线路重新投入系统,它便能继续正常工作。
所以采用自动重合闸装置,用微机保护装置切除故障线路后,经过延时一定时间将自动重合原线路,从而恢复全相供电,即可提高了故障切除后的功率特性曲线,即提高系统的暂态稳定性。
三、思考题:
1.不同短路状态下对系统阻抗产生影响的机理是什么?
不对称短路时,根据正序等效定则,相当于在正常等值电路中的短路点接入了一个附加阻抗,改变了系统阻抗:
(1)单相接地短路:以A相短路为例,由边界条件Ua=0、Ib=0、Ic=0,将它们用对称分量法分解,得到各序分量之间表示的边界条件,采用复合序网或结合各序等效电路分析,便可以得到其附加电抗X△=X2+X0;
(2)两相相间短路:以BC两相间短路为例,其边界条件为Ub=Uc、Ib+Ic=0、Ia=0,得到其附加电抗为X△=X2;
(3)两相接地短路:以BC两相接地短路为例,其边界条件为Ia=0、Ub=0、Uc=0,得到其附加电抗为X△=X2//X0。
2.提高电力系统暂态稳定的措施有哪些?
答:(1)快速切除故障;
(2)采用自动重合闸;
(3)发电机快速强励磁;
(4)发电机电气制动;
(5)变压器中性点经小电阻接地;
(6)快速关闭汽门;
(7)切发电机和切负荷;
(8)设置中间开关站;
(9)输电线路强行串联补偿。
3.对失步处理的方法(注意事项3中提到)的理论根据是什么?
答:对失步处理的方法如下:通过励磁调节器增磁按钮,使发电机的电压增大;如系统没处于短路状态,且线路有处于断开状态的,可并入该线路减小系统阻抗;通过调速器的减速按钮减小原动机的输入功率。
其理论依据在于:
(1)可以通过励磁调节器增磁按钮,使发电机的电压增大,在于:系统发生短路故障时,发电机输出的电磁功率骤然降低,而原动机的机械输
出功率来不及变化,两者失去平衡,发电机转子将加速。
而迅速增磁
提高发电机的电势,可以增加发电机的输出功率,即可使原动机输出
与发电机输出功率平衡,可以有效地减小失步引起的不利影响;(2)如系统没处于短路状态,且线路有处于断开状态的,可并入该线路减小系统阻抗,原因在于:减小系统阻抗,可以使原动机所带负荷减少,
即其转速相对降低,这样,在发生短路故障时,原动机和发电机的输
出功率不平衡程度也相对减轻一些;
(3)通过调速器的减速按钮减小原动机的输入功率也可以作为减小故障影响,因为这也相当于减少转轴上的不平衡功率。
4.自动重合闸装置对系统暂态稳定的影响是什么?
答:自动重合闸装置即是开关设备自动进行重新投入输电线路的操作,只要该装置在极限切除角之前的功角处自动合闸,即可使系统保持暂态稳定。
但是需注意一点,重合闸时间必须大于潜供电弧熄灭时间,一面是线路再次受到短路故障的冲击,可能会大大恶化系统的暂态稳定性甚至破坏整个系统的稳定。