高等数学求极限的14种方法

高等数学求极限的14种方法(总

4页)

--本页仅作为文档封面,使用时请直接删除即可--

--内页可以根据需求调整合适字体及大小--

高等数学求极限的14种方法

一、极限的定义

1.极限的保号性很重要:设

A x f x x =→)(lim 0

(1)若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (2)若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。

2. 极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。 要特别注意判定极限是否存在在:

(1)数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ”

(2)A x x f x A x f x =+∞

→=-∞

→⇔=∞

→lim lim lim )()(

(3) A x x x x A x f x x =→=→⇔

=→+

-

lim lim lim 0

)(

(4) 单调有界准则

(5)两边夹挤准 (夹逼定理/夹逼原理) (6) 柯西收敛准则(不需要掌握)。极限

)(lim 0

x f x x →存在的充分必要条件。是:

εδεδ<-∈>∃>∀|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当

二.解决极限的方法如下:

1.等价无穷小代换。只能在乘除..

时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法)

它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况:

(1)“00”“∞

”时候直接用

(2)“∞•0”“∞-∞”,应为无穷大和无穷小成倒数的关系,所以无穷大都写成了无穷小的倒

数形式了。通项之后,就能变成(i)中的形式了。即)

(1)()()()

(1)()()(x f x g x g x f x g x f x g x f ==或;

)

()(1)

(1)(1)()(x g x f x f x g x g x f -

=

-

(3)“00”“∞1”“0∞”对于幂指函数,方法主要是取指数还取对数的方法,即

e

x f x g x g x f )

(ln )()

()

(=,这样就能把幂上的函数移下来了,变成“∞•0”型未定式。

3.泰勒公式(含有x e 的时候,含有正余弦的加减的时候)

12)!

1(!!21+++++++=n x

n x

x n e n x x x e θ ; 3211253)!

32(cos )1()!12()1(!5!3sin ++++-++-+-+-=m m m m

x m x m x x x x x θ

cos=221242)!

22(cos )1()!2()1(!4!21+++-+-+-+-m m m m x m x m x x x θ ln (1+x )=x-1

1132)1)(1()

1()1(32++-++-+-+-+n n n

n

n x n x n x x x θ (1+x)u =1112

)1(!

2)1(1+--+++++-+

+n n u n u n n u x x C x C x u u ux θ 以上公式对题目简化有很好帮助

4.两多项式相除:设均不为零m n b a ,,

P (x )=011

1a x a x a x a n n n n ++++-- ,0111)(b x b x

b x b x Q m m m m ++++=-- (1)⎪⎪⎪⎩

⎪⎪⎪⎨⎧>∞<==∞

→)(,)(,0)(,)()(lim m n m n n m b a x Q x P x n n

(2)若0)(0

≠x Q ,则)()

()()(00lim

0x Q x P x Q x P x x =→ 5.无穷小与有界函数的处理办法。例题略。

面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了。

6.夹逼定理:主要是应用于数列极限,常应用放缩和扩大不等式的技巧。以下面几个题目为例:

(1)设0>>>c b a ,n n n n n c b a x ++=,求n n x lim ∞

解:由于a a a a a x a n n n n n ==<<∞

→∞

→)3(,,3lim lim 以及,由夹逼定理可知a x n n =∞

→lim

(2)求⎥⎦

⎤⎢⎣⎡+

+++

→222)2(1)1(11lim n n n

n

解:由n n

n n n n n

1

111)2(1)1(1102222

22=+++<++++

< ,以及01

0lim lim ==∞→∞→n

n n 可知,原式=0 (3)求⎪⎪⎭⎫

⎝⎛++++++∞

→n n n n n 2

221

211

1lim

解:由n

n n n

n n

n n

n n

n n n n

n

n

+=

++++

+<

+++++

+<

=++2

2

2

2

2

2

1111

211

11111

,

以及

11

111lim

lim

lim 2=+=+=∞

→∞

→∞

→n

n

n n n n n 得,原式=1

7.数列极限中等比等差数列公式应用(等比数列的公比q 绝对值要小于1)。例如:

求()12321lim -∞

→++++n n nx x x )1|(|

8.数列极限中各项的拆分相加(可以使用待定系数法来拆分化简数列)。例如:

⎪⎪⎭⎫ ⎝

⎛+++⨯+⨯∞→)1(1321211lim n n n =1)1(11)1(113121211lim lim =⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+-++-+-∞→∞→n n n n n 9.利用1+n x x x 与极限相同求极限。例如:

(1)已知n

n a a a 12,211+==+,且已知n n a lim ∞

→存在,求该极限值。

解:设n n a lim ∞

→=A ,(显然A 0>)则A

A 12+=,即0122=--A A ,解得结果并舍去负值得A=1+2

(2)利用..单调有界的性质.......。.利用这种方法时一定要先证明单调性和有界性。.....................例如 设n n n n x x x x x lim ,2,,22,2121∞

→-+=+==求

解:(i )显然221<

21<<+k k x x 。所以,{}n x 是单调递增数列,且有上界,收敛。设

A n =∞

→lim ,(显然)0>A 则

A A +=2,即022=--A A 。解方程并舍去负值得A=2.即2lim =∞

→n n x

10.两个重要极限的应用。

(1)1sin lim 0

=→x x x 常用语含三角函数的“0

0” 型未定式

(2)()e x x

x =+→1

1lim ,在“∞1”型未定式中常用

11.还有个非常方便的方法就是当趋近于无穷大时候不同函数趋近于无穷的速度是不一样的,n n 快于n !,n !快于指数型函数n b (b 为常数),指数函数快于幂函数,幂函数快于对数函数。当x 趋近无穷的时候,它们比值的极限就可一眼看出。

12.换元法。这是一种技巧,对一道题目而言,不一定就只需要换元,但是换元会夹杂其中。例如:求极限x

x x 2sin 2arccos lim

π

-→。解:设

t t x t x x t sin )2

cos(,00,2arccos -=+=→→-

π

且时,则。 原式=2

1

sin 222arccos 22arccos 2sin 2lim

lim

lim

-=-=

-

=

-

→→→t t x

x x

x x

x t x x π

π

13.利用定积分求数列极限。例如:求极限⎪

⎭⎫

⎝⎛++++++∞→n n n n n 12111lim 。由于n

i n i n +=+111,所以2ln 11111111211121lim lim ==⎪

⎪⎪⎪⎭⎫ ⎝

⎛+++=⎪⎭⎫ ⎝⎛++++++⎰∞→∞→x n n n n n n n n n n 14.利用导数的定义求“0

0”型未定式极限。一般都是x →0时候,分子上是“)()(a f x a f -+”的形

式,看见了这种形式要注意记得利用导数的定义。(当题目中告诉你m '

=)(a f 告诉函数在具体

某一点的导数值时,基本上就是暗示一定要用导数定义)

例:设

)

(,0)('

a f a f >存在,求()n

n a f n a f ⎥⎥⎥⎥⎦

⎢⎢⎢

⎢⎣⎡⎪⎭⎫ ⎝⎛+∞→1lim 解:原式=()n a f a f n a f a f n

a f a f n n

n a f a f n a f a f a f n a f )

()

()1

()

()1

()

()()()1(1)(11lim lim -+⨯

-+∞→∞→⎥

⎥⎦⎤⎢⎢⎢⎣⎡-++=⎥⎥⎥⎥⎦

⎤⎢⎢

⎢⎢

⎣⎡-⎪⎭⎫ ⎝⎛++

=

)

()(')(11)

()1

(lim a f a f a f n

a f n

a f n e

e

=-+∞

高数中求极限的16种方法

高数中求极限的16种方法 极限的保号性很重要,就是说在一定区间内,函数的正负与极限一致 一、极限分为一般极限和个数列极限(区别在于数列极限时发散的,是一般极限的一种) 二、解决极限的方法如下: 1.等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在) e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。(x趋近无穷的时候还原成无穷小) 2.LHopital 法则(大题目有时候会有暗示要你使用这个方法) (1)首先他的使用有严格的使用前提 ①必须是 X趋近而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点,数列极限的n当然是趋近于正无穷的,不可能是负无穷!)②必须是函数的导数要存在!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!)③必须是 0比0 无穷大比无穷大!当然还要注意分母不能为0 (2)LHopital 法则分为3种情况 ①0比0,无穷比无穷的时候直接用 ②0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以,无穷大都写成了无穷小的倒数形式了。通项之后,这样就能变成1中的形式了 ③0的0次方,1的无穷次方,无穷的0次方 对于(指数幂数)方程,方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0) 3.泰勒公式 (含有e的x次方的时候,尤其是含有正余弦的加减的时候要特别注意!) E的x展开 sina 展开 cos 展开 ln1+x展开,对题目简化有很好帮助 4.面对无穷大比上无穷大形式的解决办法,取大头原则——最大项除分子分母! 无穷小于有界函数的处理办法,面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数,可能只需要知道它的范围结果就出来了! 6.夹逼定理(主要对付的是数列极限!),这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。 7.等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1) 8.各项的拆分相加(来消掉中间的大多数)(对付的还是数列极限),可以使用待定系数法来拆分化简函数 9.求左右求极限的方式(对付数列极限),例如知道Xn与Xn+1的关系,已知Xn的极限存在的情况下, xn的极限与xn+1的极限时一样的,应为极限去掉有限项目极限值不变化 10.2 个重要极限的应用。这两个很重要!对第一个而言是X趋近0时候的sinx与x比值。第2个就如果x趋近无穷大无穷小都有对有对应的形式(第2个实际上是用于函数是1的无穷的形式)(当底数是1 的时候要特别注意可能是用地2 个重要极限) 11.当趋近于无穷大时候,不同函数趋近于无穷的速度是不一样的! x的x次方快于 x!快于指数函数快于幂数函数快于对数函数(画图也能看出速率的快慢) !!!!!! 12.换元法,是一种技巧,不会对模一道题目而言就只需要换元,但是换元会夹杂其中 13.假如要算的话,四则运算法则也算一种方法,当然也是夹杂其中的 14.转化为定积分。一般是从0到1的形式 15.单调有界的性质,对付递推数列时候使用证明单调性! 16直接使用求导数的定义来求极限 (一般都是x趋近于0时候,在分子上f(x加减麽个值)加减f(x)的形式,看见了有特别注意)(当题目中告诉你F(0)=0时候 f (0)导数=0的时候就是暗示你一定要用导数定义!)

高数中求极限的16种方法

千里之行,始于足下。 高数中求极限的16种方法 在高等数学中,求极限是一个格外重要的技巧和考点。为了解决各种极限 问题,数学家们总结出了很多方法和技巧。以下是高数中求极限的16种方法: 1.代换法:将极限中的变量进行代换,使其变成简洁计算的形式。 2.夹逼准则:当函数处于两个已知函数之间时,可以通过比较已知函数的 极限来确定未知函数的极限。 3.无穷小量比较法:比较两个函数的无穷小量的大小,以确定它们的极限。 4.利用函数性质:利用函数的对称性、奇偶性等性质来计算极限。 5.利用恒等变形:将极限式子进行恒等变形,以将其转化为简洁计算的形式。 6.利用泰勒开放:将函数开放成无穷级数的形式,以求出极限。 7.利用洛必达法则:对于某些不定型的极限,可以利用洛必达法则将其转 化为可计算的形式。 8.利用级数或累次求和:将极限式子转化为级数或累次求和的形式,以求 出极限。 9.利用积分计算:将极限式子进行积分计算,以求出极限。 10.利用微分方程:将极限问题转化为求解微分方程的问题,以求出极限。 第1页/共2页

锲而不舍,金石可镂。 11.利用积素等价:将极限式子进行积素等价,以求出极限。 12.利用无穷增减变异法:通过凑出一个等价变形,将极限问题转化为比较某些函数值的大小。 13.利用不等式:通过找到合适的不等式,对函数进行估量,以求得极限。 14.利用递推公式:对于递归定义的函数,可以通过递推公式求出极限。 15.利用导数性质:利用函数的导数性质,对极限进行计算。 16.利用对数和指数函数的性质:利用对数和指数函数的特性,求出极限。 除了上述方法外,还有很多其他的方法和技巧,可以依据具体问题来选择使用。这些方法和技巧的使用需要机敏把握,通过大量的练习和思考,可以在求解极限问题中得到娴熟应用。

16种求极限方法及一般题型解题思路分享

首先说下我的感觉,假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面:首先对极限的总结如下:极限的保号性很重要,就是说在一定区间内函数的正负与极限一致。极限分为一般极限,还有个数列极限,(区别在于数列极限是发散的,是一般极限的一种)。解决极限的方法如下:(我能列出来的全部列出来了!你还能有补充么?) 1、等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须证明拆分后极限依然存在,e的X次方-1或者(1+x)的a次方-1等价于Ax等等。全部熟记(x趋近无穷的时候还原成无穷小)。 2、洛必达法则(大题目有时候会有暗示要你使用这个方法)。首先他的使用有严格的使用前提!必须是X趋近而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的,不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用,无疑于找死!!)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候,LNX趋近于0)。 3、泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特变注意!)E的x展开sina,展开

(完整word版)求极限的13种方法

求极限的13种方法(简叙) 龘龖龍 极限概念与求极限的运算贯穿了高等数学课程的始终,极限思想亦是高等数学的核心与基础,因此,全面掌握求极限的方法与技巧是高等数学的基本要求。本篇较为全面地介绍了求数列极限与函数极限的各种方法,供同学参考。 一、利用恒等变形求极限 利用恒等变形求极限是最基础的一种方法,但恒等变形灵活多变,令人难以琢磨。常用的的恒等变形有:分式的分解、分子或分母有理化、三角函数的恒等变形、某些求和公式与求积公式的利用等。 例1、求极限 )1...()1)(1(22 lim n a a a n +++∞ → ,其中1

例2、求极限1 1lim 1 --→n m x x x ,其中m,n 为正整数。 分析 这是含根式的(0 0)型未定式,应先将其利用变量代换进行化简,再进一步计算极限。 解 令11,1 →→=t x x t mn 时,则当 原式=m n t t t t t t t t t t t t m m n n m m n n t m n t =++++++=+++-+++-=----------→→1...1...)1...)(1()1...)(1(lim 11lim 2121212111 三、利用对数转换求极限 利用对数转换求极限主要是通过公式,ln v u v e u ?=进行恒等变形,特别的情形,在(∞1)型未定式时可直接运用v u v e u ?-=)1( 例3、求极限o x →lim x x 2csc ) (cos 解 原式=o x →lim 2 1sin sin 21 lim csc )1(cos 2202 - --==→e e e x x x x x 四、利用夹逼准则求极限 利用夹逼准则求极限主要应用于表达式易于放缩的情形。 例4、求极限∞ →n lim n n n ! 分析 当我们无法或不易把无穷多个因子的积变为有限时,可考虑使用夹逼准则。 解 因为n n n n n n n n n o n 1121!≤?-??=≤ , 且不等式两端当趋于无穷时都以0为极限,所以∞ →n lim n n n ! =0 五、利用单调有界准则求极限 利用单调有界准则求极限主要应用于给定初始项与递推公式

2020考研高数求极限的16个方法及常考题型

2020考研高数求极限的16个方法及常考题型 2017考研高数求极限的16个方法及常考题型 极限可以说是高数的重点,是每年都必考的一个知识点,复习高数的时候,求极限大家一定要多理解多做题,下面总结了16类求极限的方法及一些常考察的题型,把它们掌握了,相信对于求极限的问题已经基本可以解决了。 解决极限的方法如下: 1、等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须证明拆分后极限依然存在,e的X次方-1或者(1+x)的a次方-1等价于Ax等等。全部熟记(x趋近无穷的时候还原成无穷小)。 2、洛必达法则(大题目有时候会有暗示要你使用这个方法)。首先他的使用有严格的使用前提!必须是X趋近而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的,不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用,无疑于找死!!)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx 两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候,LNX趋近于0)。

高等数学求极限的各种方法

求极限的各种方法 1.约去零因子求极限 例1:求极限1 1 lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。 【解】6)1)(1(lim 1 ) 1)(1)(1(lim 2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限 例2:求极限1 3lim 32 3+-∞→x x x x 【说明】 ∞ ∞ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3 11323= +-=+-∞→∞→x x x x x x x 【注】(1) 一般分子分母同除x 的最高次方; (2) ???? ??? =<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1ΛΛ 3.分子(母)有理化求极限 例3:求极限)13(lim 22+-++∞ →x x x 【说明】分子或分母有理化求极限,就是通过有理化化去无理式。 【解】1 3) 13)(13(lim )13(lim 2 2 22222 2 +++++++-+=+-++∞ →+∞ →x x x x x x x x x x 01 32lim 2 2 =+++=+∞ →x x x 例4:求极限3 sin 1tan 1lim x x x x +-+→

【解】x x x x x x x x x x sin 1tan 1sin tan lim sin 1tan 1lim 3030 +-+-=+-+→→ 41 sin tan lim 21sin tan lim sin 1tan 11 lim 30300 =-=-+++=→→→x x x x x x x x x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........就是解题的关键 4.应用两个重要极限求极限 两个重要极限就是1sin lim 0=→x x x 与e x n x x x n n x x =+=+=+→∞→∞→1 0)1(lim )11(lim )11(lim ,第一个重要极 限过于简单且可通过等价无穷小来实现。主要考第二个重要极限。 例5:求极限x x x x ?? ? ??-++∞→11lim 【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑X 1 + ,最后凑指数部分。 【解】22 21212112111lim 121lim 11lim e x x x x x x x x x x x =???? ????????? ??-+???? ??+=??? ??-+=??? ??-+--+∞→+∞→+∞→ 例6:(1)x x x ??? ??-+∞→211lim ;(2)已知82lim =??? ??-++∞ →x x a x a x ,求a 。 5.用等价无穷小量代换求极限 【说明】 (1)常见等价无穷小有: 当0→x 时,~)1ln(~arctan ~arcsin ~tan ~sin ~x x x x x x +1e x -, ()abx ax x x b ~11,2 1~ cos 12-+-; (2) 等价无穷小量代换,只能代换极限式中的因式.. ; (3)此方法在各种求极限的方法中应作为首选..... 。 例7:求极限0ln(1) lim 1cos x x x x →+=- 【解】 002 ln(1)lim lim 211cos 2 x x x x x x x x →→+?==-、 例8:求极限x x x x 30tan sin lim -→

高等数学求极限的14种方法

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (1)若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (2)若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2. 极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和0x x →的极限。 要特别注意判定极限是否存在在: (1)数列{} 的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (2)A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (3) A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (4) 单调有界准则 (5)两边夹挤准 (夹逼定理/夹逼原理) (6) 柯西收敛准则(不需要掌握)。极限 )(lim 0 x f x x →存在的充分必要条件。是: ε δεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f (x )、g (x ),没告诉是否可导,不可直接用洛必达法则。另外,必须是“0比0”或“无穷大比无穷大”,并且注意导数分母不能为0。洛必达法则分为3种情况:

求函数极限的方法总结

求函数极限的方法总结 求函数极限的方法总结: 利用函数连续性:直接将趋向值带入函数自变量中,此时要要求分母不能为0;通过已知极限:两个重要极限需要牢记;采用洛必达法则求极限:洛必达法则是分式求极限的一种很好的方法,当遇到分式0/0或者∞/∞时可以采用洛必达,其他形式也可以通过变换成此形式。 函数极限是高等数学最基本的概念之一,导数等概念都是在函数极限的定义上完成的。函数极限性质的合理运用。常用的函数极限的性质有函数极限的唯一性、局部有界性、保序性以及函数极限的运算法则和复合函数的极限等等。 1、等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须证明拆分后极限依然存在,e的X次方-1或者(1+x)的a次方-1等价于Ax等等。全部熟记(x趋近无穷的时候还原成无穷小)。 2、洛必达法则(大题目有时候会有暗示要你使用这个方法)。首先他的使用有严格的使用前提!必须是X趋近而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的,不可能是负无穷!)必须是函数的导数要存在!(假

如告诉你g(x),没告诉你是否可导,直接用,无疑于找死!)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候,LNX趋近于0)。 3、泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特变注意!)E的x展开sina,展开cosa,展开ln1+x,对题目简化有很好帮助。 4、面对无穷大比上无穷大形式的解决办法,取大头原则最大项除分子分母!看上去复杂,处理很简单! 5、无穷小于有界函数的处理办法,面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的.函数,可能只需要知道它的范围结果就出来了! 6、夹逼定理(主要对付的是数列极限!)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。 7、等比等差数列公式应用(对付数列极限)(q绝对值符号要小于1)。

考研数学:求极限的16种方法

考研数学:求极限的16种方法1500字 求极限是数学中一个重要的概念和技巧,经常会在高等数学、微积分、函数分析等课程中出现。在考研数学中,求极限也是一个比较常见的题型,有时候会要求借助不同的方法来求解极限。以下是16种常见的求极限的方法: 方法1:代入法 代入法是求极限中最基本的方法之一,特别适用于极限问题中有指定点的情况。代入的点可以是有限点或无限点,通过将极限值代入原函数中,来求得极限。 方法2:夹逼定理 夹逼定理也是一种常用的方法,适用于需要用两个已知函数夹住待求函数的情况。通过取两个已知函数逐渐逼近待求函数,来求得极限。 方法3:集中取值法 集中取值法是一种常用的方法,适用于需要对待求函数的取值进行讨论的情况。通过将待求函数的取值限制在一个区间内,来求得极限。 方法4:变量代换法 变量代换法是一种常用的方法,适用于需要通过变换变量来求得极限的情况。通过进行恰当的变换变量,将原极限转化为另一个更容易求解的极限。 方法5:公共因子法 公共因子法是一种常用的方法,适用于需要将待求函数的表达式进行分解的情况。通过进行恰当的分解,将待求函数表达式中的公共因子提取出来,来求得极限。 方法6:三角函数极限法

三角函数极限法是一种常用的方法,适用于需要进行三角函数的极限转化的情况。通过使用三角函数的性质和公式,将原极限转化为更容易求解的三角函数极限。 方法7:幂函数极限法 幂函数极限法是一种常用的方法,适用于需要进行幂函数的极限转化的情况。通过使用幂函数的性质和公式,将原极限转化为更容易求解的幂函数极限。 方法8:自然对数极限法 自然对数极限法是一种常用的方法,适用于需要进行自然对数的极限转化的情况。通过使用自然对数的性质和公式,将原极限转化为更容易求解的自然对数极限。 方法9:常数e极限法 常数e极限法是一种常用的方法,适用于需要进行常数e的极限转化的情况。通过使用常数e的性质和公式,将原极限转化为更容易求解的常数e极限。 方法10:斜率法 斜率法是一种常用的方法,适用于需要进行斜率的极限转化的情况。通过使用斜率的定义和性质,将原极限转化为更容易求解的斜率极限。 方法11:分部积分法 分部积分法是一种常用的方法,适用于需要进行分部积分的极限转化的情况。通过进行恰当的分部积分,将原极限转化为更容易求解的分部积分极限。 方法12:洛必达法则 洛必达法则是一种常用的方法,适用于需要使用洛必达法则来求解极限的情况。通过对函数的导数进行比较,来判断函数的极限是否存在和求解极限的值。 方法13:泰勒展开法

高数中求极限的16种方法

高数中求极限的16种方法——好东西 假如高等数学是棵树木得话,那么极限就是他的根,函数就是他的皮。树没有跟,活不下去,没有皮,只能枯萎,可见这一章的重要性。 为什么第一章如此重要?各个章节本质上都是极限,是以函数的形式表现出来的,所以也具有函数的性质。函数的性质表现在各个方面 首先对极限的总结如下: 极限的保号性很重要就是说在一定区间内函数的正负与极限一致 1 极限分为一般极限还有个数列极限,(区别在于数列极限时发散的,是一般极限的一种) 2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???) 1 等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用但是前提是必须证明拆分后极限依然存在) e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。全部熟记(x趋近无穷的时候还原成无穷小) 2 LHopital 法则(大题目有时候会有暗示要你使用这个方法) 首先他的使用有严格的使用前提!!!!!! 必须是X趋近而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x 趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!) 必须是函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导,直接用无疑于找死!!必须是 0比0 ,无穷大比无穷大!!!!!!!!!

当然还要注意分母不能为0 LHopital法则分为3中情况 1, 0比0 ,无穷比无穷时候直接用 2, 0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。通项之后这样就能变成1中的形式了 3, 0的0次方1的无穷次方无穷的0次方对于(指数幂数)方程 方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近0 ) 3, 泰勒公式(含有e的x次方的时候,尤其是含有正余旋的加减的时候要特变注意!!!)E的x展开sina 展开 cos 展开ln1+x展开 对题目简化有很好帮助 4面对无穷大比上无穷大形式的解决办法 取大头原则最大项除分子分母!!!!!!!!!!! 看上去复杂处理很简单!!!!!!!!!! 5,无穷小于有界函数的处理办法面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数可能只需要知道它的范围结果就出来了!!! 6夹逼定理(主要对付的是数列极限!) 这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。 7,等比等差数列公式应用(对付数列极限) (q绝对值符号要小于1)

求极限的13种方法

求极限的13种方法(简叙) 龘龖龍 极限概念与求极限的运算贯穿了高等数学课程的始终,极限思想亦是高等数学的核心与基础,因此,全面掌握求极限的方法与技巧是高等数学的基本要求。本篇较为全面地介绍了求数列极限与函数极限的各种方法,供同学参考。 一、利用恒等变形求极限 利用恒等变形求极限是最基础的一种方法,但恒等变形灵活多变,令人难以琢磨。常用的的恒等变形有:分式的分解、分子或分母有理化、三角函数的恒等变形、某些求和公式与求积公式的利用等。 例1、求极限 )1...()1)(1(22 lim n a a a n +++∞ → ,其中1

例2、求极限1 1lim 1 --→n m x x x ,其中m,n 为正整数。 分析 这是含根式的(0 0)型未定式,应先将其利用变量代换进行化简,再进一步计算极限。 解 令11,1 →→=t x x t mn 时,则当 原式=m n t t t t t t t t t t t t m m n n m m n n t m n t =++++++=+++-+++-=----------→→1...1...)1...)(1()1...)(1(lim 11lim 2121212111 三、利用对数转换求极限 利用对数转换求极限主要是通过公式,ln v u v e u ⋅=进行恒等变形,特别的情形,在(∞1)型未定式时可直接运用v u v e u ⋅-=)1( 例3、求极限o x →lim x x 2csc ) (cos 解 原式=o x →lim 2 1sin sin 21 lim csc )1(cos 2202 - --==→e e e x x x x x 四、利用夹逼准则求极限 利用夹逼准则求极限主要应用于表达式易于放缩的情形。 例4、求极限∞ →n lim n n n ! 分析 当我们无法或不易把无穷多个因子的积变为有限时,可考虑使用夹逼准则。 解 因为n n n n n n n n n o n 1121!≤⋅-⋅⋅=≤ , 且不等式两端当趋于无穷时都以0为极限,所以∞ →n lim n n n ! =0 五、利用单调有界准则求极限 利用单调有界准则求极限主要应用于给定初始项与递推公式

(完整word版)高等数学求极限的常用方法(附例题和详解)

高等数学求极限的 14 种方法 一、极限的定义 1. 极限的保号性很重要:设 lim f (x) A , x x 0 ( i )若 A 0 ,则有 0 ,使适当 0 | x x 0 | 时, f (x) 0 ; ( ii )如有 0, 使适当 0 | x x 0 | 时, f (x) 0,则A 0 。 2. 极限分为函数极限、数列极限,此中函数极限又分为限能否存在在: x 时函数的极限和 x x 0 的极限。要特别注意判断极 ( i )数列 x n 收敛于 a 的充要条件 是它的全部子数列均收敛于 a 。常用的是其推论,即“一个数列收敛于 a 的 充要条件是其奇子列和偶子列都收敛于 a ” ( ii ) lim f (x) A lim f ( x) lim A x x x (iii) lim f ( x) A lim lim A x x x x 0 x x 0 (iv) 单一有界准则 ( v )两边夹挤准则(夹逼定理 / 夹逼原理) ( vi ) 柯 西 收 敛 准 则 ( 不 需 要 掌 握 ) 。 极 限 lim f ( x) 存 在 的 充 分 必 要 条 件 是 : x x 0 0,0, 使适当 x 1、 x 2 U o ( x 0 )时,恒有 | f ( x 1 ) f ( x 2 ) | 二.解决极限的方法以下: 1. 等价无量小代换。只好在乘除 时候使用。例题略。 .. 2. 洛必达( L ’ho spital )法例(大题目有时会有示意要你使用这个方法) 它的使用有严格的使用前提。第一一定是 X 趋近,而不是 N 趋近,因此面对数列极限时候先要转变为求 x 趋 近状况下的极限,数列极限的 n 自然是趋近于正无量的,不行能是负无量。其次 , 一定是函数的导数要存在,假 如告诉 f (x )、g (x ), 没告诉能否可导, 不行直接用洛必达法例。 此外,一定是 “0 比 0”或“无量大比无量大” , 而且注意导数分母不可以 为 0。洛必达法例分为 3 种状况: (i )“ 0 ”“ ”时候直接用 (ii) “0? ”“ ”,应为无量大和无量小成倒数的关系,因此无量多数写成了无量小的倒数形式了。通 项以后,就能变为 (i) 中的形式了。即 f ( x) g( x) ; 1 1 g (x) f ( x) f (x) g ( x) 或 f ( x) g (x) 1 1 f ( x) g( x) 1 g ( x) f ( x) f (x) g(x ) g ( x) ln f ( x) e

高等数学---求极限的各种方法

求极限的各种方法 1.约去零因子求极限 例1:求极限1 1 lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。 【解】6)1)(1(lim 1 ) 1)(1)(1(lim 2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限 例2:求极限1 3lim 32 3+-∞→x x x x 【说明】 ∞ ∞ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3 11323= +-=+-∞→∞→x x x x x x x 【注】(1) 一般分子分母同除x 的最高次方; (2) ⎪⎪⎩⎪ ⎪⎨⎧ =<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01 101 1 3.分子(母)有理化求极限 例3:求极限)13(lim 22+-++∞ →x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式. 【解】1 3) 13)(13(lim )13(lim 2 2 22222 2 +++++++-+=+-++∞ →+∞ →x x x x x x x x x x 01 32lim 2 2 =+++=+∞ →x x x

例4:求极限3 sin 1tan 1lim x x x x +-+→ 【解】x x x x x x x x x x sin 1tan 1sin tan lim sin 1tan 1lim 3030 +-+-=+-+→→ 41 sin tan lim 21sin tan lim sin 1tan 11 lim 30300 =-=-+++=→→→x x x x x x x x x x x 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子...........是解题的关键 4.应用两个重要极限求极限 两个重要极限是1sin lim 0=→x x x 和e x n x x x n n x x =+=+=+→∞→∞→1 0)1(lim )1 1(lim )11(lim ,第一个重要极限过于简单且可通过等价无穷小来实现。主要考第二个重要极限。 例5:求极限x x x x ⎪⎭ ⎫ ⎝⎛-++∞→11lim 【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑X 1 + ,最后凑指数部分. 【解】22 21212112111lim 121lim 11lim e x x x x x x x x x x x =⎥⎥⎥⎦ ⎤⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛-+=⎪⎭⎫ ⎝⎛-+--+∞→+∞→+∞→ 例6:(1)x x x ⎪⎭⎫ ⎝⎛-+∞→211lim ;(2)已知82lim =⎪⎭ ⎫ ⎝⎛-++∞ →x x a x a x ,求a 。 5.用等价无穷小量代换求极限 【说明】 (1)常见等价无穷小有: 当0→x 时,~)1ln(~arctan ~arcsin ~tan ~sin ~x x x x x x +1e x -, ()abx ax x x b ~11,2 1~ cos 12-+-; (2) 等价无穷小量代换,只能代换极限式中的因式.. ;

求极限的几种方法

┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊ 求极限的几种方法 摘要:极限一直是数学分析的一个基础内容,而对极限的求法可谓是多种多样,本文通过归纳和总结,罗列出一些常用的求法,主要归纳了数学分析中求极限的十四种方法:利用两个准则求极限、利用极限的四则运算性质求极限、利用导数的定义求极限、利用两个重要极限公式求极限、利用级数收敛的必要条件求极限、利用单侧极限求极限、利用函数的连续性求极限、利用无穷小量的性质求极限、利用等价无穷小量代换求极限、利用中值定理求极限、利用洛必达法则求极限、利用定积分求和式的极限、利用泰勒展开式求极限、利用换元法求极限. 关键词:夹逼准则;单调有界准则;函数的连续性;无穷小量的性质;洛必达法则;微分中值定理;定积分;泰勒展开式 一、引言: 极限是数学分析中最基本的概念之一,用以描述变量在一定的变化过程中的终极状态.早在中国古代,极限的朴素思想和应用就已在文献中有记载.例如,3世纪中国数学家刘徽的割圆术就是用圆内接正多边形周长的极限是圆周长这一思想来近似地计算圆周率 的.随着微积分学的诞生,极限作为数学中的一个概念也就明确提出.但最初提出的这一概念是含糊不清的,因此在数学界引起不少争论甚至怀疑.直到19世纪,由柯西、魏尔斯特拉斯等人的工作,才将其置于严密的理论基础之上,从而得到举世一致的公认. 极限的思想方法贯穿于数学分析课程的始终,数学分析中的基本概念都可以用极限来描述.在几乎所有的数学分析著作中,都是先介绍函数理论和极限的思想方法, 然后利用极限的思想方法给出连续函数、导数、定积分、级数的敛散性、多元函数的偏导数、广义积分的敛散性、重积分和曲线积分与曲面积分的概念.极限的思想方法是数学分析乃至全部高等数学必不可少的一种重要方法.数学分析之所以能解决许多初等数学无法解决的问题( 例如求瞬时速度、曲线弧长、曲边形面积、曲面体体积等问题) , 正是由于它采用了极限的思想方法.极限是研究数学分析的重要工具,学好极限要从以下两个方面着手,1:考察所给函数是否存在极限.2:若函数存在极限,则考虑如何计算此极限.本文主要是对第二个问题即在极限存在的条件下,如何去求极限进行综述.

高等数学常用极限求法

求函数极限的方法和技巧 摘要: 本文就关于求函数极限的方法和技巧作了一个比较全面的概括、综合。 关键词:函数极限 引言 在数学分析与微积分学中,极限的概念占有主要的地位并以各种形式出现而贯穿全部内容,因此掌握好极限的求解方法是学习数学分析和微积分的关键一环。本文就关于求函数极限的方法和技巧作一个比较全面的概括、综合,力图在方法的正确灵活运用方面,对读者有所助益。 主要内容 一、求函数极限的方法 1、运用极限的定义 例: 用极限定义证明: 12 23lim 22=-+-→x x x x 证: 由2 4 4122322-+-=--+-x x x x x x ()2 2 22 -=--= x x x 0>∀ε 取εδ= 则当δ<-<20x 时,就有 ε<--+-12 2 32x x x 由函数极限δε-定义有:

12 23lim 22=-+-→x x x x 2、利用极限的四则运算性质 若 A x f x x =→)(lim 0 B x g x x =→)(lim 0 (I)[]=±→)()(lim 0 x g x f x x )(lim 0 x f x x →±B A x g x x ±=→)(lim 0 (II)[]B A x g x f x g x f x x x x x x ⋅=⋅=⋅→→→)(lim )(lim )()(lim 0 (III)若 B ≠0 则: B A x g x f x g x f x x x x x x ==→→→)(lim ) (lim )()(lim 0 00 (IV )cA x f c x f c x x x x =⋅=⋅→→)(lim )(lim 0 (c 为常数) 上述性质对于时也同样成立-∞→+∞→∞→x x x ,, 例:求 4 53lim 22+++→x x x x 解: 4 53lim 22+++→x x x x = 25 4252322=++⋅+ 3、约去零因式(此法适用于型时0 ,0x x →) 例: 求12 16720 16lim 23232+++----→x x x x x x x 解:原式=() () ) 12102(65) 2062(103lim 2 23223 2 +++++--+---→x x x x x x x x x x x =) 65)(2() 103)(2(lim 222+++--+-→x x x x x x x

相关文档
最新文档