高二数学 概率练习题
高二数学 条件概率练习题 试题

高二数学条件概率练习题班级某某1、袋中共有5个球,其中3个新球,2个旧球,每次取1个,无放回地取2次,则第二次取到新球的概率是( ). A.53 B.43 C.21 D.103 2、设A 、B 是两个随机事件,且,0)(,1)(0><<B P A P )|()|(A B P A B P =,则必有( ). A.)|()|(B A P B A P = B.)|()|(B A P B A P ≠C.)()()(B P A P AB P =D.)()()(B P A P AB P ≠3、已知p(AB)=103, P(A)=53, 则P(B|A)=( ) A.509 B.21 C.109 D.41 4、已知P(B|A) =21, P(A)=53, 则p(AB)=( ) A.65 B.109 C. 103 D.101 5、下列正确的是( )A.)|()|(A B P B A P =B.)()|(B P A B A P ≠C.)|()())A B P B P AB P =D.)()()|(B n AB n B A P = 6、在10个球中有6个红球和4个白球(各不相同),不放回地依次摸出2个球,在第一次摸出红球的条件下,第二次也摸到红球的概率为( )A.53B.52C.101D.95 7、把一枚硬币任意掷两次,事件A={第一次出现正面},事件B={第二次出现正面},则P(BA)=( )A.41B.21C.61D.81 8、当掷五枚硬币时,已知至少出现两个正面向上,则正好出现3个正面向上的概率为( ) A.135B.136C.261 D.41 9、设有10件产品,其中有4件次品,依次从中不放回地抽取一件产品,直到将次品取完为止.则抽取次数为7的概率为.10、甲、乙两班共有70名同学,其中女同学40名.设甲班有30名同学,而女生15名,问在碰到甲班同学时,正好碰到一名女同学的概率是。
11、从1—100个整数中,任取一数,已知取出的—数是不大于50的数,求它是2或3的倍数的概率是.12、袋中装有2n —1个白球,2n 个黑球,一次取出n 个球,发现都是同一种颜色的,问这种颜色是黑色的概率是。
高二数学概率单元练习.doc

高二概率单元练习(一)一、精心选一选1.以下说法正确的是( )A.在同一年出生的400人中至少有两人的生日相同B.一个游戏的中奖率是1%,买100张奖券,一定会中奖C.一副扑克牌中,随意抽取一张是红桃K ,这是必然事件D.一个袋中装有3个红球、5个白球,任意摸出一个球是红球的概率是0.62.有一对酷爱运动的年轻夫妇给他们12个月大的婴儿拼排3块分别写有””08”和”北京”的字块,如果婴儿能够排成”北京”或者”北京”,则他们就给婴儿奖励.假设婴儿能将字块横着正排,那么这个婴儿能得到奖励的概率是 ( )A .16B .14 C.13 D.123.两道单选题都含有A 、B 、C 、D 四个选择支,瞎猜这两道题恰好全部猜对的概率有( ) A .14 B .12 C .18 D .116 4.下图的转盘被划分成六个相同大小的扇形,并分别标上1,2,3,45,6这六个数字,指针停在每个扇形的可能性相等。
四位同学各自发表了下述见解: 甲:如果指针前三次都停在了3号扇形,下次就一定不会停在3号扇形; 乙:只要指针连续转六次,一定会有一次停在6号扇形;丙:指针停在奇数号扇形的概率与停在偶数号扇形的概率相等;丁:运气好的时候,只要在转动前默默想好让指针停在6号扇形,指针停在6号扇形的可能性就会加大。
其中,你认为正确的见解有( )A .1个B .2个C .3个D .4个5.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖。
参加这个游戏的观众有三次翻牌的机会。
某观众前两次翻牌均得若干奖金,如果翻过的牌不能再翻,那么这位观众第三次翻牌获奖的概率是A .41B .61C .51D .203 6.一个均匀的立方体六个面上分别标有数1,2,3,4,5,6.右图是这个立方体表面的展开图.抛掷这个立方体,则朝上一面上的数恰好等于朝下一面上的数的21的概率是( ) A 、61 B 、31 C 、21 D 、32 7.函数2()2,[5,5]f x x x x =--∈-,那么任意0[5,5]x ∈-使0()0f x ≤的概率为 ( )A .0.1 B.23C .0.3D .0.4二、细心填一填8.一只不透明的布袋中有三种小球(除颜色以外没有任何区别),分别是2个红球,3个白球和5个黑球,每次只摸出一只小球,观察后均放回搅匀.在连续9次摸出的都是黑球的情况下,第10次摸出红球的概率是 。
高二数学概率练习题

高二年级数学试卷(理)一.填空题(本题共14小题,每题5分,共70分.把答案填写在答题纸相应位置上.........) 1.某班委会由4名男生与3名女生组成,现从中选出2人担任班长,其中至少有1名女生当选的概率是 ▲ .2.某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为 ▲ .3.在4次独立试验中,事件A 出现的概率相同,若事件A 至少发生1次的概率是8165,则事件A 在一次试验中出现的概率是 ▲ .4.若血色素化验的准确率是p ,则在10次化验中,最多一次不准确的概率是 ▲ .5.若26)1(1ax x -+)(的展开式中含3x 项的系数是20,则a 的值为 ▲ .6.若5)1(-ax 的展开式中3x 的系数是80,则实数a 的值 ▲ .7.n)(123+的展开式中有且仅有5个有理项,则最小自然数n 等于 ▲ . 8.设随机变量ξ的分布列为(),1,2,3,2i P i i aξ===则(2)P ξ== ▲ .9.一盒中有9个正品和3个废品,每次取一个产品,取出后不再放回.在取得正品前已取出的废品数ξ的期望)(ξE = ▲ .10.设离散型随机变量ξ可能取的值为1,2,3,4.()P k ak b ξ==+(=k 1,2,3,4).又ξ的数学期望3E ξ=,则a b += ▲ .11.从1,2,3,4,5这五个数中任取两个数,这两个数之积的数学期望为 ▲ . 12.线性回归方程a bx y +=过定点 ▲ .13.设随机变量ξ的概率密度函数,01()2,120,x x f x x x ≤<=-≤≤⎧⎪⎨⎪⎩其他,=≤)23(ξP ▲ .14.已知8支球队中有3支弱队,以抽签方式将这8支球队分为A 、B 两组,每组4支. A 、B 两组中有一组恰有两支弱队的概率 ▲ .二.解答题:(本大题共6小题,共90分. 解答应写出文字说明、证明过程或演算步骤)15(本小题满分14分)已知n y x )(32+展开式中,第二项、第三项、第四项的二项式系数成等差数列,求: ①展开式中的有理项? ②展开式中系数最大的项?16.(本小题满分14分)NBA 总决赛采用7场4胜制,即若某队先取胜4场则比赛结束.由于NBA 有特殊的政策和规则能进入决赛的球队实力都较强,因此可以认为,两个队在每一场比赛中取胜的概率相等.根据不完全统计,主办一场决赛,组织者有望通过出售电视转播权、门票及零售商品、停车费、广告费等收入获取收益2000万美元. (Ⅰ).求所需比赛场数的分布列;(Ⅱ)求组织者收益的均值.17.(本小题满分15分)某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为1p ,寿命为2年以上的概率为2p ,从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换.(1)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率; (2)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率; (3)当8.01=p ,3.02=p 时,求在第二次灯泡更换工作中,至少需要更换4只灯泡的概率(结果保留两个有效数字).18.(本小题满分15分)甲、乙两名射击运动员,甲射击一次命中10环的概率为0.5,乙射击一次命中10环的概率为p ,若他们独立的射击两次,设乙命中10环的次数为X ,则34)(=X E ,Y 为甲与乙命中10环的差的绝对值. 求p 的值及Y 的分布列及数学期望.19.(本小题满分16分)在对人们的休闲方式的一次调查中,共调查了124人,其中女性70人,男性54人.女性中有43人主要的休闲方式是看电视,另外27人主要的休闲方式是运动;男性中有21人主要的休闲方式是看电视,另外33人主要的休闲方式是运动. (1)根据以上数据建立一个2×2的列联表;(2)判断性别与休闲方式是否有关系.20.(本题满分16分)10个实习小组在显微镜下实测一块矩形蕊片,测得其长为29μm,30μm,31μm 的小组分别有3个,5个,2个,测得其宽为19μm,20μm,21μm 的小组分别有3个,4个,3个,设测量中矩形蕊片的长与宽分别为随机变量ζ和η,周长为μ.(1)分别在上表中,填写随机变量ζ和η的分布列; (2)求周长μ的分布列,并列表表示; (3)求周长μ的期望值.已知8支球队中有3支弱队,以抽签方式将这8支球队分为A 、B 两组,每组4支.求:(Ⅰ)A 、B 两组中有一组恰有两支弱队的概率;.76711=-5.设随机变量ξ的分布列为(),1,2,3,2iP i i a ξ===则(2)P ξ==137.某校高三年级举行一次演讲赛共有10位同学参赛,其中一班有3位,二班有2位,其它班有5位,若采用抽签的方式确定他们的演讲顺序,则一班有3位同学恰好被排在一起(指演讲序号相连),而二班的2位同学没有被排在一起的概率为120n)(123+的展开式中有且仅有5个有理项,则最小自然数n 等于 (.12 )13.若血色素化验的准确率是p ,则在10次化验中,最多一次不准的概率是 10p 9-9p 10 .14.若26)1(1ax x -+)(的展开式中含3x 项的系数是20,则a 的值为 0或5.15.一盒中有9个正品和3个废品,每次取一个产品,取出后不再放回.在取得正品前已取出的废品数的期E ξ= 0.3 .17.(本小题满分12分)已知(32y x +)n 展开式中,第二项、第三项、第四项的二项式系数成等差数列,求: ①展开式中的有理项? ②展开式中系数最大的项?依题23n 1n 2n C C C +=得n=7.①设T r+1=r7C 327r r y x-·2r =2r3214r r r y x+-7C 为有理项,则r 是3的倍数的奇数,又0≤r ≤7,∴r=3,∴有理项为T 4=2337C x 2y=280x 2y.②设T r+1=2rr 7C 327r r y x-是系数最大的项,则31631322221111≤≤⎪⎩⎪⎨⎧≥≥++--r r r r r r r r r 解得7777C C C C ,又r ∈N ,∴r=5, 故系数最大的项是T 6=67235xy .19. (本小题满分12分)某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同.假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p 1,寿命为2年以上的概率为p 2,从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换. (1)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率;(2)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率; (3)当p 1=0.8,p 2=0.3时,求在第二次灯泡更换工作中,至少需要更换4只灯泡的概率(结果保留两个有效数字).解:(1)在第一次更换灯泡工作中,不需要更换灯泡的概率为51P ,需要更换2只灯泡的概率为3125P C (1-P 1)2;(2)对该盏灯来说,在第1、2次都更换了灯泡的概率为(1-P 1)2,在第一次未更换灯泡灯 泡而在第二次需要更换灯泡的概率为P 1(1-P 2), 故所求的概率为P=(1-P 1)2+P 1(1-P 2).(3)当P 1=0.8,P 2=0.3时,由(2)知第二次灯泡更换工作中,某盏灯更换的概率P=(1-P 1)2+P 1(1-P 2)=0.6,故至少换4只灯泡的概率为P 3=P 5+45C P 4(1-P),∴P 3=0.65+5×0.64×0.4≈0.3422. (本小题满分14分)10个实习小组在显微镜下实测一块矩形蕊片,测得其长为29μm,30μm,31μm 的小组分别有3个,5个,2个,测得其宽为19μm,20μm,21μm 的小组分别有3个,4个,3个,设测量中矩形蕊片的长与宽分别为随机变量ζ和η,周长为μ.(1 (2)求周长μ的分布列,并列表表示; (3)求周长μ的期望值. .(1)(2)P(μ=96)=0.3×0.3=0.09;P(μ=98)=0.3×0.4+0.5×0.3=0.27;P(μ=100)=0.5×0.4+0.2×0.3+0.3×0.3=0.35;P(μ=102)=0.2×0.4+0.5×0.3=0.23;P(μ=104)=0.2×0.3=0.06. 周长分布列如下表所示(3)解法一:(利用周长的分布计算)E μ=96×0.09+98×0.27+100×0.35+102×0.23+104×0.06=99.8.解法二:(利用矩形长与宽的期望计算)由长和宽的分布列可以算得E ζ=29×P(ζ=29)+30×P(ζ=30)+31×P(ζ=31)=29×0.3+30×0.5+31×0.2=29.9, E η=19×P(η=19)+20×P(η=20)+21×P(η=21)=19×0.3+20×0.4+21×0.3=20. 由期望的性质可得E μ=2(E ζ+E η)=2×(29.9+20)=99.8.10、设离散型随机变量ξ可能取的值为1,2,3,4.()P k ak b ξ==+(k =1,2,3,4).又ξ的数学期望3E ξ=,则a b +=101; 11、在4次独立试验中,事件A 出现的概率相同,若事件A 至少发生1次的概率是8165,则事件A 在一次试验中出现的概率是______31_.12、从1,2,3,4,5这五个数中任取两个数,这两个数之积的数学期望为8.518、(本题满分14分)NBA 总决赛采用7场4胜制,即若某队先取胜4场则比赛结束.由于NBA 有特殊的政策和规则能进入决赛的球队实力都较强,因此可以认为,两个队在每一场比赛中取胜的概率相等.根据不完全统计,主办一场决赛,组织者有望通过出售电视转播权、门票及零售商品、停车费、广告费等收入获取收益2000万美元.(Ⅰ).求所需比赛场数的分布列; (Ⅱ)求组织者收益的均值.19、(本题满分14分)甲、乙两名射击运动员,甲射击一次命中10环的概率为0.5,乙射击一次命中10环的概率为s ,若他们独立的射击两次,设乙命中10环的次数为X ,则EX=34,Y 为甲与乙命中10环的差的绝对值. 求s 的值及Y 的分布列及数学期望.20、(本题满分14分)现有甲、乙两个项目,对甲项目每投资十万元,一年后利润是1.2万元、1.18万元、1.17万元的概率分别为16、12、13;已知乙项目的利润与产品价格的调整有关,在每次调整中价格下降的概率都是(01)p p <<,设乙项目产品价格在一年内进行2次独立的调整,记乙项目产品价格在一年内的下降次数为ξ,对乙项目每投资十万元, ξ取0、1、2时, 一年后相应利润是1.3万元、1.25万元、0.2万元.随机变量1ξ、2ξ分别表示对甲、乙两项目各投资十万元一年后的利润.(I) 求1ξ、2ξ的概率分布和数学期望1E ξ、2E ξ;(II) 当12E E ξξ<时,求p 的取值范围. 18、(本题满分14分)解:所需比赛场数ξ是随机变量,其取值为4,5,6,7,}{k =ξ,k=4,5,6,7,表示比赛最终获胜队在第k 场获胜后结束比赛,显然在前面k-1场中获胜3场,从而)(k p =ξ=131)21(--k k C , k=4,5,6,7,(Ⅰ)(Ⅱ) 所需比赛场数的数学期望是16931657165641584)(=⨯+⨯+⨯+⨯=ξE ,∴ 组织者收益的均值为⨯16932000=11625万美元.19、(本题满分14分)解:由已知可得),2(~s B X ,故32,342===s s EX 所以.有Y 的取值可以是0,1,2.甲、乙两人命中10环的次数都是0次的概率是361)31()21(22=⨯,甲、乙两人命中10环的次数都是1次的概率是92)32313132)(21212121(=⨯+⨯⨯+⨯, 甲、乙两人命中10环的次数都是2次的概率是91)3232)(2121(=⨯⨯所以36139192361)0(=++==Y P ; 甲命中10环的次数是2且乙命中10环的次数是0次的概率是361)31()21(22=⨯, 甲命中10环的次数是0且乙命中10环的次数是2次的概率是91)3232)(2121(=⨯⨯ 所以36591361)2(=+==Y P ,故21)2()0(1)1(==-=-==Y P Y P Y P 所以 Y 的数学期望是EY=9.20、(本题满分14分)解:(I) 【解法1】: 1ξ的概率分布为:E 1ξ=1.216⨯+1.1812⨯+1.173⨯=1.18.由题设得~(2,)B p ξ,则ξ的概率分布为:故2ξ的概率分布为:所以2ξ的数学期望为:E 2ξ=21.3(1)p ⨯-+1.252(1)p p ⨯-+20.2p ⨯=20.1 1.3p p --+. 【解法2】1ξ的概率分布为:E 1ξ=1.216⨯+1.1812⨯+1.173⨯=1.18.设i A 表示事件”第i 次调整,价格下降”(i=1,2),则: P(ξ=0)= 212()()(1)P A P A p =-;P(ξ=1)=1212()()()()2(1)P A P A P A P A p p +=-; P(ξ=2)=212()()P A P A p =故2ξ的概率分布为:所以2ξ的数学期望为:E 2ξ=21.3(1)p ⨯-+1.252(1)p p ⨯-+20.2p ⨯=20.1 1.3p p --+. (II) 由12E E ξξ<,得:20.1 1.3 1.18(0.4)(0.3)00.40.3p p p p p --+>⇒+-<⇒-<< 因0<p<1,所以12E E ξξ<时,p 的取值范围是0<p<0.3.、某班委会由4名男生与3名女生组成,现从中选出2人担任班长,其中至少有1名女生当选的概率是( *75 )若5)1(-ax 的展开式中3x 的系数是80,则实数a 的值 是( *2 )。
高二数学概率综合试题

高二数学概率综合试题1.先后抛掷2枚均匀的一分、二分的硬币,观察落地后硬币的正、反面情况,则下列事件包含3个基本事件的是 ()A.“至少一枚硬币正面向上”;B.“只有一枚硬币正面向上”;C.“两枚硬币都是正面向上”;D.“两枚硬币一枚正面向上,另一枚反面向上”.【答案】A【解析】先后抛掷2枚均匀的一分、二分的硬币的基本事件有{正,正}、{正,反}、{反,正}、{反,反},故“至少一枚硬币正面向上”的目标事件有{正,正}、{正,反}、{反,正},故选A.【考点】做一次试验的基本事件个数.2.某班主任对全班50名学生进行了作业量多少的调查,数据如下表:为了检验“喜欢玩电脑游戏与认为作业多”是否有关系,根据表中数据,得到=4.84值,对照临界值表,有的把握认为“喜欢玩电脑游戏与认为作业多”之间有相关关系.【答案】95%【解析】根据列联表所给的数据,代入求观测值的公式得到=4.84值,因为4.84>3.841,∴喜欢玩电脑游戏与认为作业量的多少有关系的把握大约为95%.【考点】本题考查了独立性检验的运用点评:本题是一个基础题,在计算观测值时,数字比较大,需要认真完成,查表即可.3.为了考察某种中药预防流感效果,抽样调查40人,得到如下数据:服用中药的有20人,其中患流感的有2人,而未服用中药的20人中,患流感的有8人。
(1)根据以上数据建立列联表;(2)能否在犯错误不超过0.05的前提下认为该药物有效?参考0.500.400.250.150.100.050.0250.0100.0050.001()【答案】(1)(1)列联表(2)在犯错误不超过0.05的前提下认为该药物有效【解析】解:(1)列联表患流感未患流感总计………6分(2)根据列联表,计算:所以在犯错误不超过0.05的前提下认为该药物有效 12分【考点】独立性检验点评:主要是考查了独立性检验的思想的运用,属于基础题。
4.有5支竹签,编号分别为1,2,3,4,5,从中任取3支,以X表示取出竹签的最大号码,则EX的值为 .【答案】4.5【解析】解:从中任取3支共有10种不同的取法,由题意可得:X可能取得数值为:3,4,5,当X=3时表示取出竹签的最大号码为3,其包含的事件有1个,所以P(X=3)=,当X=4时表示取出竹签的最大号码为4,其包含的事件有3个,所以P(X=4)=,当X=5时表示取出竹签的最大号码为5,其包含的事件有6个,所以P(X=5)=,所以EX=3×+4×5×=4.5.故答案为4.5【考点】离散型随机变量点评:本题主要考查离散型随机变量的期望,以及古典概率模型.5.甲、乙、丙三人独立破译同一份密码,已知甲、乙、丙各自破译出密码的概率分别为、、,且他们是否破译出密码互不影响,若三人中只有甲破译出密码的概率为.(1)求的值.(2)设甲、乙、丙三人中破译出密码的人数为,求的分布列和数学期望.【答案】(1)(2)0123【解析】(1)记事件=”只有甲破译出密码”,可解得 3分(2) 的可能取值为0、1,、2、3;分8分10分【考点】独立事件的概率点评:主要是考查了独立事件的概率的公式以及分布列的求解,属于基础题。
高二数学概率试题

高二数学概率试题1.设随机变量X~B(n,p),且E(X)=1.6,D(X)=1.28,则A.n=8,p=0.2B.n=4,p=0.4C.n=5,p=.32D.n=7,p=0.45【答案】A【解析】由二项分布的均值和方差得,解的【考点】二项分布的均值和方差.2.某校举行综合知识大奖赛,比赛分初赛和决赛两部分,初赛采用选手选一题答一题的方式进行,每位选手最多有6次答题的机会,选手累计答对4题或答错3题即终止其初赛的比赛,答对4题者直接进入决赛,答错3题者则被淘汰.已知选手甲答题连续两次答错的概率为(已知甲回答每道题的正确率相同,并且相互之间没有影响).(Ⅰ)求选手甲回答一个问题的正确率;(Ⅱ)求选手甲可以进入决赛的概率.【答案】(Ⅰ);(Ⅱ);(Ⅲ).【解析】解题思路:(Ⅰ)利用对立事件的概率求解;(Ⅱ)利用相互独立事件同时发生的概率公式求解(Ⅲ)利用二项分布的概率公式和互斥事件的概率公式求解.规律总结:涉及概率的求法,要掌握好基本的概率模型,正确判断概率类型,合理选择概率公式. 试题解析:(1)(Ⅰ)设选手甲答对一个问题的正确率为,则故选手甲回答一个问题的正确率(Ⅱ)选手甲答了4道题进入决赛的概率为;(Ⅲ)选手甲答了5道题进入决赛的概率为;选手甲答了6道题进入决赛的概率为;故选手甲可进入决赛的概率.【考点】1.互斥事件与对立事件;2.二项分布.3.将二颗骰子各掷一次,设事件A=“二个点数不相同”,B=“至少出现一个6点”,则概率等于()A.B.C.D.【答案】A【解析】由条件概率计算公式:,,要求点数至少含有6且点数不同,含有6有11中,而其中相同的就一种,故,【考点】条件概率的计算.4.为了解某班学生关注NBA是否与性别有关,对本班48人进行了问卷调查得到如下的列联表:已知在全班48人中随机抽取1人,抽到关注NBA 的学生的概率为2/3 ⑴请将上面列连表补充完整,并判断是否有的把握认为关注NBA 与性别有关?⑵现从女生中抽取2人进一步调查,设其中关注NBA 的女生人数为X ,求X 的分布列与数学期望. 附:,其中【答案】(1)关注NBA 与性别有关;(2)分布列(略),E (X )=1.【解析】(1)本小题独立性检测的应用,本小题的关键是计算出的观测值,和对应的临界值,根据关注NBA 的学生的概率为,可知关注NBA 的学生为32(估计值).根据条件填满表格,然后计算出,并判断其与的大小关系,得出结论.(2)对于分布列问题:首先应弄清随机变量是谁以及随机变量的取值范围,然后就是每个随机变量下概率的取值,最后列表计算期望. 试题解析:(1)将列联表补充完整有:由,计算可得4分因此,在犯错的概率不超过0.05的前提下认为学生关注NBA 与性别有关,即有把握认为关注NBA 与性别有关 6分 (2)由题意可知,X 的取值为0,1,2,,,9分所以X 的分布列为)=1. 12分【考点】(1)独立性检测应用;(2)随机变量的分布列与期望.5.实验北校举行运动会,组委会招墓了16名男志愿者和14名女志愿者,调查发现,男、女志愿者中分别有10 人和6人喜爱运动,其余不喜爱.(1)根据以上数据完成以下列联表:(2)根据列联表的独立性检验,有多大的把握认为性别与喜爱运动有关?(3)从不喜爱运动的女志愿者中和喜爱运动的女志愿者中各选1人,求其中不喜爱运动的女生甲及喜爱运动的女生乙至少有一人被选取的概率.参考公式:(其中)没有关联90%95%99%【答案】(1)见解析;(2)性别与喜爱运动没有关联;(3).【解析】(1)独立性检验关键是计算出,并同概率表作对比,选择适合的临界值,得出是否具有相关性结论;(2)古典概型概率的计算,间接法:“1”减去既没有甲乙的概率.试题解析:(1)由已知得:喜爱运动不喜爱运动总计(2)由已知得:,则:(选择第一个).则:性别与喜爱运动没有关联. 8分(3)记不喜爱运动的女生甲及喜爱运动的女生乙至少有一人被选取为事件A,由已知得:从不喜爱运动的女志愿者中和喜爱运动的女志愿者中各抽取1人共有种方法,其中不喜爱运动的女生甲及喜爱运动的女生乙没有一人被选取的共有种方法,则:12分【考点】(1)独立性检测;(2)古典概型.6.一个口袋中装有大小形状完全相同的红色球个、黄色球个、蓝色球个.现进行从口袋中摸球的游戏:摸到红球得分、摸到黄球得分、摸到蓝球得分.若从这个口袋中随机地摸出个球,恰有一个是黄色球的概率是.⑴求的值;⑵从口袋中随机摸出个球,设表示所摸球的得分之和,求的分布列和数学期望.【答案】(1),(2)的分布列为:.【解析】(1)本小题为古典概型,基本事件的种数为:,事件:从口袋中随机地摸出个球,有一个是黄色球的方法数为:,即可构建关于的方程;(2)易知取值为,利用古典概型概率公式,易求的每个取值对应的概率,从而可列出分布列,并求出数学期望.试题解析:⑴由题意有,即,解得;⑵取值为.则,,,,的分布列为:故.【考点】古典概型概率公式,分布列,数学期望公式.7.设随机变量服从,则的值是()A.B.C.D.【答案】A【解析】因为随机变量服从,所以,故选A.【考点】二项分布.8.某学校从4名男生和2名女生中任选3人作为参加上海世博会的志愿者,设随机变量X表示所选3人中女生的人数,则P(X≥1)=________.【答案】【解析】P(X≥1)=P(X=1)+P(X=2)=+=9.某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式.(Ⅱ)花店记录了100 天玫瑰花的日需求量(单位:枝),整理得下表:(ii)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率.【答案】(1)76.4 (2)0.7【解析】解:(Ⅰ).(Ⅱ)(i)这100天的平均利润为(ii) 销量为16枝时,利润为75元,故当天的利润不少于75元的概率为【考点】函数与概率点评:主要是考查了分段函数与均值以及概率的求解,属于中档题。
高二数学概率练习题及答案2023

高二数学概率练习题及答案2023一、选择题(每题4分,共40分)1. 某班级有30名男生和40名女生,从中随机选择一位学生,男生和女生被选择的概率分别为()。
A. 3/7, 4/7B. 1/3, 2/3C. 3/8, 4/7D. 4/7, 3/72. 抛掷一枚公正的骰子,事件A:"点数是奇数",事件B:"点数大于2",则事件A和事件B的交集为()。
A. {3, 5}B. {1, 3, 5}C. {2, 4, 6}D. {1, 2, 3, 4, 5, 6}3. 从字母A、B、C中顺序地任选一个字母写下,则不同字母组成的三位数有()个。
A. 5B. 6C. 7D. 84. 某班有男生和女生各20人,从中任选5名学生参与活动,已知其中一名学生是男生的概率为1/4,求这5名学生全为女生的概率。
()A. 1/283B. 1/893C. 1/156D. 1/835. 已知A、B、C三个事件两两独立,且P(A) = 1/5,P(B) = 1/4,P(C) = 1/2,则P(至少发生一个事件) = ()。
A. 13/20B. 17/20C. 7/20D. 3/206. 某种花卉中,红色花卉占总数的1/4,蓝色花卉占总数的1/3,而紫色花卉占总数的1/6。
如果从这些花卉中随机摘取一只,那么摘到红色或蓝色花卉的概率是()。
A. 1/2B. 2/3C. 7/12D. 5/127. 一副标准扑克牌中红心牌有26张,从中任选一张牌,若抽到红心牌或者方块牌,则抽到A的概率是()。
A. 1/13B. 1/52C. 1/26D. 1/48. 在一个有25名学生的班级中,9人参加了篮球比赛,从中任选1名学生评为最有价值球员的概率是()。
A. 9/25B. 1/3C. 3/5D. 4/99. 在一个数列中,每个数都是从1到5的整数,选取一个数的概率是1/5,选取的数若大于等于4,则该数列的概率是()。
高二数学概率综合试题答案及解析

高二数学概率综合试题答案及解析1.设随机变量X~B(n,p),且E(X)=1.6,D(X)=1.28,则()A.n=5,p=0.32B.n=4,p=0.4C.n=8,p=0.2D.n=7,p=0.45【答案】C【解析】因为随机变量X~B(n,p),且E(X)=1.6,D(X)=1.28,所以.【考点】随机变量的期望方差.2.从一副不含大小王的52张扑克牌中不放回地抽取2次,每次抽一张,已知第一次抽到A,则第二次也抽到A的概率为_________ .【答案】.【解析】由于第一次抽到A,则第二次抽牌时,还有3张A,共51张牌,而每张牌被抽到的概率是相等的,故第二次也抽到A的概率为.【考点】相互独立事件的概率乘法公式.3.抛掷一个骰子,若掷出5点或6点就说试验成功,则在3次试验中恰有2次成功的概率为__________。
【答案】【解析】抛掷一个骰子,若掷出5点或6点就说试验成功,则成功的概率为,则在3次试验中恰有2次成功的概率为。
【考点】等可能事件的概率4.为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下列表:喜爱打篮球不喜爱打篮球合计已知在全部50人中随机抽取1人,抽到喜爱打篮球的学生的概率为.(1)请将上表补充完整(不用写计算过程);(2)能否在犯错误的概率不超过0.005的前提下认为喜爱打篮球与性别有关?说明你的理由;下面的临界值表供参考:(参考公式:,其中)【答案】(1)详见解析;(2)在犯错误的概率不超过0.005的前提下,认为喜爱打篮球与性别有关.【解析】(1)根据在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为,可得喜爱打篮球的学生,即可得到列联表;(2)利用公式求得K2,与临界值比较,即可得到结论.试题解析:列联表补充如下: 3分喜爱打篮球不喜爱打篮球合计(2)∵∴在犯错误的概率不超过0.005的前提下,认为喜爱打篮球与性别有关. 12分【考点】独立性检验..5.某联欢晚会举行抽奖活动,举办方设置了甲.乙两种抽奖方案,方案甲的中奖率为,中将可以获得2分;方案乙的中奖率为,中将可以得3分;未中奖则不得分.每人有且只有一次抽奖机会,每次抽奖中将与否互不影响,晚会结束后凭分数兑换奖品.(1)若小明选择方案甲抽奖,小红选择方案乙抽奖,记他们的累计得分为,求的概率;(2)若小明.小红两人都选择方案甲或方案乙进行抽奖,问:他们选择何种方案抽奖,累计的得分的数学期望较大?【答案】(1)(2)选择方案甲进行抽奖时,累计得分的数学期望最大【解析】解:(Ⅰ)由已知得:小明中奖的概率为,小红中奖的概率为,两人中奖与否互不影响,记“这2人的累计得分”的事件为A,则A事件的对立事件为“”,,这两人的累计得分的概率为. 6分(Ⅱ)设小明.小红都选择方案甲抽奖中奖的次数为,都选择方案乙抽奖中奖的次数为,则这两人选择方案甲抽奖累计得分的数学期望为,选择方案乙抽奖累计得分的数学期望为由已知:,,,他们都在选择方案甲进行抽奖时,累计得分的数学期望最大. 12分【考点】独立事件的概率以及期望点评:主要是考查了独立事件的概率以及期望值的运用,属于中档题。
高二数学概率试题

高二数学概率试题1.如图,用三类不同的元件连成一个系统.当正常工作且至少有一个正常工作时,系统正常工作.已知正常工作的概率依次为0.9、0.8、0.8,则系统正常工作的概率为A.0.960B.0.864C.0.720D.0.576【答案】B【解析】系统正常工作当①正常工作,不能正常工作,②正常工作,不能正常工作,③正常工作,因此概率.【考点】独立事件的概率.2.设随机变量X~B(n,p),且E(X)=1.6,D(X)=1.28,则A.n=8,p=0.2B.n=4,p=0.4C.n=5,p=.32D.n=7,p=0.45【答案】A【解析】由二项分布的均值和方差得,解的【考点】二项分布的均值和方差.3.设服从二项分布X~B(n,p)的随机变量X的均值与方差分别是15和,则n、p的值分别是()A.50,B.60,C.50,D.60,【答案】B【解析】由二项分布X~B(n,p)的均值与方差可知E(X)=np=15,D(X)=np(1-p)=,解得n=60,p=,所以答案为B.【考点】二项分布X~B(n,p)的均值与方差4.投两枚均匀的骰子,已知点数不同,则至少有一个是6点的概率为______.【答案】.【解析】设“投两枚均匀的骰子,点数不同”为事件A,“至少有一个是6点”为事件B,则;,.【考点】条件概率.5.中国2010年上海世博会已于2010年5月1日在上海隆重开馆.小王某天乘火车从重庆到上海去参观世博会,若当天从重庆到上海的三列火车正点到达的概率分别为0.8、0.7、0.9,假设这三列火车之间是否正点到达互不影响.求:(1)这三列火车恰好有两列正点到达的概率;(2)这三列火车至少有一列正点到达的概率【答案】(1)0.398;(2)0.994.【解析】解题思路:(1)利用相互独立事件同时发生的概率公式求解即可;(2)正面情况较多,考虑反面情况即可.规律总结:若A,B相互独立,则也相互独立;对事件包含的情况分类要不重不漏,对于“至少”、“至多”,可以考虑事件的对立事件.试题解析:用、、分别表示这三列火车正点到达的事件.则所以(1)恰好有两列正点到达的概率为(2)三列火车至少有一列正点到达的概率为.【考点】相互独立事件同时发生的概率.6.甲、乙同时炮击一架敌机,已知甲击中敌机的概率为,乙击中敌机的概率为,敌机被击中的概率为( )A.B.C.D.【答案】C【解析】设甲击中敌机为事件,乙击中敌机为事件.方法一(直接法):击中敌机分3种:甲中乙中,甲中乙不中,甲不中乙中,即;方法二(间接法):.【考点】独立事件概率的计算.7.已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球.(1)求取出的4个球均为黑球的概率;(2)求取出的4个球中恰有1个红球的概率;(3)设为取出的4个球中红球的个数,求的分布列和数学期望【答案】(1);(2);(3)分布列(略),.【解析】(1)4个球均为黑球,即从甲、乙中取出的2个球均为黑球,由于甲、乙相互独立,因此概率为甲中取出黑球的概率与乙中取出黑球概率的乘积;(2)取出4球中恰有1个红球,分两类计算:一类红球来至于甲,二类红球来至于乙;(3)红球个数可能取值为0,1,2,3,注意分别对应概率的计算.试题解析:(1)设“从甲盒内取出的2个球均为黑球”为事件,“从乙盒内取出的2个球均为黑球”为事件.由于事件相互独立,且,. 2分故取出的4个球均为黑球的概率为. 4分(2)设“从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红球,1个是黑球”为事件,“从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个球均为黑球”为事件.则,. 6分由于事件互斥,故取出的4个球中恰有1个红球的概率为. 8分(3)可能的取值为.由(1),(2)得,,.从而.的分布列为的数学期望. 12分【考点】组合与概率综合应用.8.高二年级的一个研究性学习小组在网上查知,某珍贵植物种子在一定条件下发芽成功的概率为,该研究性学习小组又分成两个小组进行验证性实验.(1)第1组做了5次这种植物种子的发芽实验(每次均种下一粒种子),求他们的实验至少有3次成功的概率;(2)第二小组做了若干次发芽试验(每次均种下一粒种子),如果在一次实验中种子发芽成功就停止实验,否则将继续进行下次实验,直到种子发芽成功为止,但发芽实验的次数最多不超过5次,求第二小组所做种子发芽实验的次数的概率分布列和期望.【答案】(1);(2).【解析】(1)由题设条件知,种下5粒种子至少有3次成功的概率相当于5次独立重复试验中恰好发三次、四次、五次的概率.至少有3次成功的概率等于3次、4次、5次发芽成功的概率之和.(2)ξ的所有可能值为0,1,2,3,4,5分别求其概率,列出分布列,再求期望即可.解:(1)至少有3次发芽成功,即有3次、4次、5次发芽成功,所以所求概率(2)的概率分布列为X12345所以.【考点】1. n次独立重复试验;2. 离散型随机变量的分布列、期望.9.在打靶训练中,某战士射击一次的成绩在9环(包括9环)以上的概率是0.18,在8~9环(包括8环)的概率是0.51,在7~8环(包括7环)的概率是0.15,在6~7环(包括6环)的概率是0.09.计算该战士在打靶训练中射击一次取得8环(包括8环)以上成绩的概率和该战士打靶及格(及格指6环以上包括6环)的概率.【答案】该战士在打靶训练中射击一次取得8环(包括8环)以上成绩的概率为0.69;及格的概率为0.93.【解析】射击的成绩是互斥事件,根据互斥事件的概率加法公式即可求得结果.试题解析:分别记该战士的打靶成绩在9分以上、在8~9分、在7~8分、在6~7分分别为事件B、C、D、E,这4个事件是彼此互斥的,根据互斥事件的概率加法公式,该战士的打靶成绩在8分以上的概率是P(B C)=P(B)+P(C)=0.18+0.51=0.69. 5分该战士打靶及格的概率,即成绩在6分以上的概率,由公式得P(B C D E)=P(B)+P(C)+P(D)+P(E)=0.18+0.51+0.15+0.09=0.93. 8分【考点】互斥与对立事件、概率问题.10.甲乙丙三位同学独立的解决同一个问题,已知三位同学能够正确解决这个问题的概率分别为、、,则有人能够解决这个问题的概率为A.B.C.D.【答案】B【解析】此题没有被解答的概率为,故能够将此题解答出的概率为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学 概率练习题(1)
1.在正方体上任选3个顶点连成三角形,则所得的三角形是直角非等腰三角形的概率为 ( )
A .1/7
B .2/7
C .3/7
D .4/7
2.在一个口袋中装有5个白球和3个黑球,这些球除颜色外完全相同,从中摸出3个球,至少
摸到2个黑球的概率等于 ( )
A.2/7
B.3/8
C.3/7
D.9/28
3.连掷两次骰子得到的点数分别为m 和n ,记向量()m n ,a =与向量(11)=-,b 的夹角为θ,则0θπ⎛
⎤∈ ⎥2⎝⎦
,的概率是 ( )
A .5/12
B .1/2
C .7/12
D .5/6
4.一个坛子里有编号为1,2,…,12的12个大小相同的球,其中1到6号球是红球,其余
的是黑球,若从中任取两个球,则取到的都是红球,且至少有1个球的号码是偶数的概率是 ( ) A .1/22 B .1/11 C .3/22 D .2/11 5.某人5次上班途中所花的时间(单位:分钟)分别为x ,y ,10,11 9.已知这组数据的平均数为10,方差为2,则|x -y |的值为( ) (A )1 (B )2 (C )3 (D )4
6.甲、乙两个袋子中均装有红、白两种颜色的小球,这些小球除颜色外完全相同,其中甲袋装有4个红球、2个白球,乙袋装有1个红球、5个白球。
现分别从甲、乙两袋中各随机抽取1个球,则取出的两球是红球的概率为______(答案用分数表示)
7.某篮运动员在三分线投球的命中率是1/2,他投球10次,恰好投进3个球的概率 8.在五个数字1,2,3,4,5中,若随机取出三个数字,则剩下两个数字都是奇数的概率是 . 9.将数字1,2,3,4,5,6拼成一列,记第i 个数为i (i 126)a =,,,,
若11a ≠,33a ≠,55a ≠,135a a a <<,则不同的排列方法有 种
10.一个均匀小正方体的六个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2,将这个小正方体抛掷2次,则向上的数之积的数学期望是
11、在添加剂的搭配使用中,为了找到最佳的搭配方案,需要对各种不同的搭配方式作比较。
在试制某种牙膏新品种时,需要选用两种不同的添加剂。
现有芳香度分别为0,1,2,3,4,5的六种添加剂可供选用。
根据试验设计原理,通常首先要随机选取两种不同的添加剂进行搭配试验。
用ξ表示所选用的两种不同的添加剂的芳香度之和。
(Ⅰ)写出ξ的分布列;(Ⅱ)求ξ的数学期望E ξ。
(要求写出计算过程或说明道理)
12、某公司招聘员工,指定三门考试课程,有两种考试方案.
方案一:考试三门课程,至少有两门及格为考试通过;
方案二:在三门课程中,随机选取两门,这两门都及格为考试通过.
假设某应聘者对三门指定课程考试及格的概率分别是,,
a b c,且三门
课程考试是否及格相互之间没有影响.
(Ⅰ)分别求该应聘者用方案一和方案二时考试通过的概率;
(Ⅱ)试比较该应聘者在上述两种方案下考试通过的概率的大小.
13.某商场举行抽奖促销活动,抽奖规则是:从装有9个白球,1个红球的箱子中每次随机地摸出一个球,记下颜色后放回,摸出一个红球可获得奖金10元;摸出2个红球可获得奖金50元,现有甲,乙两位顾客,规定:甲摸一次,乙摸两次,令ξ表示甲,乙摸球后获得的奖金总额。
求:
(1)ξ的分布列(2)ξ的的数学期望
14.A、B是治疗同一种疾病的两种药,用若干试验组进行对比试验。
每个试验组由4只小白鼠组成,其中2只服用A,另2只服用B,然后观察疗效。
若在一个试验组中,服用A有效的小
白鼠的只数比服用B有效的多,就称该试验组为甲类组。
设每只小白鼠服用A有效的概率为2
3
,
服用B有效的概率为1
2。
(Ⅰ)求一个试验组为甲类组的概率;
(Ⅱ)观察3个试验组,用ξ表示这3个试验组中甲类组的个数,求ξ的分布列和数学期望。
15.某批产品成箱包装,每箱5件.一用户在购进该批产品前先取出3箱,再从每箱中任意抽取2件产品进行检验.设取出的第一、二、三箱中分别有0件、1件、2件二等品,其余为一等品.
(Ⅰ)用ξ表示抽检的6件产品中二等品的件数,求ξ的分布列及ξ的数学期望;
(Ⅱ)若抽检的6件产品中有2件或2件以上二等品,用户就拒绝购买这批产品,求这批产品级用户拒绝的概率
16.设b 和c 分别是先后抛掷一枚骰子得到的点数,用随机变量ξ表示方程2
0x bx c ++=实根的个数(重根按一个计).(Ⅰ)求方程2
0x bx c ++=有实根的概率;(Ⅱ)求ξ的分布列和数学期望;
(Ⅲ)求在先后两次出现的点数中有5的条件下,方程2
0x bx c ++=有实根的概率.
概率复习作业(2)
1.从0到9这10个数字中任取3个数字组成一个没有重复数字的三位数,这个数不能被3整除的概率为 ( )
(A )19/54 (B )35/54 (C )38/54 (D )41/60
2.将7个人(含甲、乙)分成三个组,一组3人,另两组2 人,不同的分组数为a ,甲、乙分到同一组的概率为p ,则a 、p 的值分别为( )
A.a=105 p=5/21
B.a=105 p=4/21
C.a=210 p=5/21
D.a=210 p=4/21 3.将一骰子连续抛掷三次,它落地时向上的点数依次..成等差数列的概率为 ( ) A.1/9 B.1/12 C.1/15 D.1/18
4.位于坐标原点的一个质点P 按下列规则移动:质点每次移动一个单位;移动的方向为向上或
向右,并且向上、向右移动的概率都是1/2,质点P 移动五次后位`于点(23),的概率是( )
5.512⎛⎫ ⎪⎝⎭ B .5251C 2⎛⎫ ⎪
⎝⎭ C .5231C 2⎛⎫ ⎪⎝⎭
D .5
12231C C 2⎛⎫ ⎪⎝⎭ 6.从5张100元,3张200元,2张300元的奥运预赛门票中任取3张,则所取3张中至少有2
张价格相同的概率为( ) A.1/4 B.79/120 C.3/4
7.右图中有一个信号源和五个接收器。
接
收器与信号源在同一个串联线路中时,就能接收到信号,否则就不能接收到信号。
若将图中左端的六个接线点随机地平均分成三组,将右端的六个接线点也随机地平均分成三组,再把所有六组中每组的两个接线点用导线连
接,则这五个接收器能同时接收到信号的概率是 ( ) (A )4/45 (B )1/36(C )4/15 (D )
8/15
8.接种某疫苗后,出现发热反应的概率为0.80,现有5人接种了该疫苗,至少有3人出现发热反应的概率为 。
(精确到0.01) 9.两部不同的长篇小说各由第一、二、三、四卷组成,每卷1本,共8本.将它们任意地排成一排,左边4本恰好都属于同一部小说的概率是 (结果用分数表示).
10.设离散型随机变量ξ可能取的值为1,2,3,4.P(ξ=k )=ak+b(k=1,2,3,4),又ξ的数学期望E ξ=3,则a+b=______________。
11袋中装着标有数学1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用ε表示取出的3个小球上的最大数字,求:(1)取出的3个小球上的数字互不相同的概率;(2)随机变量ε的概率分布和数学期望;(3)计分介于20分到40分之间的概率.
12.甲、乙、丙3人投篮,投进的概率分别是13, 25 , 1
2
.
(Ⅰ)现3人各投篮1次,求3人都没有投进的概率;
(Ⅱ)用ξ表示乙投篮3次的进球数,求随机变量ξ的概率分布及数学期望E ξ.
13.某课程考核分理论与实验两部分进行,每部分考核成绩只记“合格”与“不合格”,两部分
考核都“合格”则该课程考核“合格”。
甲、乙、丙三人在理论考核中合格的概率分别为0.9、0.8、0.7;在实验考核中合格的概率分别为0.8、0.7、0.9。
所有考核是否合格相互之间没有影响。
(Ⅰ)求甲、乙、丙三人在理论考核中至少有两人合格的概率; (Ⅱ)求这三人该课程考核都合格的概率(结果保留三位小数)
14.某射手进行射击训练,假设每次射击击中目标的概率为
5
3
,且各次射击的结果互不影响。
(1)求射手在3次射击中,至少有两次连续击中目标的概率(用数字作答); (2)求射手第3次击中目标时,恰好射击了4次的概率(用数字作答);
(3)设随机变量ξ表示射手第3次击中目标时已射击的次数,求ξ的分布列.
15.甲、乙两袋装有大小相同的红球和白球,甲袋装有2个红球,2个白球;乙袋装有2个红球,n 个白球.两甲,乙两袋中各任取2个球.(Ⅰ)若n=3,求取到的4个球全是红球的概率;(Ⅱ)若取到的4个球中至少有2个红球的概率为
4
3
,求n.
16、袋子A 和B 中装有若干个均匀的红球和白球, 从A 中摸出一个红 球的概率是1/3,从B 中摸出一个红球的概率为p.
(Ⅰ)从A 中有放回地摸球, 每次摸出一个, 有3次摸到红球即停止.
( i ) 求恰好摸5次停止的概率; ( ii ) 记5次之内(含5次) 摸到红球的次数为X, 求随机变量X的分布列及数学期望EX.
(Ⅱ)若A、B两个袋子中的球数之比为1∶2,将A、B中的球装在一起后, 从中摸出一个红球的概率是2/5, 求p的值.。