实验四 化工流体过程综合实验

合集下载

流体过程综合实验讲义

流体过程综合实验讲义

流动过程综合实验讲义实验1-1 离心泵性能测定实验一、 实验目的1. 熟悉离心泵的操作方法。

2. 掌握离心泵特性曲线和管路特性曲线的测定方法、表示方法,加深对离心泵性能的了解。

3. 掌握离心泵特性管路特性曲线的测定方法、表示方法。

二、 实验内容1. 熟悉离心泵的结构与操作方法。

2. 测定某型号离心泵在一定转速下,H (扬程)、N (轴功率)、(效率)与Q (流量)之间的特性曲线。

3. 测定流量调节阀某一开度下管路特性曲线。

三、 实验原理㈠ 离心泵特性曲线离心泵是最常见的液体输送设备。

在一定的型号和转速下,离心泵的扬程H 、轴功率及 效率η均随流量Q 而改变。

通常通过实验测出H —Q 、N —Q 及 η—Q 关系,并用曲线表示 之,称为特性曲线。

特性曲线是确定泵的适宜操作条件和选用泵的重要依据。

泵特性曲线的 具体测定方法如下: 1. H 的测定:在泵的吸入口和压出口之间列柏努利方程上式中 是泵的吸入口和压出口之间管路内的流体流动阻力(不包括泵体内部的流动阻力所引起的压头损失),当所选的两截面很接近泵体时,与柏努利方程中其它项比较, 值很小,故可忽略。

于是上式变为:出入入出入出入出出入出出出入入入)--+-+-+-=+++=+++f f H gu u g P P Z Z H H g u g P Z H g u g P Z 2(222222ρρρgu u g P P Z Z H 2(22入出入出入出)-+-+-=ρ将测得的)入出Z Z -(和入出P P -和 的值以及计算所得的u 入,u 出代入上式即可求得H 的值。

2. N 的测定:功率表测得的功率为电动机的输入功率。

由于泵由电动机直接带动,传动效率可视为1.0,所以电动机的输出功率等于泵的轴功率。

即:泵的轴功率N =电动机的输出功率,kW电动机的输出功率=电动机的输入功率×电动机的效率。

泵的轴功率=功率表的读数×电动机效率,kw 。

化工原理实验报告综合经典篇

化工原理实验报告综合经典篇

实验题目:流体流动阻力测定实验一、数据记录1、实验原始数据记录如下表:离心泵型号:MS60/0.55,额定流量:60L/min, 额定扬程:19.5mN,额定功率:0.55kw流体温度2、5 2.4 1.9258 0.00513 41149.8586 2.6487 0.024846 6 2.2 1.7653 0.0061 37720.7038 2.2759 0.029569 7 2 1.6048 0.00593 34291.5489 1.8149 0.028751 8 1.8 1.4443 0.00424 30862.3940 1.5304 0.020508 9 1.6 1.2838 0.00536 27433.2391 1.2164 0.025955 10 1.4 1.12340.005655 24004.08420.94180.0273820.00559绘制粗糙管路的双对数λ-Re 曲线如下图示:根据光滑管实验结果,对照柏拉修斯方程λ=0.3164/(Re0.25),计算其误差,计试验次数 阻力系数λ 雷诺数Re 柏拉修斯方程计算结果 误差1 0.016893 57609.8021 0.02042266 0.1728312 0.017215 54009.1895 0.02075485 0.1705553 0.017332 50408.5768 0.02111594 0.179198 4 0.017282 46807.9642 0.0215108 0.196595 0.018107 43207.3516 0.02194558 0.174914 6 0.017612 39606.7389 0.02242819 0.2147387 0.018552 36006.1263 0.02296902 0.1923038 0.019035 32405.5137 0.02358206 0.192819 9 0.019391 28804.901 0.02428678 0.201582 10 0.019954 25204.2884 0.02511122 0.205375 3 的流速2900d Vu π=(m/s ),雷诺数μρdu =Re ,流体阻力ρ1000⨯∆=P Hf,阻力系数22Lu d H f =λ,ξ=gu2f'Δ2ρP ,并以标准单位换算得光滑管数据处理结果如下表二、结果分析(1)光滑管结果分析:曲线表明,在湍流区内,光滑管阻力系数随雷诺数增大而减小,进入阻力平方区(也称完全湍流区)后,雷诺数对阻力系数的影响却越来越弱,阻力系数基本趋于不变。

化工原理流体综合实验报告(DOC)

化工原理流体综合实验报告(DOC)

流体综合实验实验目的1)能进行光滑管、粗糙管、闸阀局部阻力测定实验,测出湍流区阻力系数与雷诺数关系曲线图;2)能进行离心泵特性曲线测定实验,测出扬程与流量、功率与流量以及离心泵效率与流量的关系曲线图;3)学习工业上流量、功率、转速、压力和温度等参数的测量方法,使学生了解涡轮流量计、电动调节阀以及相关仪表的原理和操作;离心泵特性测定实验一、基本原理离心泵的特性曲线是选择和使用离心泵的重要依据之一,其特性曲线是在恒定转速下泵的扬程H、轴功率N及效率η与泵的流量Q之间的关系曲线,它是流体在泵内流动规律的宏观表现形式。

由于泵内部流动情况复杂,不能用理论方法推导出泵的特性关系曲线,只能依靠实验测定。

1.扬程H的测定与计算取离心泵进口真空表和出口压力表处为1、2两截面,列机械能衡算方程:(1-1)由于两截面间的管子较短,通常可忽略阻力项fhΣ,速度平方差也很小,故也可忽略,则有(1-2)式中:H=Z2-Z1,表示泵出口和进口间的位差,m;ρ——流体密度,kg/m3 ;g——重力加速度m/s2;p 1、p2——分别为泵进、出口的真空度和表压,Pa;H1、H2——分别为泵进、出口的真空度和表压对应的压头,m;u 1、u2——分别为泵进、出口的流速,m/s;z 1、z2——分别为真空表、压力表的安装高度,m。

由上式可知,只要直接读出真空表和压力表上的数值,及两表的安装高度差,就可计算出泵的扬程。

2.轴功率N的测量与计算N=N电×k (W)(1-3)其中,N电为电功率表显示值,k代表电机传动效率,可取k=0.953.效率η的计算泵的效率η是泵的有效功率Ne与轴功率N的比值。

有效功率Ne是单位时间内流体经过泵时所获得的实际功率,轴功率N是单位时间内泵轴从电机得到的功,两者差异反映了水力损失、容积损失和机械损失的大小。

泵的有效功率Ne可用下式计算:N e=HQρg (1-4)故泵效率为(1-5)四、实验步骤及注意事项(一)实验步骤:1.实验准备:(1)实验用水准备:清洗水箱,并加装实验用水。

化工原理含实验报告(3篇)

化工原理含实验报告(3篇)

第1篇一、实验目的1. 理解并掌握化工原理中的基本概念和原理。

2. 通过实验验证理论知识,提高实验技能。

3. 熟悉化工原理实验装置的操作方法,培养动手能力。

4. 学会运用实验数据进行分析,提高数据处理能力。

二、实验内容本次实验共分为三个部分:流体流动阻力实验、精馏实验和流化床干燥实验。

1. 流体流动阻力实验实验目的:测定流体在圆直等径管内流动时的摩擦系数与雷诺数Re的关系,将测得的~Re曲线与由经验公式描出的曲线比较;测定流体在不同流量流经全开闸阀时的局部阻力系数。

实验原理:流体在管道内流动时,由于摩擦作用,会产生阻力损失。

阻力损失的大小与流体的雷诺数Re、管道的粗糙度、管道直径等因素有关。

实验中通过测量不同流量下的压差,计算出摩擦系数和局部阻力系数。

实验步骤:1. 将水从高位水槽引入光滑管,调节流量,记录压差。

2. 将水从高位水槽引入粗糙管,调节流量,记录压差。

3. 改变流量,重复步骤1和2,得到一系列数据。

4. 根据数据计算摩擦系数和局部阻力系数。

实验结果与分析:通过实验数据绘制~Re曲线和局部阻力系数曲线,与理论公式进行比较,验证了流体流动阻力实验原理的正确性。

2. 精馏实验实验目的:1. 熟悉精馏的工艺流程,掌握精馏实验的操作方法。

2. 了解板式塔的结构,观察塔板上汽-液接触状况。

3. 测定全回流时的全塔效率及单板效率。

4. 测定部分回流时的全塔效率。

5. 测定全塔的浓度分布。

6. 测定塔釜再沸器的沸腾给热系数。

实验原理:精馏是利用混合物中各组分沸点不同,通过加热使混合物汽化,然后冷凝分离各组分的方法。

精馏塔是精馏操作的核心设备,其结构对精馏效率有很大影响。

实验步骤:1. 将混合物加入精馏塔,开启加热器,调节回流比。

2. 记录塔顶、塔釜及各层塔板的液相和气相温度、压力、流量等数据。

3. 根据数据计算理论塔板数、全塔效率、单板效率等指标。

4. 绘制浓度分布曲线。

实验结果与分析:通过实验数据,计算出了理论塔板数、全塔效率、单板效率等指标,并与理论值进行了比较。

流体学综合实验报告

流体学综合实验报告

流体学综合实验报告1. 实验目的本实验通过流体力学实验的综合测试,旨在加深对流体学基本原理的理解,并实践流体力学实验的操作方法和数据分析技巧。

具体目标包括:1. 掌握流速测量的原理和方法;2. 学习压力测量的原理和方法;3. 熟悉状态方程的测量方法;4. 分析流体力学实验数据,得出相应结论。

2. 实验仪器与装置本次实验所使用的仪器与装置主要包括:1. 流量计:用于测量流体的流速;2. 压力计:用于测量流体的压力;3. 热敏电阻温度计:用于测量流体的温度;4. 试验台:用于固定仪器和装置。

3. 实验原理3.1 流速测量流速测量的原理基于流体通过管道的体积流量和截面积之间的关系。

通过测量单位时间内流体通过的体积,可以计算出流体的平均流速。

为了保证测量的准确性,实验中使用了流量计。

流量计根据不同的原理可分为多种类型,包括旋转式流量计、压差式流量计和超声波流量计等。

3.2 压力测量压力测量的原理基于流体对容器内壁面施加的压力与流体深度之间的关系。

通过测量所施加的压力,可以计算出流体的压强。

在实验中,为了方便测量压力,使用了压力计。

压力计主要分为摆盘式压力计和压电式压力计。

通过测量压力计的示数,可以间接地得到流体的压力。

3.3 状态方程的测量流体的状态方程描述了流体的温度、压力和体积之间的关系。

实验中,通过使用热敏电阻温度计测量流体的温度,结合压力计测得的压力和容器的体积,可以得到流体的状态方程。

4. 实验步骤与结果分析4.1 流速测量首先将流量计插入管道中,连接相关的测量仪器。

然后根据实验要求设置合适的流速,记录下每组数据,并计算平均流速。

根据实验数据,在相同的压力下,流速与管道截面积成正比例关系。

4.2 压力测量首先将压力计插入容器中,保证测量仪器的稳定性和准确性。

根据实验要求设置不同的压力值,记录下每组数据,并计算平均压力。

通过实验数据的分析,可以得出流体压力与深度成线性关系的结论。

4.3 状态方程的测量在一定的温度下,根据实验要求改变流体的压力和容器的体积,记录下每组测量数据。

流体过程综合实验讲义

流体过程综合实验讲义

流动过程综合实验实验1-1 离心泵性能测定实验一、实验目的⒈ 熟悉离心泵的操作方法。

⒉ 掌握离心泵特性曲线和管路特性曲线的测定方法、表示方法,加深对离心泵性能的了解。

⒊ 掌握离心泵特性管路特性曲线的测定方法、表示方法。

二、实验内容⒈ 熟悉离心泵的结构与操作方法。

⒉ 测定某型号离心泵在一定转速下,H (扬程)、N (轴功率)、(效率)与Q (流量)之间的特性曲线。

⒊ 测定流量调节阀某一开度下管路特性曲线。

三、实验原理 ㈠ 离心泵特性曲线离心泵是最常见的液体输送设备。

在一定的型号和转速下,离心泵的扬程H 、轴功率及 效率η均随流量Q 而改变。

通常通过实验测出H —Q 、N —Q 及 η—Q 关系,并用曲线表示之,称为特性曲线。

特性曲线是确定泵的适宜操作条件和选用泵的重要依据。

泵特性曲线的 具体测定方法如下: ⒈ H 的测定:在泵的吸入口和压出口之间列柏努利方程上式中 是泵的吸入口和压出口之间管路内的流体流动阻力(不包括泵体内部的流动阻力所引起的压头损失),当所选的两截面很接近泵体时,与柏努利方程中其它项比较, 值很小,故可忽略。

于是上式变为:将测得的)入出Z Z -(和入出P P -和 的值以及计算所得的u 入,u 出代入上式即可求得H 的值。

⒉ N 的测定:出入入出入出入出出入出出出入入入)--+-+-+-=+++=+++f f H gu u g P P Z Z H H g u g P Z H g u g P Z 2(222222ρρρgu u g P P Z Z H 2(22入出入出入出)-+-+-=ρ功率表测得的功率为电动机的输入功率。

由于泵由电动机直接带动,传动效率可视为1.0,所以电动机的输出功率等于泵的轴功率。

即: 泵的轴功率N =电动机的输出功率,kW电动机的输出功率=电动机的输入功率×电动机的效率。

泵的轴功率=功率表的读数×电动机效率,kw 。

⒊ η的测定其中 kw式中:η— 泵的效率; N — 泵的轴功率,kw Ne — 泵的有效功率,kw H — 泵的压头,m Q — 泵的流量,m3/s ρ— 水的密度,kg/m3 ㈡ 管路特性曲线当离心泵安装在特定的管路系统中工作时,实际的工作压头和流量不仅与离心泵本身的性能有关,还与管路特性有关,也就是说,在液体输送过程中,泵和管路二者是相互制约的。

流体综合实验报告分析

流体综合实验报告分析

一、实验背景流体力学是研究流体运动规律及其与固体壁面相互作用的科学。

随着工业、交通、建筑等领域的发展,流体力学在各个领域的应用越来越广泛。

为了提高学生对流体力学知识的理解和应用能力,我们进行了流体综合实验。

二、实验目的1. 掌握流体力学基本实验方法,提高实验操作技能。

2. 验证流体力学基本理论,加深对流体运动规律的理解。

3. 分析实验数据,提高数据处理和分析能力。

4. 培养团队合作精神和创新意识。

三、实验内容1. 流体静力学实验:通过测量液体静压强,验证不可压缩流体静力学基本方程,掌握用测压管测量液体静水压强的技能。

2. 流体阻力实验:测定流体流经直管、管件和阀门时的阻力损失,验证在一般湍流区内雷诺准数与直管摩擦系数的关系曲线。

3. 流体流动阻力测定实验:测定流体流经直管、管件和阀门时的阻力损失,验证在一般湍流区内雷诺准数与直管摩擦系数的关系曲线。

四、实验方法与步骤1. 流体静力学实验:使用液式测压计测量液体静压强,记录数据,分析结果。

2. 流体阻力实验:通过测量不同雷诺准数下的流体阻力,绘制雷诺准数与直管摩擦系数的关系曲线。

3. 流体流动阻力测定实验:通过测量不同管件和阀门处的阻力损失,分析流体流动阻力的影响因素。

五、实验结果与分析1. 流体静力学实验:实验结果表明,液体静压强与测压管深度成正比,验证了不可压缩流体静力学基本方程。

2. 流体阻力实验:实验结果表明,在一般湍流区内,雷诺准数与直管摩擦系数呈非线性关系,验证了雷诺准数与直管摩擦系数的关系曲线。

3. 流体流动阻力测定实验:实验结果表明,管件和阀门对流体流动阻力有显著影响,其中弯头、三通等管件对阻力的影响较大。

六、讨论与心得1. 通过流体静力学实验,我们深入理解了不可压缩流体静力学基本方程,为后续学习流体动力学奠定了基础。

2. 流体阻力实验和流体流动阻力测定实验使我们认识到,在工程实践中,流体阻力对设备性能和能耗有重要影响。

因此,在设计过程中,应充分考虑流体阻力因素,以提高设备性能和降低能耗。

流动流体综合实验报告(3篇)

流动流体综合实验报告(3篇)

第1篇一、实验目的1. 掌握流体流动阻力测定的基本原理和方法。

2. 学习使用流体力学实验设备,如流量计、压差计等。

3. 通过实验,了解流体流动阻力在工程中的应用,如管道设计、流体输送等。

4. 分析实验数据,验证流体流动阻力理论,并探讨其影响因素。

二、实验原理流体流动阻力主要分为直管摩擦阻力和局部阻力。

直管摩擦阻力是由于流体在管道中流动时,与管道壁面产生摩擦而导致的能量损失。

局部阻力是由于流体在管道中遇到管件、阀门等局部阻力系数较大的部件时,流动方向和速度发生改变而导致的能量损失。

直管摩擦阻力计算公式为:hf = f (l/d) (u^2/2g)式中:hf为直管摩擦阻力损失,f为摩擦系数,l为直管长度,d为管道内径,u 为流体平均流速,g为重力加速度。

局部阻力计算公式为:hj = K (u^2/2g)式中:hj为局部阻力损失,K为局部阻力系数,u为流体平均流速。

三、实验设备与仪器1. 实验台:包括直管、弯头、三通、阀门等管件。

2. 流量计:涡轮流量计。

3. 压差计:U型管压差计。

4. 温度计:水银温度计。

5. 计时器:秒表。

6. 量筒:500mL。

7. 仪器架:实验台。

四、实验步骤1. 准备实验台,安装直管、弯头、三通、阀门等管件。

2. 连接流量计和压差计,确保仪器正常运行。

3. 在实验台上设置实验管道,调整管道长度和管件布置。

4. 开启实验台水源,调整流量计,使流体稳定流动。

5. 使用压差计测量直管和管件处的压力差,记录数据。

6. 使用温度计测量流体温度,记录数据。

7. 计算直管摩擦阻力损失和局部阻力损失。

8. 重复步骤4-7,改变流量和管件布置,进行多组实验。

五、实验数据记录与处理1. 记录实验管道长度、管径、管件布置等信息。

2. 记录不同流量下的压力差、流体温度等数据。

3. 计算直管摩擦阻力损失和局部阻力损失。

4. 绘制直管摩擦阻力损失与流量关系曲线、局部阻力损失与流量关系曲线。

六、实验结果与分析1. 通过实验数据,验证了流体流动阻力理论,即直管摩擦阻力损失和局部阻力损失随流量增加而增大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验四 化工流体过程综合实验一、实验目的1.掌握光滑直管、粗糙直管阻力系数的测量方法;并绘制光滑管及粗糙管的e R -λ曲线;将其与摩擦系数图进行比较;2.掌握阀门的局部阻力系数的测量方法;3.了解各种流量计节流式、转子、涡轮的结构、性能及特点;掌握其使用方法;掌握节流式流量计标定方法;会测定并绘制文丘里、孔板、喷嘴流量计流量标定曲线流量-压差关系及流量系数和雷诺数之间的关系e o R C -关系;4.了解离心泵的结构、操作方法;掌握离心泵特性曲线测定方法;并能绘制相应曲线..二、实验内容1.测定光滑直管和粗糙直管摩擦阻力系数;绘制光滑管及粗糙管的e R -λ曲线;2.测定阀门的局部阻力系数;3.测定并绘制文丘里、孔板、喷嘴流量计三选一流量标定曲线流量-压差关系及流量系数和雷诺数之间的关系e o R C -关系;4.测量离心泵的特性曲线;并绘制相应曲线;确定其最佳工作范围..三、实验原理、方法和手段1.流体阻力实验a.直管摩擦系数λ与雷诺数Re 的测定:直管的摩擦阻力系数是雷诺数和相对粗糙度的函数;即)/(Re,d f ελ=;对一定的相对粗糙度而言;(Re)f =λ..流体在一定长度等直径的水平圆管内流动时;其管路阻力引起的能量损失为:ρρff p p p h ∆=-=21 ⑴又因为摩擦阻力系数与阻力损失之间有如下关系范宁公式22u d l p h ff λρ=∆= ⑵整理⑴⑵两式得22u p l d f∆⋅⋅=ρλ ⑶ μρ⋅⋅=u d R e ⑷式中: -d 管径;m ;-∆f p 直管阻力引起的压强降;Pa ;-l 管长;m ;-u 流速;m / s ;-ρ流体的密度;kg / m 3;-μ流体的粘度;N·s / m 2.. 在实验装置中;直管段管长l 和管径d 都已固定..若水温一定;则水的密度ρ和粘度μ也是定值..所以本实验实质上是测定直管段流体阻力引起的压强降f p ∆与流速u 流量V 之间的关系.. 根据实验数据和式⑶可计算出不同流速下的直管摩擦系数λ;用式⑷计算对应的Re ;从而整理出直管摩擦系数和雷诺数的关系;绘出λ与Re 的关系曲线.. b.局部阻力系数ζ的测定:22'u p h ff ζρ=∆=' 2'2u p f∆⋅⎪⎪⎭⎫ ⎝⎛=ρζ式中: -ζ局部阻力系数;无因次;-∆'f p 局部阻力引起的压强降;Pa ;-'f h 局部阻力引起的能量损失;J /kg..图-1 局部阻力测量取压口布置图局部阻力引起的压强降'f p ∆ 可用下面的方法测量:在一条各处直径相等的直管段上;安装待测局部阻力的阀门;在其上、下游开两对测压口a-a'和b-b ';见图-1;使ab =bc ; a 'b '=b 'c '则 △P f;a b =△P f;bc ;△P f;a 'b '= △P f;b 'c '在a~a '之间列柏努利方程式:P a -P a ' =2△P f;a b +2△P f;a 'b '+△P'f ⑸在b~b '之间列柏努利方程式:P b -P b ' = △P f;bc +△P f;b 'c '+△P 'f= △P f;a b +△P f;a 'b '+△P 'f ⑹ 联立式⑸和⑹;则:'f P ∆=2P b -P b '-P a -P a '为了实验方便;称P b -P b '为近点压差;称P a -P a '为远点压差..其数值用差压传感器来测量..2.流量计性能测定:流体通过节流式流量计时在上、下游两取压口之间产生压强差;它与流量的关系为:ρ)(200下上p p A C V s -=式中:—S V 被测流体水的体积流量;m 3/s ; —0C 流量系数;无因次; —0A 流量计节流孔截面积;m 2;—下上p p -流量计上、下游两取压口之间的压强差;Pa ;—ρ被测流体水的密度;kg /m 3 ..用涡轮流量计作为标准流量计来测量流量V S ..;每一个流量在压差计上都有一对应的读数;将压差计读数△P 和流量V s 绘制成一条曲线;即流量标定曲线..同时利用上式整理数据可进一步得到C 0—Re 关系曲线.. 3.离心泵性能测定实验离心泵的特征方程是从理论上对离心泵中液体质点的运动情况进行分析研究后;得出的离心泵压头与流量的关系..离心泵的性能受到泵的内部结构、叶轮形式和转数的影响..故在实际工作中;其内部流动的规律比较复杂;实际压头要小于理论压头..因此;离心泵的扬程尚不能从理论上作出精确的计算;需要实验测定.. a.扬程H 的测定:在泵的吸入口和排出口之间列柏努利方程()出入入出入出入出出入入出出入入入--+-+-+-=+++=+++f f h guu g p p z z H h g u g p z H g u g p z 2222222ρρρ上式中出入-f h 是泵的吸入口和排出口之间管路内的流体流动阻力;与柏努利方程中其它项比较;出入-f h 值很小;故可忽略..于是上式变为:()gu u g p p z z H 222入出入出入出-+-+-=ρ将测得的()入出z z -和入出p p -的值以及计算所得的出入u u ,代入上式即可求得H 的值.. b.轴功率N 的测定:功率表测得的功率为电动机的输入功率..由于泵由电动机直接带动;传动效率可视为1;所以电动机的输出功率等于泵的轴功率..即: 泵的轴功率N = 电动机的输出功率;kw电动机的输出功率 = 电动机的输入功率×电动机的效率.. 泵的轴功率 = 功率表读数×电动机效率;kw.. c.效率η的测定:1021000ρρηHQ g HQ Ne NNe===式中: η—泵的效率;N —泵的轴功率;kw ; Ne —泵的有效功率kw ; H —泵的扬程;m ;Q—泵的流量;m3/s—水的密度;kg/m3四、实验组织运行要求集中授课形式五、实验条件1.实验设备主要技术参数:a.流体阻力部分:被测直管段:光滑管管径d-0.008 m 管长L-1.700 m 材料不锈钢粗糙管管径d-0.010 m 管长L-1.700 m 材料不锈钢玻璃转子流量计:LZB—25 100~1000L/hV A10-15F 10~100L/h压差传感器:型号LXWY 测量范围200 KPa数字显示仪表:测量参数名称仪表名称数量温度AI-501B 1压差AI-501BV24 1流量AI-501BV24 1功率AI-501B 1离心泵:型号WB70/055b.流量计性能部分:流量测量:文丘里流量计文丘里喉径0.020m孔板流量计孔径0.020m喷嘴流量计孔径0.020m实验管路管径:0.042mc.离心泵性能部分:离心泵:型号WB70/055 电机效率60%;真空表:用于泵吸入口压强的测量测量范围0.1-0MPa 精度1.5级;真空表测压位置管内径d1=0.036m压力表:用于泵出口压力的测量测量范围0-0.25MPa 精度1.5级压强表测压位置管内径d2=0.042m流量计:涡轮流量计精度0.5级;两测压口之间距离:真空表与压强表测压口之间的垂直距离h0=0.25md.管路特性部分:变频器:型号E301-201-H 规格:0-50Hz2.实验装置流程图及流程简介:图-2 流体流动过程综合实验流程示意图1-水箱;2-水泵;3-入口真空表;4-出口压力表;5、16-缓冲罐;6、14-测局部阻力近端阀;7、15-测局部阻力远端阀;8、17-粗糙管测压阀;9、21-光滑管测压阀;10-局部阻力阀;11-文丘里流量计孔板流量计;12-压力传感器;13-涡流流量计;18、32-阀门;20-粗糙管阀;22-小转子流量计;23-大转子流量计;24阀门;25-水箱放水阀;26-倒U型管放空阀;27- 倒U型管;28、30-倒U型管排水阀;29、31-倒U型管平衡阀⑴流体阻力测量流程:水泵2将储水槽1中的水抽出;送入实验系统;经玻璃转子流量计22、23测量流量;然后送入被测直管段测量流体流动阻力;经回流管流回储水槽1..被测直管段流体流动阻力ΔP可根据其数值大小分别采用变送器12或空气—水倒置U型管来测量..⑵流量计、离心泵性能测定流程:水泵2将水槽1内的水输送到实验系统;流体经涡轮流量计13计量;用流量调节阀32调节流量;回到储水槽..同时测量文丘里流量计两端的压差;离心泵进出口压强、离心泵电机输入功率并记录..⑶管路特性测量流程:用流量调节阀32调节流量到某一位置;改变电机频率;测定涡轮流量计的频率、泵入口压强、泵出口压强并记录..六、实验步骤1.流体阻力测量:⑴向储水槽内注水至水箱三分之二..最好使用蒸馏水;以保持流体清洁⑵光滑管阻力测定:关闭粗糙管路阀门;将光滑管路阀门全开;在流量为零条件下;打开通向倒置U型管的进水阀;检查导压管内是否有气泡存在..若倒置U型管内液柱高度差不为零;则表明导压管内存在气泡..需要进行赶气泡操作..导压系统如图-3所示:3、4-排水阀;11- U型管进水阀;12-压力传感器;26- U型管放空阀;27-U型管图-3 导压系统示意图导压系统排气操作方法如下:a.打开11;3;4; 10~30秒层流实验时30~60秒;b.关闭11;c.打开26;将倒U型压差计中的水排净;d.关闭3;4;26;e.打开11;使水进入倒U型压差计;f.闭流量调节阀24;此时若倒U型压差计中的差值为0;则说明管线中的气已排净..如不为零则表明管路中仍有气泡存在;需要重复进行赶气泡操作..该装置两个转子流量计并联连接;根据流量大小选择不同量程的流量计测量流量..差压变送器与倒置U型管亦是并联连接;用于测量压差;小流量时用∪型管压差计测量;大流量时用差压变送器测量..应在最大流量和最小流量之间进行实验操作;一般测取15~20组数据.. 注:在测大流量的压差时应关闭U型管的进出水阀11;防止水利用U型管形成回路影响实验数据..⑶粗糙管阻力测定:关闭光滑管阀;将粗糙管阀全开;从小流量到最大流量;测取15~20组数据..⑷测取水箱水温..待数据测量完毕;关闭流量调节阀;停泵..⑸粗糙管、局部阻力测量方法同前..2.流量计、离心泵性能测定以文丘里流量计为例:⑴向储水槽内注入蒸馏水..检查流量调节阀32;压力表4的开关及真空表3的开关是否关闭应关闭..⑵启动离心泵;缓慢打开调节阀32至全开..待系统内流体稳定;即系统内已没有气体;打开压力表和真空表的开关;方可测取数据..⑶用阀门32调节流量;从流量为零至最大或流量从最大到零;测取10~15组数据;同时记录涡轮流量计频率、文丘里流量计的压差、泵入口压强、泵出口压强、功率表读数;并记录水温..⑷实验结束后;关闭流量调节阀;停泵;关闭电源..七、实验注意事项:1.直流数字表操作方法请仔细阅读说明书;待熟悉其性能和使用方法后再进行使用操作..2.启动离心泵之前以及从光滑管阻力测量过渡到其它测量之前;都必须检查所有流量调节阀是否关闭..3.利用压力传感器测量大流量下△P时;应切断空气—水倒置∪型玻璃管的阀门否则将影响测量数值的准确..4.在实验过程中每调节一个流量之后应待流量和直管压降的数据稳定以后方可记录数据..5.若之前较长时间未做实验;启动离心泵时应先盘轴转动;否则易烧坏电机..6.该装置电路采用五线三相制配电;实验设备应良好接地..7.使用变频调速器时一定注意FWD指示灯亮;切忌按;REV指示灯亮时电机反转..8.启动离心泵前;必须关闭流量调节阀;关闭压力表和真空表的开关;以免损坏测量仪表..9.实验水质要清洁;以免影响涡轮流量计运行..八、思考题1.本实验中的U型压差计的指示剂是何物为什么选择它2.本实验中;倒置U型压差计一开始就排了气的;为什么在实验过程中还可以两边示数自由增大和减小3.在做各实验时;如何判断流量这一数据是否合理一般气体流速和流体流速各在什么范围九、实验报告实验报告应体现预习、实验记录和实验报告1.实验预习在实验前每位同学都需要对本次实验进行认真的预习;并写好预习报告;在预习报告中要写出实验目的、要求;需要用到的仪器设备、物品资料以及简要的实验步骤;形成一个操作提纲..对实验中的安全注意事项及可能出现的现象等做到心中有数;但这些不要求写在预习报告中..2.实验记录学生开始实验时;应该将记录本放在近旁;将实验中所做的每一步操作、观察到的现象和所测得的数据及相关条件如实地记录下来..实验记录中应有指导教师的签名..附:数据记录表a.直管阻力损失的测定表一流体阻力光滑管实验数据表表二流体阻力粗糙管实验数据表b.局部阻力损失的测定表三局部阻力实验数据表c.流量计性能测定表四流量计性能测定实验数据表d.离心泵特性曲线测定表五离心泵性能测定实验数据表3.数据处理要求实验数据处理需详细写出典型计算步骤;数据处理结果填入数据记录表;选用相应坐标纸绘制实验内容中要求绘制的曲线..4.实验总结对实验数据、实验中的特殊现象、实验操作的成败、实验的关键点等内容进行整理、解释、分析总结;回答思考题;提出实验结论或提出自己的看法等..。

相关文档
最新文档