《高等数学一》第四章-微分中值定理和导数的应用-课后习题汇总(含答案解析)

《高等数学一》第四章-微分中值定理和导数的应用-课后习题汇总(含答案解析)
《高等数学一》第四章-微分中值定理和导数的应用-课后习题汇总(含答案解析)

第四章微分中值定理和导数的应用[单选题]

1、

曲线的渐近线为()。

A、仅有铅直渐近线

B、仅有水平渐近线

C、既有水平渐近线又有铅直渐近线

D、无渐近线

【从题库收藏夹删除】

【正确答案】 B

【您的答案】您未答题

【答案解析】

本题考察渐近线计算.

因为,所以y存在水平渐近线,且无铅直渐近线。

[单选题]

2、

在区间[0,2]上使罗尔定理成立有中值为ξ为()

A、4

B、2

C、3

D、1

【从题库收藏夹删除】

【正确答案】 D

【您的答案】您未答题

【答案解析】

,罗尔定理是满足等式f′(ξ)=0,从而2ξ-2=0,ξ=1. [单选题]

3、

,则待定型的类型是().

A、

B、

C、

D、

【从题库收藏夹删除】

【正确答案】 D

【您的答案】您未答题

【答案解析】

由于当x趋于1时,lnx趋于0,ln(1-x)趋于无穷,所以是型. [单选题]

4、

下列极限不能使用洛必达法则的是().

A、

B、

C、

D、

【从题库收藏夹删除】

【正确答案】 D

【您的答案】您未答题

【答案解析】

由于当x趋于无穷时,cosx的极限不存在,所以不能用洛必达法则.

[单选题]

5、

在区间[1,e]上使拉格朗日定理成立的中值为ξ=().

A、1

B、2

C、e

D、

【从题库收藏夹删除】

【正确答案】 D

【您的答案】您未答题

【答案解析】本题考察中值定理的应用。

[单选题]

6、

如果在内,且在连续,则在上().

A、

B、

C、

D、

【从题库收藏夹删除】

【正确答案】 C

【您的答案】您未答题

【答案解析】

在内,说明为单调递增函数,由于在连续,所以在

上f(a)<f(x)<f(b).

[单选题]

7、

的单调增加区间是().

A、(0,+∞)

B、(-1,+∞)

C、(-∞,+∞)

D、(1,+∞)

【从题库收藏夹删除】

【正确答案】 D

【您的答案】您未答题

【答案解析】

,若求单调增加区间就是求的区间,也就是2x-2>0,从而x>1. [单选题]

8、

().

A、-1

B、0

C、1

D、∞

【从题库收藏夹删除】

【正确答案】 C

【您的答案】您未答题

【答案解析】

[单选题]

9、

设,则().

A、是的最大值或最小值

B、是的极值

C、不是的极值

D、可能是的极值

【从题库收藏夹删除】

【正确答案】 D

【您的答案】您未答题

【答案解析】

由,我们不能判断f(0)是极值点,所以选D. [单选题]

10、

的凹区间是().

A、(0,+∞)

B、(-1,+∞)

C、(-∞,+∞)

D、(1,+∞)

【从题库收藏夹删除】

【正确答案】 B

【您的答案】您未答题

【答案解析】

若求凹区间则就是求的区间,即6x+6>0,即x>-1.

[单选题]

11、

的水平渐近线是().

A、x=1,x=-2

B、x=-1

C、y=2

D、y=-1

【从题库收藏夹删除】

【正确答案】 C

【您的答案】您未答题

【答案解析】水平渐近线就是当x趋于无穷时,y的值就是水平渐近线,x趋于无穷时,y的值是2,所以y=2是水平渐近线;当y趋于无穷时,x的值就是垂直渐近线,本题中由于分母可以分解为(x+1)(x-1),所以当x趋于1或-1时y的值趋于无穷.即x=1,x=-1都是垂直渐近线.

[单选题]

12、

设某商品的需求量Q对价格P的函数关系为,则P=4时的边际需求为().

A、-8

B、7

C、8

D、-7

【从题库收藏夹删除】

【正确答案】 A

【您的答案】您未答题

【答案解析】

当P=4时,Q=-8.

[单选题]

13、

设某商品的需求函数为,其中表示商品的价格,Q为需求量,a,b为正常数,则需求量对价格的弹性().

A、

B、

C、

D、

【从题库收藏夹删除】

【正确答案】 C

【您的答案】您未答题

【答案解析】

由弹性定义可知,

[单选题]

14、

设函数在a处可导,,则().

A、

B、5

C、2

D、

【从题库收藏夹删除】

【正确答案】 A

【您的答案】您未答题

【答案解析】

因为f(x)可导,可用洛必达法则,用导数定义计算.

所以

[单选题]

15、

已知函数(其中a为常数)在点处取得极值,则a=().

A、1

B、2

C、0

D、3

【从题库收藏夹删除】

【正确答案】 C

【您的答案】您未答题

【答案解析】

在点处取得极值,

[单选题]

16、某商店每周购进一批商品,进价为6元/件,若零售价定位10元/件,可售出120件;当售价降低0.5元/件时,销量增加20件,问售价p定为多少时利润最大?().

A、9.5

B、9

C、8.5

D、7

【从题库收藏夹删除】

【正确答案】 A

【您的答案】您未答题

【答案解析】

设销量为Q,则Q=120+20(10-P)·2=520-40P

利润

此时即取得最大值.

[单选题]

17、若在(a,b)上,则函数y=f(x)在区间(a,b)上是()

A、增加且凹的

B、减少且凹的

C、增加且凸的

D、减少且凸的

【从题库收藏夹删除】

【正确答案】 C

【您的答案】您未答题

【答案解析】

[单选题]

18、

求极限=().

A、2

B、

C、0

D、1

【从题库收藏夹删除】

【正确答案】 B

【您的答案】您未答题

【答案解析】

[单选题]

19、

函数在区间上的极大值点=().

A、0

B、

C、

D、

【从题库收藏夹删除】

【正确答案】 C

【您的答案】您未答题

【答案解析】

令,

当时,

当时,

当时,函数有极大值.

[单选题]

20、

设某商品的供给函数为,其中p为商品价格,S为供给量,a,b为正常数,则该商品的供给价格弹性().

A、

B、

C、

D、

【从题库收藏夹删除】

【正确答案】 A

【您的答案】您未答题

【答案解析】

[单选题]

21、

某产品产量为q时总成本C(q)=1100+,则q=1200时的边际成本为() A、0

B、

C、1

D、2

【从题库收藏夹删除】

【正确答案】 D

【您的答案】您未答题

【答案解析】,q=1200时的边际成本为2.

[单选题]

22、

已知函数f(x)=ax2-4x+1在x=2处取得极值,则常数a=()

A、0

B、1

C、2

D、3

【从题库收藏夹删除】

【正确答案】 B

【您的答案】您未答题

【答案解析】

,得到a=1.

[单选题]

第3章 微分中值定理与导数的应用总结

1基础知识详解 先回顾一下第一章的几个重要定理 1、0 lim ()()x x x f x A f x A α→∞→=?=+ ,这是极限值与函数值(貌似是邻域)之间的 关系 2、=+()o αββαα?: ,这是两个等价无穷小之间的关系 3、零点定理: 条件:闭区间[a,b]上连续、()()0f a f b < (两个端点值异号) 结论:在开区间(a,b)上存在ζ ,使得()0f ζ= 4、介值定理: 条件:闭区间[a,b]上连续、[()][()]f a A B f b =≠= 结论:对于任意min(,)max(,)A B C A B <<,一定在开区间(a,b)上存在ζ,使得 ()f C ζ=。 5、介值定理的推论: 闭区间上的连续函数一定可以取得最大值M 和最小值m 之间的一切值。 第三章 微分中值定理和导数的应用 1、罗尔定理 条件:闭区间[a,b]连续,开区间(a,b)可导,f(a)=f(b) 结论:在开区间(a,b)上存在ζ ,使得'()0f ζ= 2、拉格朗日中值定理 条件:闭区间[a,b]连续,开区间(a,b)可导 结论:在开区间(a,b)上存在ζ ,使得()()'()()f b f a f b a ζ-=- 3、柯西中值定理

条件:闭区间[a,b]连续,开区间(a,b)可导,()0,(,)g x x a b ≠∈ 结论:在开区间(a,b)上存在ζ ,使得 ()()'() ()()'() f b f a f g b g a g ζζ-= - 拉格朗日中值定理是柯西中值定理的特殊情况,当g(x)=x 时,柯西中值定理就变成了拉格朗日中值定理。 4、对罗尔定理,拉格朗日定理的理解。 罗尔定理的结论是导数存在0值,一般命题人出题证明存在0值,一般都用罗尔定理。当然也有用第一章的零点定理的。但是两个定理有明显不同和限制,那就是,零点定理两端点相乘小于0,则存在0值。而罗尔定理是两个端点大小相同,则导数存在0值。如果翻来覆去变形无法弄到两端相等,那么还是别用罗尔定理了,两端相等,证明0值是采用罗尔定理的明显特征。 拉格朗日定理是两个端点相减,所以一般用它来证明一个函数的不等式: 122()()-()1()m x f x f x m x <<; 一般中间都是两个相同函数的减法,因为这样便 于直接应用拉格朗日,而且根据拉格朗日的定义,一般区间就是12[,]x x 。 5、洛必达法则应用注意 正常求极限是不允许使用洛必达法则的,洛必达法则必须应用在正常求不出来的不定式极限中。不定式极限有如下7种: 000,,0*,,0,1,0∞∞ ∞∞-∞∞∞ 每次调用洛必达方法求解极限都必须遵从上述守则。 6、泰勒公式求极限。 如果极限是0 lim () x x f x → 那么就在0x 附近展开。如果极限是

微分中值定理例题

理工大学 微积分-微分中值定理费马定理罗尔定理拉格朗日定理柯西定理

()()1.()0,(0)0,f x f f f ?ξξξξζξξξ'' <=>><≤[][]''''''[]<<≤121212 121212122111211121 1221设证明对任何的x 0,x0,有(x+x)(x)+f(x). 解:不妨设xx,(x)=f (x+x)-f(x)-f(x) =f(x+x)-f(x)-f(x)-f(0) =f()x-f()x=xf()-f()=xf-.因为,0xx()ξζ?''<<<<2112x+x,又f0,所以(x)0,所以原不等式成立。 12n 12n 12n 11221122n 001 1 000.x b f x .x x x b 1,f )f x f x f x x *,()()()()n n n n n i i i i i i i X b b x f x f x f x x x λλλλλλλχλχλχλλλλλ=='' >???∈<<1++?+=++?+≤?=<=>α. '''=+-+ ∑∑2设f ()在(a ,)内二阶可导,且()0,,(a ,),0,,,且则,试证明(()+()++(). 解:设同理可证:()20000i 00 1 1 1 1 0000111() ()()()().x 2! ()()()()()(()()().) n n n i i i i i i i n n i n n i i i i i i i i i i i i f x x f x f x x x f x f x f x f x x x f x X X x x f x f x λλλλξξλλλ=======?? ''-'-≥+-<<'≥+-===- ??? ∑∑∑∑∑∑∑注:x ()3.)tan . 2 F ,F 2 (0)0,(0)0,((cos 2 F f x f F F f ππξ ξπξξπππ πππξ [0]0'∈=[0]0=∴===[0]∈Q 设f(x)在,上连续,在(,)内可导,且f (0)=0,求证:至少存在(0,),使得2f ( 证明:构造辅助函数:(x)=f(x)tan 则(x)在,上连续, 在(,)内可导, 且))所以(x)在,上满足罗尔定理的条件,故由罗尔定理知:至少存在(0()()()()()()F 011F x cos sin F cos sin 0222222 cos 0)tan 2 2 x x x f f f πξξξ ξξξξ ξ ξπξξ'=''''=- =-='∈≠=,),使得,而f(x)f()又(0,),所以,上式变形即得:2f (,证毕。

关于导数的29个典型习题

关于导数的29个典型习题 习题1设函数在0=x 的某邻域内1 C 类(有一阶连续导数),且.0)0(,0)0(≠'≠f f 若)0()2()(f h f b h f a -+在 0→h 时是比h 高阶的无穷小,试确定b a ,的值。 解 由题设知 0)0()1()]0()2()([lim 0 =-+=-+→f b a f h f b h f a h . .01,0)0(=-+∴≠b a f 由洛比达法则知 ).0()2(1 ) 2(2)(lim )0()2()(lim 000f b a h f b h f a h f h bf h af h h '+='+'=-+=→→洛,0)0(≠'f 故.02=+b a 联立可 解出.1,2-==b a 习题2 设,0,00,)()(?????=≠-=-x x x e x g x f x 其中)(x g 有二阶连续导数,且1)0(,1)0(-='=g g .(1) 求);(x f '(2) 讨论 )(x f '在),(+∞-∞上的连续性. 解 (1) 当0≠x 时,用公式有 ,)1()()()(])([)(2 2x e x x g x g x x e x g e x g x x f x x x ---++-'=+-+'=' 当0=x 时,用定义求导数,有 .21)0()(lim )0(2 0-''=-='-→g x e x g f x x 二次洛 ???? ?=-''≠++-'='∴-.0,2 1)0(0,)1()()()(2x g x x e x x g x g x x f x (2) 因在0=x 处有 ).0(2 1)0(2)(lim 2)1()()()(lim )(lim 000f g e x g x e x e x g x g x x g x f x x x x x x '=-''=-''=+-+'-''+'='-→--→→洛 而)(x f '在0≠x 处连续,故).,()(+∞-∞∈'C x f 习题3 证明:若022=++++c y b x a y x (圆),其中c b a ,,为定数),04(22>-+c b a 则 =+x d y d dx dy 222 3 2])(1[定数。 证 求导,,022='++'+y b a y y x 即.22b y a x y ++-=' 再导一次,,02222 =''+'+''+y b y y y 即 .2)1(22b y y y +'--='' )(.42 1...1)2(21...)1(22 22 3 2定数c b a y b y y y -+-=='++-=='''+∴

高数第三章一元函数的导数和微分

第三章一元函数的导 数和微分【字体:大中小】【打印】 3.1 导数概念 一、问题的提出 1.切线问题 割线的极限位置——切线位置 如图,如果割线MN绕点M旋转而趋向极限位置MT,直线MT就称为曲线C在点M处的切线. 极限位置即 切线MT的斜率为 2.自由落体运动的瞬时速度问题

二、导数的定义 设函数y=f(x)在点的某个邻域内有定义,当自变量x在处取得增量Δx(点仍在该邻域内)时,相应地函数y取得增量;如果Δy与Δx之比当Δx→0时的极限存在,则称函数y=f(x)在点处可导,并称这个极限为函数 y=f(x)在点处的导数,记为 即 其它形式 关于导数的说明: 在点处的导数是因变量在点处的变化率,它反映了因变量随自变量的变化而变化的快慢程度。 如果函数y=f(x)在开区间I内的每点处都可导,就称函数f(x)在开区间I内可导。 对于任一,都对应着f(x)的一个确定的导数值,这个函数叫做原来函数f(x)

的导函数,记作 注意: 2.导函数(瞬时变化率)是函数平均变化率的逼近函数. 导数定义例题: 例1、115页8 设函数f(x)在点x=a可导,求: (1) 【答疑编号11030101:针对该题提问】 (2) 【答疑编号11030102:针对该题提问】

三、单侧导数 1.左导数: 2.右导数: 函数f(x)在点处可导左导数和右导数都存在且相等. 例2、讨论函数f(x)=|x|在x=0处的可导性。 【答疑编号11030103:针对该题提问】 解

闭区间上可导的定义:如果f(x)在开区间(a,b)内可导,且及都存在,就说f(x)在闭区间[a,b]上可导. 由定义求导数 步骤: 例3、求函数f(x)=C(C为常数)的导数。 【答疑编号11030104:针对该题提问】 解 例4、设函数 【答疑编号11030105:针对该题提问】 解

高等数学第三章微分中值定理与导数的应用的习题库

第三章 微分中值定理与导数的应用 一、判断题 1. 若()f x 定义在[,]a b 上,在(a,b)内可导,则必存在(a,b)ξ∈使'()0f ξ=。( ) 2. 若()f x 在[,]a b 上连续且()()f a f b =,则必存在(a,b)ξ∈使'()0f ξ=。 ( ) 3. 若函数()f x 在[,]a b 内可导且lim ()lim ()x a x b f x f x →+→- =,则必存在(a,b)ξ∈使'()0f ξ=。( ) 4. 若()f x 在[,]a b 内可导,则必存在(a,b)ξ∈,使'()(a)()()f b f f b a ξ-=-。( ) 5. 因为函数()f x x =在[1,1]-上连续,且(1)(1)f f -=,所以至少存在一点()1,1ξ∈-使 '()0f ξ=。 ( ) 6. 若对任意(,)x a b ∈,都有'()0f x =,则在(,)a b 内()f x 恒为常数。 ( ) 7. 若对任意(,)x a b ∈,都有''()()f x g x =,则在(,)a b 内()()f x g x =。 ( ) 8. arcsin arccos ,[1,1]2 x x x π +=∈-。 ( ) 9. arctan arctan ,(,)2 x x x π += ∈-∞+∞。 ( ) 10. 若()(1)(2)(3)f x x x x x =---,则导函数'()f x 有3个不同的实根。 ( ) 11. 若22()(1)(4)f x x x =--,则导函数'()f x 有3个不同的实根。 ( ) 12. ' ' 222(2)lim lim 21(21)x x x x x x →→=-- ( ) 13. 22' 0011lim lim()sin sin x x x x e e x x →→--= ( ) 14. 若'()0f x >则()0f x >。 ( ) 15. 若在(,)a b 内()f x ,()g x 都可导,且''()()f x g x >,则在(,)a b 内必有()()f x g x >。( ) 16. 函数()arctan f x x x =-在R 上是严格单调递减函数。 ( ) 17. 因为函数()f x x =在0x =处不可导,所以0x =不是()f x 的极值点。 ( ) 18. 函数()f x x =在0x =的领域内有()(0)f x f ≥,所以()f x 在0x =处取得极小值。( ) 19. 函数sin y x x =-在[0,2]π严格单调增加。 ( ) 20. 函数1x y e x =+-在(,0]-∞严格单调增加。 ( ) 21. 方程32210x x x ++-=在()0,1内只有一个实数根。 ( ) 22. 函数y [0,)+∞严格单调增加。 ( ) 23. 函数y (,0]-∞严格单调减少。 ( ) 24. 若'0()0f x =则0x 必为'0()f x 的极值点。 ( ) 25. 若0x 为()f x 极值点则必有'(0)0f =。 ( )

(完整版)利用微分中值定理证明不等式

微分中值定理证明不等式 微分中值定理主要有下面几种: 1、费马定理:设函数()f x 在点0x 的某邻域内有定义,且在点0x 可导,若点0x 为()f x 的极值点,则必有 0()0f x '=. 2、罗尔中值定理:若函数()f x 满足如下条件: (1)()f x 在闭区间[,]a b 上连续; (2)()f x 在开区间(,)a b 内可导; (3)()()f a f b =, 则在开区间(,)a b 内至少存在一点ξ,使得 ()0f ξ'=. 3、拉格朗日中值定理:若函数()f x 满足如下条件: (1)()f x 在闭区间[,]a b 上连续; (2)()f x 在开区间(,)a b 内可导; 则在开区间(,)a b 内至少存在一点ξ,使得 ()()()f b f a f b a ξ-'=-. 4、柯西中值定理:若函数()f x ,()g x 满足如下条件: (1)在闭区间[,]a b 上连续; (2)在开区间(,)a b 内可导; (3)()f x ',()g x '不同时为零; (4)()()g a g b ≠; 则在开区间(),a b 内存在一点ξ,使得 ()()()()()() f f b f a g g b g a ξξ'-='-. 微分中值定理在证明不等式时,可以考虑从微分中值定理入手,找出切入点,灵活运用相关微分中值定理,进行系统的分析,从而得以巧妙解决. 例1、 设 ⑴(),()f x f x '在[,]a b 上连续; ⑵()f x ''在(,)a b 内存在; ⑶()()0;f a f b == ⑷在(,)a b 内存在点c ,使得()0;f c > 求证在(,)a b 内存在ξ,使()0f ξ''<. 证明 由题设知存在1(,)x a b ∈,使()f x 在1x x =处取得最大值,且由⑷知1()0f x >,1x x =也是极大值点,所以 1()0f x '=. 由泰勒公式:211111()()()()()(),(,)2! f f a f x f x a x a x a x ξξ'''-=-+-∈. 所以()0f ξ''<. 例2 、设0b a <≤,证明ln a b a a b a b b --≤≤.

导数与微分测试题及答案(一)

导数与微分测试题(一) 一、选择题(每小题4分,共20分) 1、 设函数10 ()10 2 x x f x x ?≠??=??=?? 在0x =处( ) A 、不连续; B 、连续但不可导; C 、二阶可导; D 、仅一阶可导; 2、若抛物线2y ax =与曲线ln y x =相切,则a 等于( ) A 、1; B 、 12 ; C 、 12e ; D 、2e ; 3、设函数()ln 2f x x x =在0x 处可导,且0()2f x '=,则0()f x 等于( ) A 、1; B 、 2 e ; C 、 2e ; D 、e ; 4、设函数()f x 在点x a =处可导,则0 ()() lim x f a x f a x x →+--等于( ) A 、0; B 、()f a '; C 、2()f a '; D 、(2)f a '; 5、设函数()f x 可微,则当0x ?→时,y dy ?-与x ?相比是( ) A 、等价无穷小; B 、同阶非等价无穷小; C 、低阶无穷小; D 、高阶无穷小; 二、填空题(每小题4分,共20分) 1、设函数()f x x x =,则(0)f '=______; 2、 设函数()x f x xe =,则(0)f ''=______; 3、 设函数()f x 在0x 处可导,且0()f x =0,0()f x '=1,则 01lim ()n nf x n →∞ + =______; 4、 曲线2 28y x x =-+上点______处的切线平行于x 轴,点______处的 切线与x 轴正向的交角为 4 π 。

5、 d ______ = x e dx - 三、解答题 1、(7分)设函数()()() , ()f x x a x x ??=-在x a =处连续, 求()f a '; 2、(7分)设函数()a a x a x a f x x a a =++,求()f x '; 3、(8分)求曲线 sin cos 2x t y t =?? =? 在 6 t π = 处的切线方程和法线方程; 4、(7分)求由方程 1sin 02 x y y -+=所确定的隐函数y 的二阶导数 2 2 d y dx 5、(7分)设函数1212()()()n a a a n y x a x a x a =--- ,求 y ' 6、(10分)设函数2 12()12 x x f x ax b x ?≤?? =? ?+> ?? ,适当选择,a b 的值,使 得()f x 在12 x = 处可导 7(7分)若2 2 ()()y f x xf y x +=,其中 ()f x 为可微函数,求dy 8、(7分)设函数()f x 在[,]a b 上连续,且满足 ()()0,()()0f a f b f a f b +-''==?>,证明:()f x 在(,)a b 内至少存在一点c ,使得 ()0f c = 导数与微分测试题及答案(一) 一、1-5 CCBCD 二、1. 0; 2. 2; 3. 1; 4.(1,7)、329(, )24 ; 5. x e --; 三、1. 解:()() ()() ()lim lim ()x a x a f x f a x a x f a a x a x a ??→→--'===--;

最新微分中值定理习题五

微分中值定理习题五

微分中值定理习题五 1、?Skip Record If...? ?Skip Record If...? 2、?Skip Record If...? 3、?Skip Record If...? 4、?Skip Record If...? 5、?Skip Record If...? 6、?Skip Record If...? 7、?Skip Record If...? ?Skip Record If...? 8、?Skip Record If...? 9、?Skip Record If...? ?Skip Record If...? 10、?Skip Record If...? ?Skip Record If...? 11、?Skip Record If...? ?Skip Record If...??Skip Record If...? 12、?Skip Record If...? ?Skip Record If...??Skip Record If...? 13、?Skip Record If...? ?Skip Record If...? ?Skip Record If...? 14、?Skip Record If...? 15、?Skip Record If...? 16、?Skip Record If...?

17、?Skip Record If...? 18、?Skip Record If...? 19、?Skip Record If...? 20、?Skip Record If...? 21、?Skip Record If...? 22、?Skip Record If...? ?Skip Record If...? ?Skip Record If...?. 23、?Skip Record If...? 24、?Skip Record If...? ?Skip Record If...? 25、?Skip Record If...? ?Skip Record If...?,?Skip Record If...? 26、?Skip Record If...? 27、?Skip Record If...? 28、?Skip Record If...? 29、?Skip Record If...? 30、?Skip Record If...? 31、?Skip Record If...? 32、?Skip Record If...? 33、?Skip Record If...? 34、?Skip Record If...? 35?Skip Record If...??Skip Record If...??Skip Record If...??Skip Record If...?. 36、 ?Skip Record If...?

一元微分中值定理练习题

一元微分中值定理练习题 一、证明ff (nn )(ξξ)=00成立 1.若函数f(x)在(a,b)内有二阶导数,且f (x 1)=f (x 2)=f (x 3),其中 a 0, 证明存在ξ∈(a,b),使得f ′′(ξ)=0。 4.设曲线y=f(x)在[a,b]上二阶可导,连接点A(a,f(a)),B(b,f(b))的直线交曲线于点C(c,f(c))(a

导数与微分习题(基础题)

导数与微分习题(基础题) 1.设函数()x f y =,当自变量x 由0x 改变到x x ?+0时,相应函数的改变量=?y ( ) A .()x x f ?+0 B .()x x f ?+0 C .()()00x f x x f -?+ D .()x x f ?0 2.设()x f 在0x 处可导,则()()=?-?-→?x x f x x f x 000lim ( ) A .()0x f '- B .()0x f -' C .()0x f ' D .()02x f ' 3.函数()x f 在点0x 连续,是()x f 在点0x 可导的 ( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件 4.设函数()u f y =是可导的,且2x u =,则=dx dy ( ) A .()2x f ' B .()2x f x ' C .()22x f x ' D .()22x f x 5.若函数()x f 在点a 连续,则()x f 在点a ( ) A .左导数存在; B .右导数存在; C .左右导数都存在 D .有定义 6.()2-=x x f 在点2=x 处的导数是( ) A .1 B .0 C .-1 D .不存在 7.曲线545223-+-=x x x y 在点()1,2-处切线斜率等于( ) A .8 B .12 C .-6 D .6 8.设()x f e y =且()x f 二阶可导,则=''y ( ) A .()x f e B .()()x f e x f '' C .()()()[]x f x f e x f ''' D .()()[](){} x f x f e x f ''+'2 9.若()???≥+<=0 ,2sin 0,x x b x e x f ax 在0=x 处可导,则a ,b 的值应为( ) A .2=a ,1=b B . 1=a ,2=b C .2-=a ,1=b D .2=a ,1-=b

高等数学导数与微分练习题

作业习题 1、求下列函数的导数。 (1)223)1(-=x x y ; (2)x x y sin = ; (3)bx e y ax sin =; (4))ln(22a x x y ++=;(5)11arctan -+=x x y ;(6)x x x y )1(+=。 2、求下列隐函数的导数。 (1)0)cos(sin =+-y x x y ;(2)已知,e xy e y =+求)0(y ''。 3、求参数方程???-=-=) cos 1()sin (t a y t t a x )0(>a 所确定函数的一阶导数dx dy 与二阶导数 2 2dx y d 。 4、求下列函数的高阶导数。 (1),αx y =求)(n y ; (2),2sin 2x x y =求)50(y 。 5、求下列函数的微分。 (1))0(,>=x x y x ; (2)2 1arcsin x x y -= 。 6、求双曲线122 22=-b y a x ,在点)3,2(b a 处的切线方程与法线方程。 7、用定义求)0(f ',其中?????=, 0,1sin )(2 x x x f .0, 0=≠x x 并讨论导函数的连续性。 作业习题参考答案: 1、(1)解:])1[()1()(])1([23223223'-+-'='-='x x x x x x y ]))(1(2[)1(3223222'-+-=x x x x x x x x x x 2)1(2)1(323222?-+-= )37)(1(222--=x x x 。 (2)解:2sin cos )sin ( x x x x x x y -='='。 (3)解:bx be bx ae bx e y ax ax ax cos sin )sin (+='=' )cos sin (bx b bx a e ax +=。

微分中值定理的证明题(题目)

微分中值定理的证明题 1. 若()f x 在[,]a b 上连续,在(,)a b 上可导,()()0f a f b ==,证明:R λ?∈, (,)a b ξ?∈使得:()()0f f ξλξ'+=。 。 2. 设,0a b >,证明:(,)a b ξ?∈,使得(1)()b a ae be e a b ξξ-=--。 。 3. 设()f x 在(0,1)内有二阶导数,且(1)0f =,有2()()F x x f x =证明:在(0,1) 内至少存在一点ξ,使得:()0F ξ''=。 证 4. 设函数)(x f 在[0,1]上连续,在(0,1)上可导,0)0(=f ,1)1(=f .证明: (1)在(0,1)内存在ξ,使得ξξ-=1)(f . (2) 在(0,1)内存在两个不同的点ζ,1)()(//=ηζηf f 使得 5. 设)(x f 在[0,2a]上连续,)2()0(a f f =,证明在[0,a]上存在ξ使得 )()(ξξf a f =+. 6. 若)(x f 在]1,0[上可导,且当]1,0[∈x 时有1)(0<

9. 设()f x 在[,]a b 上连续,(,)a b 内可导(0),a b ≤<()(),f a f b ≠ 证明: ,(,)a b ξη?∈使得 ()().2a b f f ξηη +''= (1) 10. 已知函数)(x f 在[0 ,1]上连续,在(0 ,1)内可导,b a <<0,证明存在),(,b a ∈ηξ, 使)()()(3/22/2ηξηf b ab a f ++= 略) 11. 设)(x f 在a x ≥时连续,0)(时,0)(/>>k x f ,则在))(,(k a f a a -内0)(=x f 有唯一的实根 根 12. 试问如下推论过程是否正确。对函数21sin 0()0 0t t f t t t ?≠?=??=?在[0,]x 上应用拉格朗日中值定理得: 21s i n 0()(0)111s i n ()2s i n c o s 00x f x f x x f x x x ξξξξ --'====--- (0)x ξ<< 即:1 1 1cos 2sin sin x x ξξξ=- (0)x ξ<< 因0x ξ<<,故当0x →时,0ξ→,由01l i m 2s i n 0ξξξ+→= 01lim sin 0x x x +→= 得:0lim x +→1cos 0ξ=,即01lim cos 0ξξ+→= 出 13. 证明:02x π?<<成立2cos x x tgx x <<。

微分中值定理习题课

第三 微分中值定理习题课 教学目的 通过对所学知识的归纳总结及典型题的分析讲解,使学生对所学的知识有一个更深刻的理解和认识. 教学重点 对知识的归纳总结. 教学难点 典型题的剖析. 教学过程 一、知识要点回顾 1.费马引理. 2.微分中值定理:罗尔定理,拉格朗日中值定理,柯西中值定理. 3.微分中值定理的本质是:如果连续曲线弧AB 上除端点外处处具有不垂直于横轴的切线,则这段弧上至少有一点C ,使曲线在点C 处的切线平行于弦AB . 4.罗尔定理、拉格朗日中值定理、柯西中值的条件是充分的,但不是必要的.即当条件满足时,结论一定成立;而当条件不满足时,结论有可能成立,有可能不成立. 如,函数 (){ 2 ,01,0 , 1 x x f x x ≤<== 在[]1,0上不满足罗尔定理的第一个条件,并且定理的结论对其也是不成立的.而函数 (){ 2 1,11,1, 1 x x f x x --≤<= = 在[]1,1-上不满足罗尔定理的第一和第三个条件,但是定理的结论对其却是成立的. 5.泰勒中值定理和麦克劳林公式. 6.常用函数x e 、x sin 、x cos 、)1ln(x +、α )1(x +的麦克劳林公式. 7.罗尔定理、拉格朗日中值定理、柯西中值定理及泰勒中值定理间的关系. 8.00、∞∞ 、∞?0、∞-∞、00、∞1、0 ∞型未定式. 9.洛必达法则. 10.∞?0、00、∞1、0 ∞型未定式向00或∞∞ 型未定式的转化. 二、练习 1. 下面的柯西中值定理的证明方法对吗?错在什么地方?

由于()x f 、()x F 在[]b a ,上都满足拉格朗日中值定理的条件,故存在点()b a ,∈ξ,使得 ()()()()a b f a f b f -=-ξ', ()1 ()()()()a b F a F b F -'=-ξ. ()2 又对任一 (),,()0 x a b F x '∈≠,所以上述两式相除即得 ()()()()()()ξξF f a F b F a f b f ''= --. 答 上述证明方法是错误的.因为对于两个不同的函数()x f 和()x F ,拉格朗日中值定理公式中的ξ未必相同.也就是说在()b a ,内不一定存在同一个ξ,使得()1式和()2式同时成立. 例如,对于()2 x x f =,在[]1,0上使拉格朗日中值定理成立的 21 = ξ;对()3 x x F =, 在[]1,0上使拉格朗日中值定理成立的 33 = ξ,两者不等. 2. 设函数()x f y =在区间[]1,0上存在二阶导数,且 ()()()()x f x x F f f 2 ,010===.试证明在()1,0内至少存在一点ξ,使()0='ξF .还至少存在一点η,使()0F η''= 分析 单纯从所要证明的结果来看,首先应想到用罗尔定理.由题设知, ()()010==F F ,且()x F 在[]1,0上满足罗尔定理的前两个条件,故在()1,0内至少存在一 点ξ,使()0='ξF .至于后一问,首先得求出()x F ',然后再考虑问题. ()()()x f x x xf x F '+='22,且()00='F .这样根据题设,我们只要在[]ξ,0上对函数 ()x F '再应用一次罗尔定理,即可得到所要的结论. 证 由于()y f x =在[]1,0上存在二阶导数,且()()10F F =,()x F 在[]1,0上满足罗尔定理的条件,故在()1,0内至少存在一点ξ,使()0='ξF . 由于 ()()()x f x x xf x F '+='2 2, 且()00='F ,()x F '在[]ξ,0上满足罗尔定理的条件,故在 ()ξ,0内至少存在一点η,使

导数与微分练习题

题型 1.由已知导数,求切线的方程 2.对简单的、常见函数进行求导 3.对复合函数、隐函数、对数求导法进行求导 4.参数方程与一些个别函数的应用 5.常见的高阶导数及其求导 内容 一.导数的概念 1.导数的定义 2.导数的几何意义 3.导数的物理意义 4.可导与连续之间的关系 二.导数的计算 1.导数的基本公式 2.导数的四则运算法则 3.反函数的求导法则 4.复函数的求导法则 5.隐函数的求导 6.参数方程所确定的函数的导数 7. 对数求导法 8.高阶导数

三.微分 1.微分的定义 2.可导与可微的关系 3.复合函数的微分法则 4.微分在近似计算中的应用 典型例题 题型I 利用导数定义解题 题型II 导数在几何上的应用 题型III 利用导数公式及其求导法则求导 题型IV 求高阶导数 题型V 可导、连续与极限存在的关系 自测题二 一.填空题 二.选择题 三.解答题 4月9日微分练习题 基础题: (一)选择题 1.若 ? ??≥+<+=1,1,3)(2x b ax x x x f 在1=x 处可导,则( ) A. 2,2==b a B. 2,2=-=b a C. 2,2-==b a D. 2 ,2-=-=b a

2. 设 0'()2f x =,则000 ()() lim x f x h f x h h ?→+--=( ). A 、不存在 B 、 2 C 、 0 D 、 4 3. 设 )0()(32>=x x x f , 则(_))4(='f A.2 B.3 C.4 D.5 4.已知函数)(x f 具有任意阶导数,且2)]([)(x f x f =',则当n 为大于 2的正整数时, )(x f 的n 阶 导数 )()(x f n 是( )。 A 、1)]([+n x f n B 、1)]([!+n x f n C 、n x f 2)]([ D 、n x f n 2)]([! (二)填空题 5. 设 2 sin x e y = ,则=dy _____. 6.已知 x y 2sin =,则) (n y = . 7.设函数 ()y y x =由参数方程(),()x x y y θθ==确定,()x θ与()y θ均可导,且00()x x θ=, '0()2x θ=, 2x x dy dx ==,则'0()y θ= . 8.设 0,sin )(>=a x x f ,则=--→h a f h a f h 2) ()(lim ; 9. 已知设 cos2x y e = ,则=dy ____ _. 10. sin x y x = ,则2 x dy π==_____________ 11. 已知函数()x f x xe =,则(100)()f x = . 12. 设 )]([22x f x f y +=, 其中)(u f 为可导函数, 则 =dx dy 13.2 x x y =,则 dx dy .=______ 14. 已知函数)100()2)(1()(---=x x x x x f ,则)0('f = 15. 设函数,22x x y -+=求.) (n y . 综合题: (三)解答题 16. 求与抛物线2 25y x x =-+上连接两点(1,4)P 与(3,8)Q 的弦平行,且与抛物线相切的

导数及其应用典型例题

第一章 导数及其应用 1.1 变化率与导数 【知识点归纳】 1.平均变化率: 2.瞬时速度: 3.导数及导函数的概念: 4.导数的几何意义: 拓展知识: 5.平均变化率的几何意义: 6.导数与切线的关系: 【典型例题】 题型一 求平均变化率: 例 1.已知函数2 ()21y f x x ==-的图像上一点(1,1)及其邻近一点(1,1)x y +?+?,则y x ??=_______. 变式训练: 1.以00(0)v v >速度竖直向上抛出一物体,t 秒时的高度为201()2 s t v t gt =-,求物体在0t 到0t t +?这段时间的平均速度v . 2.求正弦函数sin y x =在0x =和2x π= 附近的平均变化率,并比较他们的大小.

题型二 实际问题中的瞬时速度 例 2 已知质点M 按规律223s t =+做直线运动(位移单位:cm ,时间单位:s ) (1)当2,0.01t t =?=时,求s t ??;(2)当2,0.001t t =?=时,求s t ??; (3)求质点M 在t=2时的瞬时速度. 题型三 求函数的导数及导函数的值 例 3求函数1y x x =-在1x =处的导数. 题型四 曲线的切线问题 例 4 (1)已知曲线22y x =上一点A (1,2),求点A 处的切线方程. (2)求过点(-1,-2)且与曲线32y x x =-想切的直线方程. (3)求曲线321()53f x x x = -+在x=1处的切线的倾斜角. (4)曲线3y x =在点P 处的切线斜率为3,求点P 的坐标.

高等数学考研大总结之四导数与微分知识讲解

第四章 导数与微分 第一讲 导数 一,导数的定义: 1函数在某一点0x 处的导数:设()x f y = 在某个()δ,0x U 内有定义,如果极限 ()()0 lim 00→??-?+x x x f x x f (其中()() x x f x x f ?-?+00称为函数()x f 在(0x ,0x +x ?)上的平均变化率(或差商)称此极限值为函数()x f 在0x 处的变化率)存在则称函数()x f 在0x 点可导.并称该极限值为()x f 在0x 点的导数记为()0/ x f ,若记()()00,x f x f y x x x -=?-=?则 ()0/ x f =()()0 00lim x x x x x f x f →--=0lim →???x x y 解析:⑴导数的实质是两个无穷小的比。 即:函数相对于自变量变化快慢的程度,其绝对值 越大,则函数在该点附近变化的速度越快。 ⑵导数就是平均变化率(或差商)的极限,常用记法: ()0/ x f ,0/x x y =,0x x dx dy =。 ⑶函数()x f 在某一点0x 处的导数是研究函数()x f 在点0x 处函数的性质。 ⑷导数定义给出了求函数()x f 在点0x 处的导数的具体方法,即:①对于点0x 处的自变量增量x ?,求出函数的增量(差分)y ?=()()00x f x x f -?+②求函数增量y ?与自变量增 量x ?之比x y ??③求极限0 lim →???x x y 若存在,则极限值就是函数()x f 在点0x 处的导数,若极限不 存在,则称函数()x f 在0x 处不可导。 ⑸在求极限的过程中, 0x 是常数, x ?是变量, 求出的极限值一般依赖于0x ⑹导数是由极限定义的但两者仍有不同,我们称当极限值为∞时通常叫做极限不存在,而导数则不同,因其具有实在的几何意义,故当在某点处左,右导数存在且为同一个广义实数值时我们称函数在某点可导。实质是给导数的定义做了一个推广。 ⑺注意: 若函数()x f 在点0x 处无定义,则函数在0x 点处必无导数,但若函数在点0x 处有定义,则函数在点0x 处未必可导。 2 单侧导数:设函数()x f 在某个(]00,x x δ-(或[)δ+00,x x )有定义,并且极限

微分中值定理与导数的应用练习题

题型 1.利用极限、函数、导数、积分综合性的使用微分中值定理写出证明题 2.根据极限,利用洛比达法则,进行计算 3.根据函数,计算导数,求函数的单调性以及极值、最值 4.根据函数,进行二阶求导,求函数的凹凸区间以及拐点 5.根据函数,利用极限的性质,求渐近线的方程 内容 一.中值定理 1.罗尔定理 2.拉格朗日中值定理 二.洛比达法则 一些类型(00、∞ ∞、∞?0、∞-∞、0 ∞、0 0、∞ 1等) 三.函数的单调性与极值 1.单调性 2.极值 四.函数的凹凸性与拐点 1.凹凸性 2.拐点 五.函数的渐近线

水平渐近线、垂直渐近线 典型例题 题型I 方程根的证明 题型II 不等式(或等式)的证明 题型III 利用导数确定函数的单调区间与极值 题型IV 求函数的凹凸区间及拐点 自测题三 一.填空题 二.选择题 三.解答题 4月13日微分中值定理与导数应用练习题 基础题: 一.填空题 1.函数12 -=x y 在[]1,1-上满足罗尔定理条件的=ξ 。 3.1)(2 -+=x x x f 在区间[]1,1-上满足拉格朗日中值定理的中值ξ= 。 4.函数()1ln +=x y 在区间[]1,0上满足拉格朗日中值定理的=ξ 。 5.函数x x f arctan )(=在]1 ,0[上使拉格朗日中值定理结论成立的ξ是 . 6.设)5)(3)(2)(1()(----=x x x x x f ,则0)(='x f 有 个实根,分别位于区间 中. 7. =→ x x x 3cos 5cos lim 2 π35- 8.=++∞→x x x arctan ) 1 1ln(lim

相关文档
最新文档