专题椭圆的离心率解法大全
椭圆离心率求法大全

A.
B.
C.Biblioteka D.解答:解:有定义易知|AB|= 设|AF1|=x
则|AF2|=2a﹣x|BF1|= ﹣x|BF2|=2a﹣( ﹣x)= +x
∵AB⊥AF2∴|AF1|2+|AF2|2=4c2|AF2|2+|AB|2=|BF2|2
解:设BF2=t,AF2=2t,有AF1=2 ﹣2t,BF1=2 ﹣t,
∵∠F1AB=90°,
∴(2 ﹣t)2=(3t)2+(2 ﹣2t)2,∴t= ,
∴AF1= ,AF2= ,∴4c2=( )2+( )2,
∴c= ,∴e= = .
4.已知椭圆的中心在坐标原点,焦点在x轴上,过右焦点F作斜率为1的直线交椭圆于A、B两点,若椭圆上存在一点C,使 ,则椭圆的离心率是( )
∴ ,
∵点C在椭圆上,∴ ,
化为4c2=a2+b2,∵b2=a2﹣c2,∴4c2=2a2﹣c2,化为 ,
∴e= .
椭圆离心率求法
1.椭圆 + =1(a>b>0)的左、右焦点分别是F1(﹣c,0),F2(c,0),过点E( ,0)的直线与椭圆交于A,B两点,且 =2 ,则此椭圆的离心率为( )
A.
B.
C.
D.
解答:
解:由 =2 ,可得:AF1∥F2B,|F1A|=2|F2B|,
∴ = ,整理得:a2=3c2,即e2= = ,故离心率e= .故选:C.
A.
B.
C.
D.
解答:
解:由题意设椭圆的标准方程为 .
离心率问题的7种题型和15种方法

离心率问题的7种题型和15种方法离心率(eccentricity)是描述椭圆轨道形状的一个重要参数,它的大小决定了行星或卫星轨道的偏心程度。
在天文学、航天学等相关领域,经常需要解决各种与离心率相关的问题,下面我们将介绍离心率问题的7种常见题型和15种解题方法。
一、离心率的定义及性质离心率是描述椭圆轨道形状的一个参数,它等于椭圆长半轴和短半轴之差的一半与长半轴的比值。
离心率的取值范围为0到1之间,当离心率为0时,椭圆变成了一个圆,当离心率为1时,椭圆变成了一条直线。
离心率越大,椭圆的形状越扁平,轨道越偏心。
二、离心率问题的7种题型1. 求给定离心率的椭圆的半长轴和半短轴长度;2. 已知椭圆的长半轴和离心率,求短半轴长度;3. 已知椭圆的长半轴和短半轴长度,求离心率;4. 求给定行星或卫星的轨道离心率;5. 已知行星或卫星轨道的离心率和半长轴长度,求轨道的半短轴长度;6. 已知行星或卫星的轨道离心率和半短轴长度,求轨道的半长轴长度;7. 求给定行星或卫星的轨道周期。
三、离心率问题的15种解题方法1. 利用椭圆轨道的定义和性质,直接计算出椭圆的长短半轴;2. 利用椭圆的面积和周长公式计算出椭圆的长短半轴;3. 利用行星或卫星的轨道速度和距离公式计算出轨道离心率;4. 利用行星或卫星的轨道周期和距离公式计算出轨道离心率;5. 利用行星或卫星的轨道半径和速度公式计算出轨道离心率;6. 利用行星或卫星在轨道上的最高点和最低点的距离差和总距离计算出轨道离心率;7. 利用行星或卫星的轨道焦点距离和长轴长度计算出轨道离心率;8. 利用行星或卫星的轨道高度、速度和引力公式计算出轨道离心率;9. 利用行星或卫星的轨道高度、周期和引力公式计算出轨道离心率;10. 利用行星或卫星的轨道高度、半径和引力公式计算出轨道离心率;11. 利用行星或卫星的轨道平均速度和最高、最低速度之比计算出轨道离心率;12. 利用行星或卫星在轨道上的最高点和最低点速度之比计算出轨道离心率;13. 利用行星或卫星在轨道上的最高点和最低点的动能之比计算出轨道离心率;14. 利用行星或卫星在轨道上的最高点和最低点的势能之比计算出轨道离心率;15. 利用行星或卫星的轨道半径、质量和速度计算出轨道离心率。
求解椭圆离心率的常见方法

ʏ河南省郑州市第二高级中学 韦道田椭圆的离心率是椭圆的重要几何性质之一,下面就求解椭圆的离心率(或取值范围)给出几种重要方法,供同学们参考㊂一㊁利用椭圆离心率的定义求解例1 (1)在平面直角坐标系中,椭圆x 2a 2+y2b2=1(a >b >0)的焦距为2,以O 为圆心,a 为半径的圆,过点P a2c ,0作圆的两条切线且互相垂直,则离心率e =㊂(2)设M 为椭圆x 2a 2+y2b2=1(a >b >0)上一点,F 1,F 2为两个焦点,过M 作M F 1ʅx 轴,且øF 1M F 2=60ʎ,则椭圆的离心率为( )㊂A.12 B .22 C .33 D .32图1解析:(1)如图1,切线互相垂直,又半径O A ʅP A ,所以әO A P 是等腰直角三角形㊂因为2c=2,即c =1,所以a 2c=a 2,|O P |=2|O A |,a 2=2a ,则a =2㊂所以e =c a =22㊂(2)设|M F 1|=d ,因为øF 1M F 2=60ʎ,所以|M F 2|=2d ,|F 1F 2|=3d ㊂因此e =2c 2a =|F 1F 2||M F 1|+|M F 2|=3d d +2d =33,选C ㊂点评:e =2c2a =|F 1F 2||P F 1|+|P F 2|,其中F 1,F 2为椭圆的焦点,P 为椭圆上任意一点㊂二㊁利用圆锥曲线的统一定义求解依据e =|M F |d ,其中|M F |表示椭圆上的点M 到焦点F 的距离,d 表示椭圆上的点M 到焦点F 相应准线l 的距离㊂例2 在给定椭圆中,过焦点且垂直于长轴的弦长为2,焦点到相应准线的距离为1,则该椭圆的离心率为( )㊂A.2 B .22 C .12 D .24解析:设过焦点F 1且垂直于长轴的弦为A B ,则|A B |=2㊂焦点F 1到准线l 的距离为1,则点A 到l 的距离也为1㊂由圆锥曲线的统一定义得离心率e =|A F 1|1=22,选B ㊂点评:利用圆锥曲线的统一定义,可以较快地求出圆锥曲线的离心率㊂三㊁构造离心率的方程(不等式)求解例3 (1)已知A ,B 为椭圆x 2a2+y 2b2=1(a >b >0)的长轴与短轴端点,F 为一个焦点,若A B ʅB F ,则该椭圆的离心率为( )㊂A.-1+52 B .1-22C .2-1D .22(2)已知椭圆x 2a 2+y 2b2=1(a >b >0)的42 解题篇 经典题突破方法 高二数学 2023年10月Copyright ©博看网. All Rights Reserved.左㊁右焦点分别为F 1(-c ,0)㊁F 2(c ,0),若椭圆上存在点P ,使a s i n øP F 1F 2=cs i n øP F 2F 1,则该椭圆离心率的取值范围为㊂解析:(1)在R tәA B F 中,|A F |2=|A B |2+|B F |2,即(a +c )2=(a 2+b 2)+(b 2+c 2)㊂因为e =c a,所以整理得e 2+e -1=0,e =-1+52,选A ㊂(2)由已知条件及正弦定理求得|P F 1|=ca|P F 2|㊂又|P F 1|+|P F 2|=2a ,则|P F 2|=2a 2c +a ㊂由|P F 2|<a +c ,得2a2c +a<a +c ,即e 2+2e -1>0㊂结合0<e <1,解得2-1<e <1㊂点评:如果直接求解椭圆离心率的值(或取值范围)有困难,那么可以通过构造离心率的方程(或不等式)求解㊂四㊁利用数形结合思想求解例4 ʌ第12届希望杯 试题ɔ设F 1㊁F 2是椭圆的两个焦点,若椭圆上存在点P ,使øF 1P F 2=120ʎ,则椭圆离心率e 的取值范围是㊂图2解析:如图2,当点P 与短轴端点B 重合时,øF 1P F 2最大㊂于是得øF 1P F 2ȡ120ʎ,故t a n øF 1P O ȡt a n 60ʎ=3,即cbȡ3㊂所以e =c a =cb 2+c 2=1bc2+1ȡ113+1=32㊂又0<e <1,所以32ɤe <1㊂点评:利用数形结合思想求椭圆的离心率e ,可回避繁杂的推理与计算过程㊂五㊁利用椭圆的光学性质求解例5 ʌ第一届 希望杯 高二试题ɔ椭圆的两个焦点是F 1(3,-6),F 2(6,3),一条切线方程为4x =3y ,这个椭圆的离心率是㊂解析:设切点为P ,切线为l ,作F 1㊁F 2关于l 的对称点F 1'㊁F 2',则由椭圆的光学性质知点P 是等腰梯形F 1F 2F 2'F 1'对角线的交点,对角线的长应等于椭圆长轴的长㊂由点到直线的距离公式,得F 1㊁F 2到直线l 的距离分别为6㊁3,可见梯形上㊁下底长分别为6㊁12㊂该等腰梯形的腰长即椭圆的焦距310㊂利用6,12,310,求出梯形的对角线长为92,从而得到椭圆的离心率e =31092=53㊂练一练:1.若椭圆的两个焦点与短轴的一个顶点构成一个等边三角形,则椭圆的离心率是( )㊂A.12 B .32 C .34 D .642.已知椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点为F ,右顶点为A ,点B 在椭圆上,且B F ʅx 轴,直线A B 交y 轴于点P ㊂若A Pң=2P B ң,则椭圆的离心率是( )㊂A.32 B .22 C .13 D .123.已知F 1㊁F 2是椭圆的两个焦点,满足M F 1ң㊃M F 2ң=0的点M 总在椭圆内部,则椭圆离心率的取值范围是( )㊂A.(0,1) B .0,12C .0,22D .22,14.过椭圆x 2a 2+y 2b2=1(a >b >0)的左焦点F 且倾斜角为60ʎ的直线交椭圆于A ,B 两点,若|F A |=2|F B |,则椭圆的离心率等于( )㊂A.33 B .22 C .12 D .23参考答案:1.A2.D3.C4.D(责任编辑 徐利杰)52解题篇 经典题突破方法 高二数学 2023年10月Copyright ©博看网. All Rights Reserved.。
求椭圆离心率范围的常见题型及解析

求椭圆离心率范围的常见题型及解析解析解题关键:挖掘题中的隐含条件,构造关于离心率e的不等式。
一、利用曲线的范围,建立不等关系已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$右顶点为A,点P在椭圆上,O为坐标原点,且OP垂直于PA,求椭圆的离心率e的取值范围。
小改写:已知椭圆方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,右顶点为A,点P在椭圆上,且OP垂直于PA,求椭圆的离心率e的取值范围。
二、利用曲线的平面几何性质,建立不等关系已知F1、F2是椭圆的两个焦点,满足所有点P总在椭圆内部,则椭圆离心率的取值范围是()。
小改写:已知F1、F2是椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的两个焦点,满足所有点P总在椭圆内部,则椭圆离心率的取值范围是()。
三、利用点与椭圆的位置关系,建立不等关系已知$\triangle ABC$的顶点B为椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$短轴的一个端点,另两个顶点也在椭圆上,若$\triangle ABC$的重心恰好为椭圆的一个焦点F(c,0),求椭圆离心率的范围。
小改写:已知椭圆方程$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$,短轴的一个端点为B,另两个顶点也在椭圆上,$\triangle ABC$的重心恰好为椭圆的一个焦点F(c,0),求椭圆离心率的范围。
四、利用函数的值域,建立不等关系椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$与直线$x+y-1=0$相交于A、B两点,且OA·OB=(O为原点),若椭圆长轴长的取值范围为$[5,6]$,求椭圆离心率的范围。
椭圆微专题901-离心率

专题01:椭圆的离心率1:椭圆基本量运算,范围:01e <<,e 越大,椭圆就越扁。
2:利用定义求椭圆的离心率(a c e = 或 221⎪⎭⎫⎝⎛-=a b e )3:运用几何图形中线段的几何意义结合椭圆的定义求离心率e例:设椭圆)(0b a 1by a x 2222>>=+的左、右焦点分别为21F F 、,如果椭圆上存在点P ,使︒=∠90PF F 21,求离心率e 的取值范围。
解:设()()()0,c F ,0,c F ,y ,x P 21- 法1:利用椭圆几何范围。
由→→⊥P F P F 21得222c y x =+,将这个方程与椭圆方程联立,消去y ,可解得2222222b a b ac a x --=2222)(e a c a -=。
由椭圆的性质知22a x 0<≤,得),以122[e ∈。
法2:判别式法。
由椭圆定义知||||||||||||PF PF a PF PF PF PF a121222122224+=⇒++=,又因为︒=∠9021PF F ,可得222122214||||||c F F PF PF ==+,则)(2||||2221c a PF PF -=22b =,1PF ∴,2PF 是方程2222=+-b az z 的两个根,则22210)(84222222≥⇒≥=⇒≥--=∆e ac e c a a解法3:正弦定理∠=∠=PF F PF F 1221αβ,,由正弦定理有||sin sin ||||90sin ||sin ||sin ||21212121F F PF PF F F PF PF =++⇒︒==βααβ又因为c F F a PF PF 2||2||||2121==+,,且90=+βα 则)4sin(21cos sin 1sin sin 1πααβα+=∂+=+==a c e20πα<<4344ππαπ<+<∴则1)4sin(22≤+<πα,2)4sin(21≤+<πα 所以122<≤e解法4:利用基本不等式由椭圆定义, 有212a PF PF =+||||平方后得42228212221212221222a PF PF PF PF PF PF F F c =++⋅≤+==||||||||(||||)||得c a2212≥所以有,)e ∈[221解法5:巧用平面解析几何的几何特性由∠=︒F PF 1290,知点P 在以||F F c 122=为直径的圆上。
椭圆离心率的三种求法、中点弦方程三种求法

椭圆离心率的三种求法:(1)若给定椭圆的方程,则根据焦点位置确定a 2,b 2,求a ,c 的值,利用公式e =c a 或利用221ab e -=直接求解. (2)求椭圆的离心率时,若不能直接求得c a的值,通常由已知寻求a ,b ,c 的关系式,再与a 2=b 2+c 2组成方程组,消去b 得只含a ,c 的方程,再化成关于e 的方程求解.(3)求离心率时要充分利用题设条件中的几何特征构建方程求解,从而达到简化运算的目的. 涉及椭圆离心率的范围问题要依据题设条件首先构建关于a ,b ,c 的不等式,消去b 后,转化为关于e 的不等式,从而求出e 的取值范围.1. 若椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,线段F 1F 2被点⎪⎭⎫ ⎝⎛0,2b 分成5∶3的两段,则此椭圆的离心率为( )A.1617B.41717C.45D.255解析 依题意,得c +b 2c -b 2=53,∴c =2b ,∴a =b 2+c 2=5b ,∴e =2b 5b=255. 答案D 点评 本题的解法是直接利用题目中的等量关系,列出条件求离心率.2. 设P 是椭圆x 2a 2+y 2b2=1(a >b >0)上的一点,F 1,F 2是其左,右焦点.已知∠F 1PF 2=60°,求椭圆离心率的取值范围.分析 本题主要考查椭圆离心率取值范围的求法,建立不等关系是解答此类问题的关键. 解 方法一 根据椭圆的定义,有|PF 1|+|PF 2|=2a .①在△F 1PF 2中,由余弦定理,得cos 60°=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1||PF 2|=12, 即|PF 1|2+|PF 2|2-4c 2=|PF 1||PF 2|.②①式平方,得|PF 1|2+|PF 2|2+2|PF 1||PF 2|=4a 2.③由②③,得|PF 1||PF 2|=4b 23.④ 由①和④运用基本不等式,得|PF 1||PF 2|≤2212||||⎪⎭⎫ ⎝⎛+PF PF ,即4b 23≤a 2. 由b 2=a 2-c 2,得43(a 2-c 2)≤a 2,解得e =c a ≥12. 又e <1,∴该椭圆的离心率的取值范围是[12,1). 方法二 如图,设椭圆与y 轴交于B 1,B 2两点,则当点P 位于B 1或B 2处时,点P 对两焦点的张角最大,故∠F 1B 2F 2≥∠F 1PF 2=60°,从而∠OB 2F 2≥30°.在Rt △OB 2F 2中,e =c a =sin ∠OB 2F 2≥sin 30°=12. 又e <1,∴12≤e <1. ∴该椭圆的离心率的取值范围是[12,1). 点评 在求椭圆离心率的取值范围时,常需建立不等关系,通过解不等式来求离心率的取值范围,建立不等关系的途径有:基本不等式,利用椭圆自身存在的不等关系(如基本量之间的大小关系或基本量的范围,点与椭圆的位置关系所对应的不等关系,椭圆上点的横、纵坐标的有界性等),判别式,极端情况等等.如上面方法二就应用了“当点P 运动到短轴的端点时,点P 对两焦点的张角最大”这一极端情况.(2016全国Ⅰ高考)直线l 经过椭圆的一个顶点和一个焦点,若椭圆的中心到的距离为短轴长的41,则该椭圆的离心率为( B ) A. 31 B. 21 C. 32 D.43 解:设椭圆是焦点在x 轴上的标准方程,上顶点与右焦点分别为)0,(),0(c F b B 、,则直线l 的方程为0=-+bc cy bx 。
椭圆离心率求法大全

椭圆离心率求法大全
椭圆离心率又叫做偏心率,是衡量椭圆的对称性的重要特征值,表示椭圆的离心程度,离心率值越大椭圆形状越扁,可以表示为0≤E≤1,其中较接近圆形的图形偏心率接近0,而较远离圆形图形的离心率则更接近1。
下面是求椭圆离心率的公式及求法:
(1)根据椭圆的标准方程:
$$ \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 $$
,其中a为长轴,b为短轴,可以求出椭圆的离心率E,公式为:
(2)也可以根据椭圆的几何定义求出离心率:
椭圆的离心率按照以下公式求出:
其中,e表示椭圆的外径c与内径b的绝对值的差值,e=|c-b|。
(3)根据椭圆的离心率及长短轴的比值,可以得出椭圆的长轴a和短轴b的关系:
a=b/E
(4)可以根据椭圆的中心坐标和其上任意点坐标进行求椭圆离心率计算:
(i)得到椭圆的中心坐标(h,k),任意点坐标为(x,y),并设椭圆的离心率为E。
(ii)根据点(h,k)和点(x,y)求椭圆的半长轴长:
a = $\sqrt{(x-h)^2+(y-k)^2}$
(iii)半短轴长可以求得:
(iv)根据半长轴长a及半短轴长b求离心率:
根据以上公式及求法,可以计算出椭圆的离心率。
注意,离心率在[0,1]之间,较接
近圆形的图形偏心率接近0,而较远离圆形图形的离心率则更接近1。
专题:椭圆的离心率解法大全

专题:椭圆的离心率2,利用定义求椭圆的离心率(e C 或e 21 b )aa综上m 或333,已知椭圆的焦距、短轴长、长轴长成等差数列,则椭圆的离心率是X y6,设椭圆 — 亍=1 (a > b >0)的右焦点为F 1,右准线为11,若过F 1且垂直于x 轴的弦的长等于点ab 1 距离,则椭圆的离心率是 一。
2,运用几何图形中线段的几何意义结合椭圆的定义求离心率1,在 Rt ABC 中,A 90 ,AB AC 1 ,如果一个椭圆过 A B 两点, 它的一个焦点为 C,另一个焦点在AB 上,求这个椭圆的离心率 2,如图所示,椭圆中心在原点 则椭圆的离心率为 [解析]b ( b ) c 3,以椭圆的右焦点 ,F 是左焦点,直线 AB 1与BF 交于D,且BDB 1M.5 1 2 2a c ac e ----------- 2 F 2为圆心作圆,使该圆过椭圆的中心并且与椭圆交于1,已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率 e2,椭圆—1的离心率为-,则m m 2[解析]当焦点在x 轴上时,4 m -2 2m 3 ;当焦点在y 轴上时,16 m -, 34,已知m,n,m+n 成等差数列,m n , mn 成等比数列,则椭圆2—1的离心率为 ________________n2n 2m n[解析]由2n2m n m 22 2椭圆Xy1的离心率为2n 4m n2mn 01 5,已知一 21(m 0.n0) 则当 2xmn 取得取小值时,椭圆 22 y_ 21的的离心率为」m nmn22 2F 1到l 1的MF 与圆相切,则椭圆的离心率是,3 1解:TI F 1F 2 I =2c I BF 1 I =c I BF 2 I = 3c c+2 2X y变式(1):椭圆 君 + ~b^=1(a>b >0)的两焦点为 F 1、 寸3c=2a --e= aF 2,点P 在椭圆上,使厶OPF 为正三角形,求椭圆离心率?22X y相似题:椭圆 —+ —=1(a>b >0) , A 是左顶点,F 是右焦点,B 是短轴的一个顶点,/a b 解:I AO I =a I OF I =c I BF I =a I AB | = a 2+b 2点评:此题是上一题的条件与结论的互换,解题中分析各边,由余弦定理解决角的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题:椭圆的离心率一,利用定义求椭圆的离心率(a c e = 或 221⎪⎭⎫⎝⎛-=a b e )1,已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率=e322,椭圆1422=+m y x 的离心率为21,则=m [解析]当焦点在x 轴上时,32124=⇒=-m m ; 当焦点在y 轴上时,316214=⇒=-m mm , 综上316=m 或3 3,已知椭圆的焦距、短轴长、长轴长成等差数列,则椭圆的离心率是53 4,已知m,n,m+n 成等差数列,m ,n ,mn 成等比数列,则椭圆122=+ny m x 的离心率为 [解析]由⇒⎪⎩⎪⎨⎧≠=+=02222mn n m n nm n ⎩⎨⎧==42n m ,椭圆122=+n y m x 的离心率为22 5,已知)0.0(121>>=+n m nm 则当mn 取得最小值时,椭圆12222=+n y m x 的的离心率为236,设椭圆2222by a x +=1(a >b >0)的右焦点为F 1,右准线为l 1,若过F 1且垂直于x 轴的弦的长等于点F 1到l 1的距离,则椭圆的离心率是21。
二,运用几何图形中线段的几何意义结合椭圆的定义求离心率e1,在∆Rt ABC 中,90=∠A ,1==AC AB ,如果一个椭圆过A 、B 两点,它的一个焦点为C ,另一个焦点在AB 上,求这个椭圆的离心率 ()36-=e2, 如图所示,椭圆中心在原点,F 是左焦点,直线1AB 与BF 交于D,且901=∠BDB ,则椭圆的离心率为( ) [解析]=⇒=-⇒-=-⋅e ac c a cba b 221)(215-3,以椭圆的右焦点F 2为圆心作圆,使该圆过椭圆的中心并且与椭圆交于M 、N 两点,椭圆的左焦点为F 1,直线MF 1与圆相切,则椭圆的离心率是13-变式(1):以椭圆的一个焦点F 为圆心作一个圆,使该圆过椭圆的中心O 并且与椭圆交于M 、N 两点,如果∣MF∣=∣MO∣,则椭圆的离心率是13-4,椭圆x 2a 2 +y 2b 2=1(a>b >0)的两焦点为F 1 、F 2 ,以F 1F 2为边作正三角形,若椭圆恰好平分正三角形的两边,则椭圆的离心率e ?解:∵|F 1F 2|=2c |BF 1|=c |BF 2|=3c c+3c=2a ∴e= ca= 3-1变式(1):椭圆x 2 a 2 +y 2b 2 =1(a>b >0)的两焦点为F 1 、F 2 ,点P 在椭圆上,使△OPF 1 为正三角形,求椭圆离心率?解:连接PF 2 ,则|OF 2|=|OF 1|=|OP |,∠F 1PF 2 =90°图形如上图,e=3-1变式(2) 椭圆x 2 a 2 +y 2b 2=1(a>b >0)的两焦点为F 1 、F 2 ,AB 为椭圆的顶点,P 是椭圆上一点,且PF 1 ⊥X 轴,PF 2 ∥AB,求椭圆离心率?解:∵|PF 1|= b 2 a |F 2 F 1|=2c |OB |=b |OA |=a PF 2 ∥AB ∴|PF 1| |F 2 F 1|= b a 又 ∵b= a 2-c 2∴a 2=5c 2 e=55变式(3):将上题中的条件“PF 2 ∥AB ”变换为“PO ∥AB (O 为坐标原点)”相似题:椭圆x 2 a 2 +y 2 b 2 =1(a>b >0),A 是左顶点,F 是右焦点,B 是短轴的一个顶点,∠ABF=90°,求e?解:|AO |=a |OF |=c |BF |=a |AB |=a 2+b 2a 2+b 2+a 2 =(a+c)2 =a 2+2ac+c 2 a 2-c 2-ac=0 两边同除以a 2 e 2+e-1=0 e=-1+ 5 2 e=-1-52(舍去)变式(1):椭圆x 2a 2 +y 2b 2 =1(a>b >0),e=-1+ 52, A 是左顶点,F 是右焦点,B 是短轴的一个顶点,求∠ABF ?点评:此题是上一题的条件与结论的互换,解题中分析各边,由余弦定理解决角的问题。
答案:90°引申:此类e=5-12的椭圆为优美椭圆。
性质:(1)∠ABF=90°(2)假设下端点为B 1 ,则ABFB 1 四点共圆。
(3)焦点与相应准线之间的距离等于长半轴长。
变式(2): 椭圆12222=+b y a x (a >b >0)的四个顶点为A 、B 、C 、D ,若四边形ABCD 的内切圆恰好过椭圆的焦点,则椭圆的离心率e =215- . 提示:内切圆的圆心即原点,半径等于c ,又等于直角三角形AOB 斜边上的高,∴由面积得:22b a r ab +⋅=,但cr =4,设椭圆)(0b a 1by a x 2222>>=+的左、右焦点分别为21F F 、,如果椭圆上存在点P ,使︒=∠90PF F 21,求离心率e 的取值范围。
解:设()()()0,c F ,0,c F ,y ,x P 21- 法1:利用椭圆范围。
由→→⊥P F P F 21得222c y x =+,将这个方程与椭圆方程联立,消去y ,可解得2222222b a b a c a x --=2222)(ea c a -=。
由椭圆的性质知22a x 0<≤,得),以122[e ∈。
附:还可以用参数的方法也能求出离心率的范围(与法1类似) 法2:判别式法。
由椭圆定义知||||||||||||PF PF a PF PF PF PF a 121222122224+=⇒++=,又因为︒=∠9021PF F ,可得222122214||||||c F F PF PF ==+,则)(2||||2221c a PF PF -=22b =,1PF ∴,2PF 是方程02222=+-b az z 的两个根,则22210)(84222222≥⇒≥=⇒≥--=∆e ac e c a a 解法3:正弦定理设记∠=∠=PF F PF F 1221αβ,,由正弦定理有||sin sin ||||90sin ||sin ||sin ||21212121F F PF PF F F PF PF =++⇒︒==βααβ 又因为c F F a PF PF 2||2||||2121==+,,且90=+βα 则 20πα<< 4344ππαπ<+<∴则1)4sin(22≤+<πα,2)4sin(21≤+<πα 所以122<≤e 解法5:利用基本不等式由椭圆定义,有212a PF PF =+||||平方后得 解法6:巧用图形的几何特性由∠=︒F PF 1290,知点P 在以||F F c 122=为直径的圆上。
又点P 在椭圆上,因此该圆与椭圆有公共点P ,故有c b c b a c ≥⇒≥=-2222变式(1):圆x 2 a 2 +y 2b 2=1(a>b >0)的两焦点为F 1 (-c ,0)、F 2 (c,0),P 是以|F 1F 2|为直径的圆与椭圆的一个交点,且∠PF 1F 2 =5∠PF 2F 1 ,求椭圆的离心率e分析:此题有角的值,可以考虑正弦定理的应用。
解:由正弦定理:|F 1F 2|sin F 1PF 2 = |F 1P |sin F 1F 2P 212sin F PF PF ∠=根据和比性质:|F 1F 2|sin F 1PF 2 = |F 1P |+|PF 2| sinF 1F 2P+sin PF 1F 2 变形得: |F 1F 2| |PF 2|+|F 1P | =sin F 1PF 2 sin F 1F 2P +sin PF 1F 2 a c22==e ∠PF 1F 2 =75°∠PF 2F 1 =15° e= sin90° sin75°+sin15° =63点评:在焦点三角形中,使用第一定义和正弦定理可知e=sin F 1PF 2sin F 1F 2P +sin PF 1F 2变式(2):椭圆x 2 a 2 +y 2b 2=1(a>b >0)的两焦点为F 1 (-c ,0)、F 2 (c,0),P 是椭圆上一点,且∠F 1PF 2 =60°,求椭圆离心率e 的取值范围? 分析:上题公式直接应用。
解:设∠F 1F 2P=α,则∠F 2F 1P=120°-α e=sin F 1PF 2 sin F 1F 2P +sin PF 1F 2 = sin60°sin α+sin(120°-α)=1 2sin(α+30°)≥12 ∴12≤e<1变式(3):过椭圆22221x y a b +=(0a b >>)的左焦点1F 作x 轴的垂线交椭圆于点P ,2F 为右焦点,若1260F PF ∠=,则椭圆的离心率e 的值解析:因为2(,)b P c a -±,再由1260F PF ∠=有232,b a a=从而得3c e a ==变式(4):若B A ,为椭圆)0(12222>>=+b a b y a x 的长轴两端点,Q 为椭圆上一点,使0120=∠AQB ,求此椭圆离心率的最小值。
{136<≤e } 变式(5):8、椭圆()012222>>=+b a b y a x 上一点A 关于原点的对称点为B ,F 为其右焦点,若BF AF ⊥,设α=∠ABF ,且⎥⎦⎤⎢⎣⎡∈4,12ππα,则椭圆的离心率的取值范围为解析:设F '为椭圆左焦点,因为对角线互相平分,所以四边形F AFB '为平行四边形且为矩形,c AB 2=,ααcos 2,sin 2c BF c AF ==,a c c 2cos 2sin 2=+αα,所以⎪⎭⎫ ⎝⎛+=+==4sin 21cos sin 1παααa c e ,由⎥⎦⎤⎢⎣⎡∈4,12ππα得3622≤≤e 。
6,如图,在平面直角坐标系xoy 中,1212,,,A A B B 为椭圆22221(0)x y a b a b+=>>的四个顶点,F 为其右焦点,直线12A B 与直线1B F 相交于点T ,线段OT 与椭圆的交点M 恰为线段OT 的中点,则该椭圆的离心率为 .直线21B A 的方程为1=+-b y a x ,直线F B 1的方程为1=-+byc x ,两式联立得T的坐标⎪⎭⎫⎝⎛-+-c a c a b c a ac )(,2,所以中点M 的坐标为⎪⎪⎭⎫ ⎝⎛-+-)(2)(,c a c a b c a ac ,因为点M 在椭圆上,代人方程得()2224)(4c a c a c -=++ 则03102=-+e e ()1,0∈e所以5e =-7,椭圆x 2a 2 +y 2b 2=1(a>b >0)的两焦点为F 1 (-c ,0)、F 2 (c,0),满足→MF 1·→MF 2 =0的点M 总在椭圆内部,则e的取值范围?→MF 1·→MF 2 =0∴以F 1F 2 为直径作圆,M 在圆O 上,与椭圆没有交点。