数学七年级下册每日一练资料

合集下载

七年级下册数学小练

七年级下册数学小练

七年级下册数学小练一、有理数的运算。

1. 计算:(-3)+5 (-2)嘿呀,这有理数的加减法就像在数字的小世界里玩游戏呢。

先看这个-3 + 5,就好比你欠了3块钱,然后又赚了5块钱,那你现在就有2块钱啦,也就是(-3)+5 = 2。

再看后面的(-2),这两个负号就像两个小磁铁,碰到一起就变成正的了,所以就相当于加2。

那最后的结果就是2 + 2 = 4。

2. 计算:(-2)×3 (-4)÷2咱先算乘法和除法。

(-2)×3呢,就像你有2个倒霉事,每个倒霉事的程度是3,那你就一共倒霉了6,也就是(-2)×3=-6。

再看(-4)÷2,你有4个东西,要平均分给2个人,每人就得到2个,但是因为是负数除以正数,所以结果是-2。

最后把这两个结果相减,-6 (-2),又遇到这两个负号变正号的情况啦,就相当于-6 + 2,那就是欠了6块钱,还了2块钱,还欠4块钱,所以结果是-4。

二、整式的加减。

1. 化简:3a + 2b 5a b这整式的加减就像是整理小盒子里的东西。

先看有3a和-5a,这就像有3个红色小球和5个蓝色小球(假设红色代表正,蓝色代表负),合起来就是-2a。

再看2b和-b,2个大糖果和1个小糖果(同样大的代表正,小的代表负),合起来就是b。

所以最后化简的结果就是-2a + b。

2. 先化简,再求值:(2x² 3xy + 4y²)-3(x² xy + (5)/(3)y²),其中x = -2,y = 1首先来化简这个式子。

把括号打开就像拆礼物盒一样。

第一个括号里的东西都不用变,第二个括号里的每一项都要乘以3,就变成了2x² 3xy + 4y²-3x²+3xy 5y²。

然后再把同类项合并,2x²和-3x²是同类项,合起来就是-x²;-3xy和3xy就像两个一样大但是方向相反的力,互相抵消了;4y²和-5y²合起来就是-y²。

人教数学七年级下全册同步练习-初中数学七年级下册全册同步练习题(含答案,共119页)

人教数学七年级下全册同步练习-初中数学七年级下册全册同步练习题(含答案,共119页)

第五章 相交线与平行线1相交线学习要求1.能从两条直线相交所形成的四个角的关系入手,理解对顶角、互为邻补角的概念,掌握对顶角的性质.2.能依据对顶角的性质、邻补角的概念等知识,进行简单的计算.课堂学习检测一、填空题1.如果两个角有一条______边,并且它们的另一边互为____________,那么具有这种关系的两个角叫做互为邻补角.2.如果两个角有______顶点,并且其中一个角的两边分别是另一个角两边的___________ ________,那么具有这种位置关系的两个角叫做对顶角. 3.对顶角的重要性质是_________________.4.如图,直线AB 、CD 相交于O 点,∠AOE =90°.(1)∠1和∠2叫做______角;∠1和∠4互为______角; ∠2和∠3互为_______角;∠1和∠3互为______角; ∠2和∠4互为______角.(2)若∠1=20°,那么∠2=______;∠3=∠BOE -∠______=______°-______°=______°; ∠4=∠______-∠1=______°-______°=______°. 5.如图,直线AB 与CD 相交于O 点,且∠COE =90°,则(1)与∠BOD 互补的角有________________________; (2)与∠BOD 互余的角有________________________; (3)与∠EOA 互余的角有________________________; (4)若∠BOD =42°17′,则∠AOD =__________; ∠EOD =______;∠AOE =______. 二、选择题6.图中是对顶角的是( ).7.如图,∠1的邻补角是( ).(A)∠BOC (B)∠BOC 和∠AOF (C)∠AOF (D)∠BOE 和∠AOF 8.如图,直线AB 与CD 相交于点O ,若AOD AOC ∠=∠31,则∠BOD 的度数为( ). (A)30° (B)45° (C)60°(D)135°9.如图所示,直线l1,l2,l3相交于一点,则下列答案中,全对的一组是( ).(A)∠1=90°,∠2=30°,∠3=∠4=60°(B)∠1=∠3=90°,∠2=∠4=30°(C)∠1=∠3=90°,∠2=∠4=60°(D)∠1=∠3=90°,∠2=60°,∠4=30°三、判断正误10.如果两个角相等,那么这两个角是对顶角.( ) 11.如果两个角有公共顶点且没有公共边,那么这两个角是对顶角.( ) 12.有一条公共边的两个角是邻补角.( ) 13.如果两个角是邻补角,那么它们一定互为补角.( ) 14.对顶角的角平分线在同一直线上.( ) 15.有一条公共边和公共顶点,且互为补角的两个角是邻补角.( )综合、运用、诊断一、解答题16.如图所示,AB,CD,EF交于点O,∠1=20°,∠BOC=80°,求∠2的度数.17.已知:如图,直线a,b,c两两相交,∠1=2∠3,∠2=86°.求∠4的度数.18.已知:如图,直线AB,CD相交于点O,OE平分∠BOD,OF平分∠COB,∠AOD∶∠DOE=4∶1.求∠AOF的度数.19.如图,有两堵围墙,有人想测量地面上两堵围墙内所形成的∠AOB的度数,但人又不能进入围墙,只能站在墙外,请问该如何测量?拓展、探究、思考20.如图,O是直线CD上一点,射线OA,OB在直线CD的两侧,且使∠AOC=∠BOD,试确定∠AOC与∠BOD是否为对顶角,并说明你的理由.21.回答下列问题:(1)三条直线AB,CD,EF两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(2)四条直线AB,CD,EF,GH两两相交,图形中共有几对对顶角(平角除外)?几对邻补角?(3)m条直线a1,a2,a3,…,a m-1,a m相交于点O,则图中一共有几对对顶角(平角除外)?几对邻补角?2 垂线学习要求1.理解两条直线垂直的概念,掌握垂线的性质,能过一点作已知直线的垂线.2.理解点到直线的距离的概念,并会度量点到直线的距离.课堂学习检测一、填空题1.当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线______,其中一条直线叫做另一条直线的______线,它们的交点叫做______.2.垂线的性质性质1:平面内,过一点____________与已知直线垂直.性质2:连接直线外一点与直线上各点的_________中,_________最短.3.直线外一点到这条直线的__________________叫做点到直线的距离.4.如图,直线AB,CD互相垂直,记作______;直线AB,CD互相垂直,垂足为O点,记作____________;线段PO的长度是点_________到直线_________的距离;点M到直线AB的距离是_______________.二、按要求画图5.如图,过A点作CD⊥MN,过A点作PQ⊥EF于B.图a 图b 图c6.如图,过A点作BC边所在直线的垂线EF,垂足是D,并量出A点到BC边的距离.图a 图b 图c7.如图,已知∠AOB及点P,分别画出点P到射线OA、OB的垂线段PM及PN.图a 图b 图c8.如图,小明从A村到B村去取鱼虫,将鱼虫放到河里,请作出小明经过的最短路线.综合、运用、诊断一、判断下列语句是否正确(正确的画“√”,错误的画“×”)9.两条直线相交,若有一组邻补角相等,则这两条直线互相垂直.( ) 10.若两条直线相交所构成的四个角相等,则这两条直线互相垂直. ( ) 11.一条直线的垂线只能画一条. ( ) 12.平面内,过线段AB 外一点有且只有一条直线与AB 垂直. ( ) 13.连接直线l 外一点到直线l 上各点的6个有线段中,垂线段最短. ( ) 14.点到直线的距离,是过这点画这条直线的垂线,这点与垂足的距离. ( ) 15.直线外一点到这条直线的垂线段,叫做点到直线的距离. ( ) 16.在三角形ABC 中,若∠B =90°,则AC >AB . ( )二、选择题17.如图,若AO ⊥CO ,BO ⊥DO ,且∠BOC =α,则∠AOD 等于( ).(A)180°-2α (B)180°-α(C)α2190+︒ (D)2α-90°18.如图,点P 为直线m 外一点,点P 到直线m 上的三点A 、B 、C 的距离分别为P A =4cm ,PB =6cm ,PC =3cm ,则点P 到直线m 的距离为( ). (A)3cm (B)小于3cm (C)不大于3cm (D)以上结论都不对19.如图,BC ⊥AC ,CD ⊥AB ,AB =m ,CD =n ,则AC 的长的取值范围是( ).(A)AC <m (B)AC >n (C)n ≤AC ≤m (D)n <AC <m 20.若直线a 与直线b 相交于点A ,则直线b 上到直线a 距离等于2cm的点的个数是( ). (A)0 (B)1 (C)2 (D)3 21.如图,AC ⊥BC 于点C ,CD ⊥AB 于点D ,DE ⊥BC于点E ,能表示点到直线(或线段)的距离的线段有( ). (A)3条 (B)4条 (C)7条 (D)8条 三、解答题22.已知:OA ⊥OC ,∠AOB ∶∠AOC =2∶3.求∠BOC 的度数.23.已知:如图,三条直线AB ,CD ,EF 相交于O ,且CD ⊥EF ,∠AOE =70°,若OG 平分∠BOF .求∠DOG .拓展、探究、思考24.已知平面内有一条直线m 及直线外三点A ,B ,C ,分别过这三个点作直线m 的垂线,想一想有几个不同的垂足?画图说明.25.已知点M ,试在平面内作出四条直线l 1,l 2,l 3,l 4,使它们分别到点M 的距离是1.5cm .·M26.从点O 引出四条射线OA ,OB ,OC ,OD ,且AO ⊥BO ,CO ⊥DO ,试探索∠AOC与∠BOD 的数量关系.27.一个锐角与一个钝角互为邻角,过顶点作公共边的垂线,若此垂线与锐角的另一边构成75直角,与钝角的另一边构成直73角,则此锐角与钝角的和等于直角的多少倍?3 同位角、内错角、同旁内角学习要求当两条直线被第三条直线所截时,能从所构成的八个角中识别出哪两个角是同位角、内错角及同旁内角.课堂学习检测一、填空题1.如图,若直线a,b被直线c所截,在所构成的八个角中指出,下列各对角之间是属于哪种特殊位置关系的角?(1)∠1与∠2是_______;(2)∠5与∠7是______;(3)∠1与∠5是_______;(4)∠5与∠3是______;(5)∠5与∠4是_______;(6)∠8与∠4是______;(7)∠4与∠6是_______;(8)∠6与∠3是______;(9)∠3与∠7是______;(10)∠6与∠2是______.2.如图2所示,图中用数字标出的角中,同位角有______;内错角有______;同旁内角有______.3.如图3所示,(1)∠B和∠ECD可看成是直线AB、CE被直线______所截得的_______角;(2)∠A和∠ACE可看成是直线_______、______被直线_______所截得的______角.4.如图4所示,(1)∠AED和∠ABC可看成是直线______、______被直线______所截得的_______角;(2)∠EDB和∠DBC可看成是直线______、______被直线_______所截得的______角;(3)∠EDC和∠C可看成是直线_______、______被直线______所截得的______角.综合、运用、诊断一、选择题5.已知图①~④,图①图②图③图④在上述四个图中,∠1与∠2是同位角的有( ).图2 图3 图4(A)①②③④(B)①②③(C)①③(D)①6.如图,下列结论正确的是( ).(A)∠5与∠2是对顶角(B)∠1与∠3是同位角(C)∠2与∠3是同旁内角(D)∠1与∠2是同旁内角7.如图,∠1和∠2是内错角,可看成是由直线( ).(A)AD,BC被AC所截构成(B)AB,CD被AC所截构成(C)AB,CD被AD所截构成(D)AB,CD被BC所截构成8.如图,直线AB,CD与直线EF,GH分别相交,图中的同旁内角共有( ).(A)4对(B)8对(C)12对(D)16对拓展、探究、思考一、解答题9.如图,三条直线两两相交,共有几对对顶角?几对邻补角?几对同位角?几对内错角?几对同旁内角?4 平行线及平行线的判定学习要求1.理解平行线的概念,知道在同一平面内两条直线的位置关系,掌握平行公理及其推论.2.掌握平行线的判定方法,能运用所学的“平行线的判定方法”,判定两条直线是否平行.用作图工具画平行线,从而学习如何进行简单的推理论证.课堂学习检测一、填空题1.在同一平面内,______的两条直线叫做平行线.若直线a与直线b平行,则记作______.2.在同一平面内,两条直线的位置关系只有______、______.3.平行公理是:_______________________________________________________________.4.平行公理的推论是如果两条直线都与______,那么这两条直线也______.即三条直线a,b,c,若a∥b,b∥c,则______.5.两条直线平行的条件(除平行线定义和平行公理推论外):(1)两条直线被第三条直线所截,如果____________,那么这两条直线平行.这个判定方法1可简述为:____________,两直线平行.(2)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法2可简述为:____________,____________.(3)两条直线被第三条直线所截,如果____________,那么____________.这个判定方法3可简述为:____________,____________.二、根据已知条件推理6.已知:如图,请分别依据所给出的条件,判定相应的哪两条直线平行?并写出推理的根据.(1)如果∠2=∠3,那么____________.(____________,____________)(2)如果∠2=∠5,那么____________.(____________,____________)(3)如果∠2+∠1=180°,那么____________.(____________,____________)(4)如果∠5=∠3,那么____________.(____________,____________)(5)如果∠4+∠6=180°,那么____________.(____________,____________)(6)如果∠6=∠3,那么____________.(____________,____________)7.已知:如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)∵∠B=∠3(已知),∴______∥______.(____________,____________)(2)∵∠1=∠D(已知),∴______∥______.(____________,____________)(3)∵∠2=∠A(已知),∴______∥______.(____________,____________)(4)∵∠B+∠BCE=180°(已知),∴______∥______.(____________,____________)综合、运用、诊断一、依据下列语句画出图形8.已知:点P是∠AOB内一点.过点P分别作直线CD∥OA,直线EF∥OB.9.已知:三角形ABC及BC边的中点D.过D点作DF∥CA交AB于M,再过D点作DE∥AB交AC于N点.二、解答题10.已知:如图,∠1=∠2.求证:AB∥CD.(1)分析:如图,欲证AB∥CD,只要证∠1=______.证法1:∵∠1=∠2,(已知)又∠3=∠2,( )∴∠1=_______.( )∴AB∥CD.(___________,___________)(2)分析:如图,欲证AB∥CD,只要证∠3=∠4.证法2:∵∠4=∠1,∠3=∠2,( )又∠1=∠2,(已知)从而∠3=_______.( )∴AB∥CD.(___________,___________)11.绘图员画图时经常使用丁字尺,丁字尺分尺头、尺身两部分,尺头的里边和尺身的上边应平直,并且一般互相垂直,也有把尺头和尺身用螺栓连接起来,可以转动尺头,使它和尺身成一定的角度.用丁字尺画平行线的方法如下面的三个图所示.画直线时要按住尺身,推移丁字尺时必须使尺头靠紧图画板的边框.请你说明:利用丁字尺画平行线的理论依据是什么?拓展、探究、思考12.已知:如图,CD ⊥DA ,DA ⊥AB ,∠1=∠2.试确定射线DF 与AE 的位置关系,并说明你的理由.(1)问题的结论:DF ______AE .(2)证明思路分析:欲证DF ______AE ,只要证∠3=______. (3)证明过程:证明:∵CD ⊥DA ,DA ⊥AB ,( )∴∠CDA =∠DAB =______°.(垂直定义) 又∠1=∠2,( )从而∠CDA -∠1=______-______,(等式的性质) 即∠3=___.∴DF ___AE .(____,____)13.已知:如图,∠ABC =∠ADC ,BF 、DE 分别平分∠ABC 与∠ADC .且∠1=∠3.求证:AB ∥DC .证明:∵∠ABC =∠ADC ,.2121ADC ABC ∠=∠∴( ) 又∵BF 、DE 分别平分∠ABC 与∠ADC ,.212,211ADC ABC ∠=∠∠=∠∴ ( ) ∴∠______=∠______.( )∵∠1=∠3,( ) ∴∠2=∠______.(等量代换) ∴______∥______.( )14.已知:如图,∠1=∠2,∠3+∠4=180°.试确定直线a 与直线c 的位置关系,并说明你的理由.(1)问题的结论:a ______c .(2)证明思路分析:欲证a ______c ,只要证______∥______且______∥______. (3)证明过程:证明:∵∠1=∠2,( )∴a ∥______.(________,________)① ∵∠3+∠4=180°,( )∴c ∥______.(________,________)② 由①、②,因为a ∥______,c ∥______, ∴a ______c .(________,________)5 平行线的性质学习要求1.掌握平行线的性质,并能依据平行线的性质进行简单的推理.2.了解平行线的判定与平行线的性质的区别.3.理解两条平行线的距离的概念.课堂学习检测一、填空题1.平行线具有如下性质:(1)性质1:______被第三条直线所截,同位角______.这个性质可简述为两直线______,同位角______.(2)性质2:两条平行线__________________,_______相等.这个性质可简述为_____________,_____________.(3)性质3:__________________,同旁内角______.这个性质可简述为_____________,__________________.2.同时______两条平行线,并且夹在这两条平行线间的______________叫做这两条平行线的距离.二、根据已知条件推理3.如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.(1)如果AB∥EF,那么∠2=______.理由是____________________________________.(2)如果AB∥DC,那么∠3=______.理由是____________________________________.(3)如果AF∥BE,那么∠1+∠2=______.理由是______________________________.(4)如果AF∥BE,∠4=120°,那么∠5=______.理由是________________________.4.已知:如图,DE∥AB.请根据已知条件进行推理,分别得出结论,并在括号内注明理由.(1)∵DE∥AB,( )∴∠2=______.(__________,__________)(2)∵DE∥AB,( )∴∠3=______.(__________,__________)(3)∵DE∥AB( ),∴∠1+______=180°.(______,______)综合、运用、诊断一、解答题5.如图,∠1=∠2,∠3=110°,求∠4.解题思路分析:欲求∠4,需先证明______∥______.解:∵∠1=∠2,( )∴______∥______.(__________,__________)∴∠4=______=______°.(__________,__________)6.已知:如图,∠1+∠2=180°.求证:∠3=∠4.证明思路分析:欲证∠3=∠4,只要证______∥______.证明:∵∠1+∠2=180°,( )∴______∥______.(__________,__________)∴∠3=∠4.(______,______)7.已知:如图,AB∥CD,∠1=∠B.求证:CD是∠BCE的平分线.证明思路分析:欲证CD是∠BCE的平分线,只要证______=______.证明:∵AB∥CD,( )∴∠2=______.(____________,____________)但∠1=∠B,( )∴______=______.(等量代换)即CD是________________________.8.已知:如图,AB∥CD,∠1=∠2.求证:BE∥CF.证明思路分析:欲证BE∥CF,只要证______=______.证明:∵AB∥CD,( )∴∠ABC=______.(____________,____________)∵∠1=∠2,( )∴∠ABC-∠1=______-______,( )即______=______.∴BE∥CF.(__________,__________)9.已知:如图,AB∥CD,∠B=35°,∠1=75°.求∠A的度数.解题思路分析:欲求∠A,只要求∠ACD的大小.解:∵CD∥AB,∠B=35°,( )∴∠2=∠______=_______°.(____________,____________)而∠1=75°,∴∠ACD=∠1+∠2=______°.∵CD∥AB,( )∴∠A+______=180°.(____________,____________)∴∠A=_______=______.10.已知:如图,四边形ABCD 中,AB ∥CD ,AD ∥BC ,∠B =50°.求∠D 的度数.分析:可利用∠DCE 作为中间量过渡. 解法1:∵AB ∥CD ,∠B =50°,( )∴∠DCE =∠_______=_______°. (____________,______) 又∵AD ∥BC ,( )∴∠D =∠______=_______°.(____________,____________)想一想:如果以∠A 作为中间量,如何求解? 解法2:∵AD ∥BC ,∠B =50°,( )∴∠A +∠B =______.(____________,____________)即∠A =______-______=______°-______°=______°. ∵DC ∥AB ,( )∴∠D +∠A =______.(_____________,_____________) 即∠D =______-______=______°-______°=______°.11.已知:如图,AB ∥CD ,AP 平分∠BAC ,CP 平分∠ACD ,求∠APC 的度数.解:过P 点作PM ∥AB 交AC 于点M .∵AB ∥CD ,( )∴∠BAC +∠______=180°.( ) ∵PM ∥AB ,∴∠1=∠_______,( )且PM ∥_______.(平行于同一直线的两直线也互相平行) ∴∠3=∠______.(两直线平行,内错角相等) ∵AP 平分∠BAC ,CP 平分∠ACD ,( )∠=∠∴211______,∠=∠214______.( ) 90212141=∠+∠=∠+∠∴ACD BAC .( )∴∠APC =∠2+∠3=∠1+∠4=90°.( ) 总结:两直线平行时,同旁内角的角平分线______.拓展、探究、思考12.已知:如图,AB ∥CD ,EF ⊥AB 于M 点且EF 交CD 于N 点.求证:EF ⊥CD .13.如图,DE∥BC,∠D∶∠DBC=2∶1,∠1=∠2,求∠E的度数.14.问题探究:(1)如果一个角的两条边与另一个角的两条边分别平行,那么这两个角的大小有何关系?举例说明.(2)如果一个角的两边与另一个角的两边分别垂直,那么这两个角的大小有何关系?举例说明.15.如图,AB∥DE,∠1=25°,∠2=110°,求∠BCD的度数.16.如图,AB,CD是两根钉在木板上的平行木条,将一根橡皮筋固定在A,C两点,点E 是橡皮筋上的一点,拽动E点将橡皮筋拉紧后,请你探索∠A,∠AEC,∠C之间具有怎样的关系并说明理由.(提示:先画出示意图,再说明理由).6 命题学习要求1.知道什么是命题,知道一个命题是由“题设”和“结论”两部分构成的.2.对于给定的命题,能找出它的题设和结论,并会把该命题写成“如果……,那么……”的形式.能判定该命题的真假.课堂学习检测一、填空题1.______一件事件的______叫做命题.2.许多命题都是由______和______两部分组成.其中题设是____________,结论是______ _____.3.命题通常写成“如果……,那么…….”的形式.这时,“如果”后接的部分是______,“那么”后接的部分是______.4.所谓真命题就是:如果题设成立,那么结论就______的命题.相反,所谓假命题就是:如果题设成立,不能保证结论______的命题.二、指出下列命题的题设和结论5.垂直于同一条直线的两条直线平行.题设是___________________________________________________________;结论是___________________________________________________________.6.同位角相等,两直线平行.题设是___________________________________________________________;结论是___________________________________________________________.7.两直线平行,同位角相等.题设是___________________________________________________________;结论是___________________________________________________________.8.对顶角相等.题设是___________________________________________________________;结论是___________________________________________________________.三、将下列命题改写成“如果……,那么……”的形式9.90°的角是直角.__________________________________________________________________.10.末位数字是零的整数能被5整除.__________________________________________________________________.11.等角的余角相等.__________________________________________________________________.12.同旁内角互补,两直线平行.__________________________________________________________________.综合、运用、诊断一、下列语句哪些是命题,哪些不是命题?13.两条直线相交,只有一个交点.( ) 14. 不是有理数.( )15.直线a与b能相交吗?( ) 16.连接AB.( )17.作AB⊥CD于E点.( ) 18.三条直线相交,有三个交点.( )二、判断下列各命题中,哪些命题是真命题?哪些是假命题?(对于真命题画“√”,对于假命题画“×”)19.0是自然数.( )20.如果两个角不相等,那么这两个角不是对顶角.( )21.相等的角是对顶角.( )22.如果AC=BC,那么C点是AB的中点.( )23.若a∥b,b∥c,则a∥c.( )24.如果C是线段AB的中点,那么AB=2BC.( )25.若x2=4,则x=2.( )26.若xy=0,则x=0.( )27.同一平面内既不重合也不平行的两条直线一定相交.( )28.邻补角的平分线互相垂直.( )29.同位角相等.( )30.大于直角的角是钝角.( )拓展、探究、思考31.已知:如图,在四边形ABCD中,给出下列论断:①AB∥DC;②AD∥BC;③AB=AD;④∠A=∠C;⑤AD=BC.以上面论断中的两个作为题设,再从余下的论断中选一个作为结论,并用“如果……,那么……”的形式写出一个真命题.答:_____________________________________________________________________.32.求证:两条平行线被第三条直线所截,内错角的平分线互相平行.7 平移学习要求了解图形的平移变换,知道一个图形进行平移后所得的图形与原图形之间所具有的联系和性质,能用平移变换有关知识说明一些简单问题及进行图形设计.课堂学习检测一、填空题1.如图所示,线段ON是由线段______平移得到的;线段DE是由线段______平移得到的;线段FG是由线段______平移得到的.2.如图所示,线段AB在下面的三个平移中(AB→A1B1→A2B2→A3B3),具有哪些性质.图a图b 图c(1)线段AB上所有的点都是沿______移动,并且移动的距离都________.因此,线段AB,A1B1,A2B2,A3B3的位置关系是____________________;线段AB,A1B1,A2B2,A3B3的数量关系是________________.(2)在平移变换中,连接各组对应点的线段之间的位置关系是______;数量关系是______.3.如图所示,将三角形ABC平移到△A′B′C′.图a 图b在这两个平移中:(1)三角形ABC的整体沿_______移动,得到三角形A′B′C′.三角形A′B′C′与三角形ABC的______和______完全相同.(2)连接各组对应点的线段即AA′,BB′,CC′之间的数量关系是__________________;位置关系是__________________.综合、运用、诊断一、按要求画出相应图形4.如图,AB∥DC,AD∥BC,DE⊥AB于E点.将三角形DAE平移,得到三角形CBF.5.如图,AB∥DC.将线段DB向右平移,得到线段CE.6.已知:平行四边形ABCD及A′点.将平行四边形ABCD平移,使A点移到A′点,得平行四边形A′B′C′D′.7.已知:五边形ABCDE及A′点.将五边形ABCDE平移,使A点移到A′点,得到五边形A′B′C′D′E′.拓展、探究、思考一、选择题8.如图,把边长为2的正方形的局部进行如图①~图④的变换,拼成图⑤,则图⑤的面积是( ).(A)18 (B)16 (C)12 (D)8二、解答题9.河的两岸成平行线,A,B是位于河两岸的两个车间(如图).要在河上造一座桥,使桥垂直于河岸,并且使A,B间的路程最短.确定桥的位置的方法如下:作从A到河岸的垂线,分别交河岸PQ,MN于F,G.在AG上取AE=FG,连接EB.EB交MN于D.在D处作到对岸的垂线DC,那么DC就是造桥的位置.试说出桥造在CD位置时路程最短的理由,也就是(AC+CD+DB)最短的理由.10.以直角三角形的三条边BC,AC,AB分别作正方形①、②、③,如何用①中各部分面积与②的面积,通过平移填满正方形③?你从中得到什么结论?第六章 实数6.1平方根学习要求1. 理解算术平方根和平方根的含义。

七年级数学每日一题

七年级数学每日一题

每日一题初中数学【每日一题】(第 1 期)1、设a=355,b=444,c=533,则a、b、c的大小关系是()A.c<a<b B.a<b<cC.b<c<a D.c<b<a答案:A解析:355=(35)11;444=(44)11;533=(53)11.又因为53<35<44,故533<355<444.故答案:A.考点:幂的乘方与积的乘方初中数学【每日一题】(第 2 期)2.设,,则a、b的大小关系是()A.a=b B. a>bC.a<b D.以上三种都不对答案:A初中数学【每日一题】(第 3 期)水滴石穿!3、已知:5a=4,5b=6,5c=9,(1)52a+b的值;(2)5b+2c的值;(3)试说明:2b=a+c.答案:(1)96;(2)486;(3)说明见解析.【解析】试题分析:(1)根据同底数幂的乘法,可得底数相同的幂的乘法,根据幂的乘方,可得答案;(2)根据同底数幂的乘法,可得底数相同幂的乘法,根据幂的乘方,可得答案;(3)根据同底数幂的乘法、幂的乘方,可得答案.试题解析:(1)5 2a+b=52a×5b=(5a)2×5b=42×6=96(2)5b+2c=5b·(5c)2=6×92=6×81=486(3)5a+c=5a×5c=4×9=3652b=62=36,因此5a+c=52b所以a+c=2b.考点:1.同底数幂的乘法;2.幂的乘方与积的乘方.初中数学【每日一题】(第 4 期)锲而不舍,金石可镂!已知2x+3y﹣3=0,求9x×27y的值.答案:27解:∵2x+3y﹣3=0,∴2x+3y=3,则9x×27y=32x×33y=32x+3y=33=27.故答案为:27.考点:幂的乘方与积的乘方;同底数幂的乘法.初中数学【每日一题】(第 5 期)小水长流,则能穿石!已知,,求出和的值解:;初中数学【每日一题】(第 6 期)立志不坚,终不济事!已知3×9m×27m=321,求(﹣m2)3÷(m3×m2)的值.解:3×9m×27m=3×32m×33m=31+5m=321,∴1+5m=21,∴m=4,∴(﹣m2)3÷(m3×m2)=﹣m6÷m5=﹣m=﹣4.初中数学【每日一题】(第 7 期)5a(a2﹣3a+1)﹣a2(1﹣a)原式=5a3﹣15a2+5a﹣a2+a3=6a3﹣16a2+5a初中数学【每日一题】(第 8 期)若的积中不含项,求的值.试题解析:原式==因为不含项所以解得:考点:多项式的乘法初中数学【每日一题】(第 9 期)精诚所至,金石为开!已知(x﹣1)(x+2)=ax2+bx+c,则代数式4a﹣2b+c的值为.试题分析:(x﹣1)(x+2)=﹣x+2x﹣2=+x﹣2=ax2+bx+c则a=1,b=1,c=﹣2.故原式=4﹣2﹣2=0.故答案是:0.考点:多项式乘多项式初中数学【每日一题】(第 10 期)最可怕的是比你优秀的人还比你努力!如图,某市有一块长为(3a+b)米,宽为(2a+b)米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,则绿化的面积是多少平方米?并求出当a=3,b=2时的绿化面积.试题分析:长方形的面积等于:(3a+b)•(2a+b),中间部分面积等于:(a+b)•(a+b),阴影部分面积等于长方形面积﹣中间部分面积,化简出结果后,把a、b的值代入计算.=(3a+b)(2a+b)﹣(a+b)2=6a2+3ab+2ab+b2﹣a2﹣2ab﹣试题解析:S阴影b2=5a2+3ab(平方米)当a=3,b=2时,5a2+3ab=5×9+3×3×2=45+18=63(平方米).考点:整式的混合运算.初中数学【每日一题】(第 11 期)耐心是一切聪明才智的基础!对于任何实数,我们规定符号=ad﹣bc,例如:=1×4﹣2×3=﹣2(1)按照这个规律请你计算的值;(2)按照这个规定请你计算,当a2﹣3a+1=0时,求的值.解:(1)原式=﹣2×5﹣3×4=﹣22;(2)原式=(a+1)(a﹣1)﹣3a(a﹣2)=a2﹣1﹣3a2+6a=﹣2a2+6a﹣1,∵a2﹣3a+1=0,∴a2﹣3a=﹣1,∴原式=﹣2(a2﹣3a)﹣1=﹣2×(﹣1)﹣1=1初中数学【每日一题】(第 12 期)先化简,再求值:,其中,当时,原式.初中数学【每日一题】(第 13 期)能坚持别人不能坚持的,才能拥有别人不能拥有的计算得()初中数学【每日一题】(第 14 期)计算初中数学【每日一题】(第 15 期)耐心和恒心总会得到报酬的。

七下数学每日一练:一元一次不等式组的应用练习题及答案_2020年压轴题版

七下数学每日一练:一元一次不等式组的应用练习题及答案_2020年压轴题版

七下数学每日一练:一元一次不等式组的应用练习题及答案_2020年压轴题版答案答案答案答案2020年七下数学:方程与不等式_不等式与不等式组_一元一次不等式组的应用练习题~~第1题~~(2019瑞安.七下期末) 某校七年级为了表彰“数学素养水平测试”中表现优秀的同学,准备用480元钱购进笔记本作为奖品.若A 种笔记本买20本,8本笔记本买30本,则钱还缺40元;若A 种笔记本买30本,B 种笔记本买20本,则钱恰好用完.(1) 求A ,B 两种笔记本的单价.(2) 由于实际需要,需要增加购买单价为6元的C 种笔记本若干本.若购买A ,B ,C 三种笔记本共60本,钱恰好全部用完.任意两种笔记本之间的数量相差小于15本,则C 种笔记本购买了本.(直接写出答案)考点: 二元一次方程组的应用-和差倍分问题;一元一次不等式组的特殊解;一元一次不等式组的应用;~~第2题~~(2019博白.七下期末) 某汽车专卖店销售A ,B 两种型号的新能源汽车.上周售出1辆A 型车和3辆B 型车,销售额为96万元;本周已售出2辆A 型车和1辆B 型车,销售额为62万元.(1) 求每辆A 型车和B 型车的售价各为多少万元.(2) 甲公司拟向该店购买A ,B 两种型号的新能源汽车共6辆,且A 型号车不少于2辆,购车费不少于130万元,则有哪几种购车方案?考点: 二元一次方程组的实际应用-鸡兔同笼问题;一元一次不等式组的应用;~~第3题~~(2019东海.七下期末) 某公司有A 、B 两种型号的客车共20辆,它们的载客量、每天的租金如表所示.已知在20辆客车都坐满的情况下,共载客720人.A 型号客车B 型号客车载客量(人/辆)4530租金(元/辆)600450(1) 求A 、B 两种型号的客车各有多少辆?(2) 某中学计划租用A 、B 两种型号的客车共8辆,同时送七年级师生到沙家浜参加社会实践活动,已知该中学租车的总费用不超过4600元.①求最多能租用多少辆A 型号客车?②若七年级的师生共有305人,请写出所有可能的租车方案,并确定最省钱的租车方案.考点: 二元一次方程组的实际应用-鸡兔同笼问题;一元一次不等式组的应用;~~第4题~~(2019兴化.七下期末) 有一个边长为m+3的正方形,先将这个正方形两邻边长分别增加1和减少1,得到的长方形①的面积为S .(1) 试探究该正方形的面积S 与S 的差是否是一个常数,如果是,求出这个常数;如果不是,说明理由;(2) 再将这个正方形两邻边长分别增加4和减少2,得到的长方形②的面积为S .①试比较S ,S 的大小;②当m 为正整数时,若某个图形的面积介于S ,S 之间(不包括S ,S )且面积为整数,这样的整数值有且只有16个,求m 的值.考点: 整式的混合运算;一元一次不等式组的应用;~~第5题~~112121212答案(2019昭平.七下期中) 某体育用品商场采购员到厂家批发购进篮球和排球共100只,付款总额不得超过11800元,已知两种球厂家的批发价和商场的零售价如表,设商场采购员到厂家购买x 只篮球,试解答下列的问题:品名厂家批发价(元/只)商场零售价(元/只)篮球130160排球100120(1) 该采购员最多可购进篮球多少只?(2) 若商场把100只球全部售出,为使商场的利润不低于2580元,采购员有哪几种采购方案,哪种方案商场盈利最多?考点: 一元一次不等式的应用;一元一次不等式组的应用;2020年七下数学:方程与不等式_不等式与不等式组_一元一次不等式组的应用练习题答案1.答案:2.答案:3.答案:4.答案:5.答案:。

七年级数学期末复习作业 (每日一练)

七年级数学期末复习作业 (每日一练)

作业一:1、-3的绝对值等于( ) A.-3B. 3C. ±3D. 小于32、与2ab -是同类项的为( ) A.2ac - B.22abC.abD.2abc -3、下面运算正确的是( )A.3ab+3ac=6abcB.4a 2b-4b 2a=0 C.224279x x x += D.22232y y y -=4.不等式组2133x x +≤⎧⎨>-⎩的解集在数轴上表示正确的是5.(1)18(14)(18)13-+---- (2)713()6614÷-⨯ (3) 621123x x ++-<(4)74252154x x x x -≤+⎧⎨-<-⎩6、如图,B ,C 是线段AD 上任意两点,M 是AB 的中点,N 是CD 中点.(1)若MN =10cm ,BC =4cm ,求线段AD 的长. (2)若MN =a ,BC =b ,求线段AD 的长作业二:1.5-= .2.已知∠A =40°,则∠A 的补角等于 °. 2.小明从起点出发沿着一条直路跑了3km 后,再以4km/h 的速度往前走了th ,小明离起点 km .3.请把下列各数填在相应的集合内+4,-1,12--,27⎛⎫-+ ⎪⎝⎭,-(-2),0,2.5,π,-1.22,100% 正数集合:{…} 非负整数集合:{ …} 负分数集合:{…}4计算:(1)2346+=-x x (2) 1615312=--+x x(3)解不等式组()5931311122x x x x ⎧-<-⎪⎨-≤-⎪⎩并写出它的整数解.5.如图,直线AB 与CD 相交于点D ,OE ⊥AB ,OF ⊥CD . (1)图中∠AOF 的余角有 ;(把符合条件的角都填出来)(2)如果∠AOD =140°,那么根据 , 可得∠BOC = 度;(3)∠EOF =15∠AOD ,求∠EOF 的度数.作业三:1、下列四个式子中,是方程的是( ) A.1+2+3+4=10 B.23x - C.21x = D.231-=2、已知方程210k xk -+=是关于x 的一元一次方程,则方程的解等于( )A.-1B.1C.12 D.-123.单项式-223x y的系数是 .4.太阳的半径大约是696000千米,用科学计数法可表示为 千米5.(1)()157362912⎛⎫-+⨯- ⎪⎝⎭(2)()()()32010223251--⨯-+---6.我们定义一种新运算:a*b =2a -b +ab(等号右边为通常意义的运算): (1)计算:2*(-3)的值;(2)解方程:3*x =12*x .7.如图,直线AB 、EF 相交于点D ,∠ADC =90°.若∠1与∠2的度数之比为1:5,求∠CDF 、∠EDB 的度数.作业四:1.-14的相反数等于 A .14 B .-14C .4D .-42.已知13,π,-0.618 ,1.01,-34,其中无理数的个数A .1B .2C .3D .43.下列图形中经过折叠能围成一个棱柱的是4.“比a 的32大1的数”用代数式表示是 A .32a -1 B .23a +1C .23a -1 D .32a +15.如图,直线AB 与直线CD 相交于点O ,E 是∠AOD 内一点,若OE ⊥AB ,∠BOD =45°,则∠COE 的度数是 ( ) A .125° B .135° C .145 D .155°6.(1)8×(-1)2-(-4)+(-3);(2)111457323--+(3)x -x -12=2-x +25 (4)4x -1.50.5-5x -0.80.2=1.2-x0.1作业五:1、写出满足下列条件的一个一元一次方程:①未知数的系数是-1;②方程的解是3,这样的方程可以是:____________ .2、设某数为x ,它的2倍是它的3倍与5的差,则列出的方程为_________ .3.如图所示,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=150°,则∠BOC 等于 ( )A 、30°B 、45°C 、50°D 、60°3.一个物体的三个视图如图所示,则该物体是( )A .圆锥B .球C .圆柱D .长方体 5.如图,将周长为8的△ABC 沿BC 方向平移1个单位得到△DEF ,则 四边形ABFD 的周长为A .6B .8C .10D .12 6.在同一平面内有三条直线,如果只有两条平行,那么它们的交点个数为( )A .0B .1C .2D .37.已知点C 在线段AB 上,则下列条件中,不能确定点C 是线段AB 中点的是( )A .AC =BCB .AC +BC =AB C .AB =2ACD .BC =12AB 8.已知2x 6y 3和-13x 3m y n 是同类项,则9m 2-5mn -17的值是 .9.关于x 的方程234x m x -=-+与2m x -=的解互为相反数.(1)求m 的值;(2)求这两个方程的解.主视图左视图俯视图作业六:1.若22(32)0x y -++=,则x y 的值是 ( )A.49 B.49- C.43- D.432.数轴上表示6的点,移动了3个单位长度后,这个点表示的数是 ( ) A.3 B.9 C.-3 D.3或93.已知代数式x +2y 的值是3,则代数式2x +4y +1的值是 ( ) A. 1 B. 4 C. 7 D. 不能确定 4、如图,若添上一个正方形,使之能折叠成一个正方体,且使相对面上的两个数字之和相等,则添上的正方形上的数字应为 ,共有 种不同添加的方法.5(1)4―||―6-3×⎝ ⎛⎭⎪⎫-13 ; (2)()()241110.5233⎡⎤---⨯⨯--⎣⎦6.某商场将进货价为30元的台灯以40元的销售价售出,平均每月能售出600个.市场调研表明:当销售价每上涨1元时,其销售量就将减少10个.若设每个台灯的销售价上涨a 元. (1)试用含a 的代数式填空:①涨价后,每个台灯的销售价为_______元; ②涨价后,每个台灯的利润为_______元;③涨价后,商场的台灯平均每月的销售量为_______台.(2)如果商场要想销售利润平均每月达到10000元,商场经理甲说“在原售价每台40元的基础上再上涨40元,可以完成任务”,商场经理乙说“不用涨那么多,在原售价每台40元的基础上再上涨10元就可以了”,试判断经理甲与乙的说法是否正确,并说明理由.作业七:1.-5的倒数等于 A .5B .-15C .5D .152.下列各式计算正确的是A .6a +a =6a 2B .-2a +5b =3abC .4m 2n -2mn 2=2mnD .3ab 2-5b 2a =-2ab 23.有时需要把弯曲的河流改直,以达到缩短航程的目的,这样做的依据是_____________________________;4.如果你想将一根细木条固定在墙上,至少需要钉2个钉子,这一事实说明_________________________________.5.如图是一个简单的数值运算程序,当输入n 的值为4时,则输出的结果为 .6(1)()4111312534666⎛⎫-⨯-+-⨯+⨯ ⎪⎝⎭(2)()32142315211⎛⎫-÷-+--⨯ ⎪⎝⎭7.已知关于x 的方程4x +2m +1=2x +5.若该方程的解与方程2y -1=5y +7的解相同,求m 的值;8.如图,直线AB 和CD 相交于点O ,∠BOD 与∠BOE互为余角,OF 平分∠BOC ,∠AOC =52°.求∠BOE 和∠EOF 的度数.作业八1.单项式5223z y x -的系数是 ;若72+-n m b a 与443b a -是同类项,则m +n = .2.据统计,全球每分钟约有8500000吨污水排入江河湖海,则每分钟的排污量用科学记数法表示应是 吨.3.如图,直线AB 和直线CD 交于点O , EO ⊥CD , 垂足为O ,则∠AOE和∠DOB 的关系是 ( )A. 大小相等B. 对顶角C. 互为补角D. 互为余角4.如图,A 、B 、C 、D 是直线l 上顺次四点,M 、N 分别是AB 、CD 的中点,且MN =6cm ,BC =1cm ,则AD 的长等于cm .5.已知∠α是锐角,∠α与∠β互补,∠α与∠γ互余,则∠β-∠γ的值等于( ).A .45°B .60°C .90°D .180° 6.点P 是直线l 外一点,A 、B 、C 为直线l 上的三点,PA =4cm ,PB =5cm ,PC =2cm ,则点P 到直线l 的距离( )A .等于2 cmB .小于2cmC .大于2cmD .不大于2cm 7.已知∠AOB =30°,自∠AOB 顶点O 引射线OC ,若∠AOC :∠AOB =4:3,那么∠BOC 的度数是( )A .10°B .40°C .70°D .10°或70°7.(1)化简求值:()()22222722334a b a b ab a b ab +--- 其中2-=a 、3=b(2)已知关于x 的方程m xm 22=+的解与方程2x -1=3的解相同,求m 的值E O D C BA作业九:1.如果一个角的补角是150°,那么这个角的余角是 °。

七年级数学每日一练

七年级数学每日一练

每日一练十一1. 计算3(25)-⨯=( ) A.1000 B.-1000C.30D.-30 2. 计算2223(23)-⨯--⨯=( ) A.0 B.-54C.-72D.-18 3. 计算11(5)()555⨯-÷-⨯= () A.1B.25C.-5D.354. 下列式子中正确的是( )A.4232(2)(2)-<-<-B. 342(2)2(2)-<-<-C. 4322(2)(2)-<-<-D. 234(2)(3)2-<-<- 5. 422(2)-÷-的结果是( )A.4B.-4C.2D.-26. 如果210,(3)0a b -=+=,那么1b a+的值是( ) A.-2 B.-3 C.-4 D.4 7. 下列各式中,计算正确的是( ).8. A .-8-2×6=(-8-2)×6 B .2÷43×34=2÷(43×34) 9. C .(-1)2006+(-1)2007=-1 D .-(-3)2=-910. 下列计算中,正确的数量是( ).11. ①56+16=-1; ②-2÷34×43=-2; ③-118-18=-1; ④12÷(-13+14)=-1.12. A .0个 B .1个 C .2个 D .3个13. 下列式子正确的是( ).14. A .-24<(-2)2<(-2)3 B .(-2)3<-24<(-2)215. C .-24<(-2)3<(-2)2 D .(-2)2<(-2)3<-2416.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市连续两次降价20%,乙超市一次性降价40%,丙超市第一次降价30%,第二次降价10%,那么顾客在()超市买这种商品更合算.A.甲 B.乙 C.丙 D.一样17.有理数的运算顺序是先算,再算,最算;如果有括号,那么先算。

七年级数学下册期末复习每日一练

七年级数学下册期末复习每日一练

1.解方程组24824x yx y-=⎧⎨+=-⎩①②.2.求不等式组20210xx-≤⎧⎨->⎩的整数解.3.如图,已知∠1=∠2,∠3=∠4,求证:BC∥EF.完成推理填空:证明:因为∠1=∠2(已知),所以AC∥(),所以∠=∠5(),又因为∠3=∠4(已知),所以∠5=∠(等量代换),所以BC∥EF().4.对于x,y定义一种新运算“φ”,xφy=ax+by,其中a,b是常数,等式右边是通常的加法和乘法运算.已知3φ5=15,4φ7=28,求1φ1的值.1. 育人中学开展课外体育活动,决定开设A:篮球、B:乒乓球、C:踢毽子、D:跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种),随机抽取了部分学生进行调查,并将调查结果绘成如甲、乙所示的统计图,请你结合图中信息解答下列问题.(1)样本中最喜欢A 项目的人数所占的百分比为,其所在扇形统计图中对应的圆心角度数是度;(2)请把条形统计图补充完整;(3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?2.在平面直角坐标系中,O为坐标原点,A(—2,3),B(2,2).(1)画出三角形OAB;(2)求三角形OAB的面积;(3)若三角形OAB中任意一点P(x0,y0)经平移后对应点为P1(x0+4,y0-3),请画出三角形OAB平移后得到的三角形O1A1B1,并写出点O1、A1、B1的坐标.3.水果店以每千克4.5元进了一批香蕉,销售中估计有10%的香蕉正常损耗.水果店老板把售价至少定为多少,才能避免亏本?213456-1-21-3-41234-1-2-3y1.为了抓住集安国际枫叶旅游节的商机,某商店决定购进A、B两种旅游纪念品.若购进A种纪念品8件,B种纪念品3件,需要950元;若购进A种纪念品5件,B种纪念品6件,需要800元.(1)求购进A、B两种纪念品每件各需多少元;(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7500元,但不超过7650元,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?2.如图,点E在AC的延长线上,下列条件能判断AB∥CD的是()①∠1=∠2;②∠3=∠4;③∠A=∠DCE;④∠D+∠ABD=180°A .①③④B.①②③C.①②④D .②③④解析:2134ABCDE1.不等式组211420xx->⎧⎨-⎩,≤的解集在数轴上表示为()解析:2.解方程组:{x2−y+13=13x+2y=103.用代入法解方程组:{2x−5y=−3−4x+y=−34.计算:(−1)2024+√−83+|1−√3|+√165.求x的值:8(x−1)3+27=01.若m,n为实数,且|m+√3|与√n−2互为相反数,求(mn)2的值.2.求下列各式中x的值:(1)2x3=-16; (2)4(x-1)2=64.3.如图,直线AB与CD相交于点O,OE平分∠AOD.若OF∠OE,试说明OF平分∠BOD.4.已知点P(2a-2,a+5),解答下列各题.(1)若点P在x轴上,求点P的坐标.(2)点Q的坐标为(4,5),直线PQ∠y轴,求点P的坐标.1. 某市为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行超价收费.为更好地决策,自来水公司的随机抽取了部分用户的用水量数据,并绘制了如图不完整的统计图(每组数据包括在右端点但不包括左端点),请你根据统计图解答下列问题:(1)此次抽样调查的样本容量是_____.(2)补全频数分布直方图,并求扇形图中“15吨~20吨”部分的圆心角的度数.(3)如果自来水公司将基本用水量定位每户25吨,那么该地区6万用户中约有多少用户的用水全部享受基本价格?2. 数学课上,老师出了一道题:比较√19-23与23的大小.小华的方法:因为√19 >4,所以√19-2 2,所以√19-2323(填“>”或“<”).小英的方法:√19-23-23=√19-43.因为19>42=16,所以√19-4 0,所以√19-430,所以√19-2323(填“>”或“<”).(1)根据上述材料填空;(2)请从小华和小英的方法中选择一种比较√6-14与12的大小.1.解下列不等式和不等式组,并把解集表示在数轴上.(1)2(x+3)-1≥3x+2 (2){−3(x+1)−(x−3)<8 2x+13−1−x2≤12.把一部分书分给几名同学,如果每人分3本,则余8本;如果前面的每名同学分5本,那么最后一人就分不到3本(包含分不到书的情况),这些书有多少本?共有多少人?3.为更好的治理水质,保护环境,市治污办事处预购买10台污水处理设备,现有A、B:询问商家得知:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元,根据以上条件.(1)求a、b的值;(2)市污水处理办公室由于资金缺乏,购买污水处理设备的资金最多105万元,你认为该有几种购买方案?(3)在(2)的情况下,若每月污水处理量要求不低于2040吨,为节约资金,请你帮污水处理办事处选取一种最省钱的方案?1.如图,若在中国象棋盘上建立平面直角坐标系,使“帅”位于点(-1,-1),“马”位于点(2,-1),则“兵”位于点()A.(﹣1,2)B.(﹣3,2)C.(﹣3,1)D.(﹣2,3)2.郑州市某区为了解参加2021年中考的8900名学生的体重情况,随机抽查了其中1500名学生的体重进行统计分析,下列叙述正确的是()A.8900名学生是总体B.每名学生是总体的一个个体C.1500名学生的体重是总体的一个样本D.以上调查是普查3.若﹣2x a y与5x3y b的和是单项式,求(a+b)2的平方根.4.在平面直角坐标系中,△ABC经过平移得到三角形△A`B`C`,位置如图所示:(1)分别写出点A、A`的坐标:A ,A` ;(2)若点M(m,n)是△ABC内部一点,则平移后对应点M的坐标为 ;(3)求△ABC的面积.5.已知5a+2的立方根是3,3a+b﹣1的算术平方根是4,c是√13的整数部分.(1)求a,b,c的值;(2)求3a﹣b+c的平方根.1. 某中学组织本校教师开展线上教学,为了解学生线上教学的学习效果,决定随机抽取八年级学生部分学生进行质量测评,根据测试的数学成绩绘制统计表和频数分布直方图.请根据所给信息,解答下列问题:(1)求a 和b ;(2)求此次抽样的样本容量,并补全频数分布直方图;(3)已知该年级有800名学生参加测试,请估计该年级数学成绩为优秀(80分及以上)的人数.2. 如图,已知直线AB 与CD 交于点O ,OM∠CD ,OA 平分∠MOE ,且∠BOD =28°,求∠AOM ,∠COE 的度数.3. 若关于x ,y 的方程组{x +3y =4m +1x −y =3 的解满足x+y=4,求m 的值.1.计算:−12024+√25−2×√−183−|3−π|2.用两种方法解二元一次方程组:{x−y=44x+2y=13.解不等式组,{2x≥5x−34x+23>x 并写出它的所有整数解.4.如图,在边长为1个单位长度的小正方形网格中建立平面直角坐标系,已知三角形ABC 的顶点A的坐标为A(-1,4),顶点B的坐标为(-4,3),顶点C的坐标为(-3,1).(1)把三角形ABC向右平移5个单位长度,再向下平移4个单位长度得到三角形A'B'C',请你画出三角形A'B'C';(2)请直接写出点A’,B',C'的坐标;(3)求三角形ABC的面积.1.近日教育部正式印发《义务教育课程方案》并发布《义务教育劳动课程标准(2022年版)》,今秋开学起,劳动将正式成为中小学的一门独立课程。

浙教版数学七年级下册 期末每日练3

浙教版数学七年级下册 期末每日练3

2021学年浙教版七下数学期末期末每日练31.在下列图形中,∠1与∠2是内错角的是()A.B.C.D.2.下列从左到右的变形中属于是因式分解的是()A.(x+1)(x﹣2)=x2﹣x﹣2B.x2﹣2x+1=x(x﹣2)+1C.(3x﹣y)2=9x2﹣6xy+y2D.x2﹣2xy+y2=(x﹣y)23.为了了解某市初中4000名七年级学生的身高情况,从该市各初中学校七年级中随机抽取800名学生进行测量.关于这个问题,下列说法不正确的是()A.4000名七年级学生的身高情况的全体是总体B.每名学生的身高情况是个体C.抽取的800学生的身高情况是样本D.样本容量是4000名4.下列分式中,与相等的是()A.B.C.﹣D.5.二元一次方程组的解为()A.B.C.D.6.在探索因式分解的公式时,可以借助几何图形来解释某些公式.如图,从左图到右图的变化过程中,解释的因式分解公式是()A.(a+b)(a﹣b)=a2﹣b2B.a2﹣b2=(a+b)(a﹣b)C.a2+b2=(a+b)2D.(a﹣b)2=a2﹣2ab+b27.如图,ABCD为一长条形纸带,AB∥CD,将ABCD沿EF折叠,A、D两点分别与A′、D′对应,若∠1=2∠2,则∠AEF的度数为()A.60°B.65°C.72°D.75°8.如图,∠AOB的一边OA为平面镜,∠AOB=37°,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数是()A.74°B.63°C.64°D.73°9.按如图所示的程序流程计算,若开始输入的值为x=3,则最后输出的结果是()A.231B.156C.21D.610.如图,a∥b,设∠1=(3m+10)°,∠4=(7m﹣30)°,正确的选项是()A.若∠2=∠3,则∠2=(3m﹣10)°B.若∠1=∠4,则∠3=(m+30)°C.若∠1=2∠2=2∠3,则∠2=(3m)°D.若∠1=∠2=∠3,则∠2=(5m﹣10)°11.一次射击训练中,李磊共射击10发,射中8环的频率是0.4,则射中8环的频数是.12.计算:3﹣1÷3=.13.如果是方程x﹣3y=﹣3的一组解,那么代数式2019﹣2a+6b=.14.一副直角三角尺按如图1所示方式叠放,现你含45°角的三角尺ADE固定不动,将含30°角的三角尺ABC绕顶点A顺时针转动,当两块三角尺至少有一组边互相平行,则∠BAD(0°<∠BAD<90°)所有符合条件的度数为.15.若关于x的不等式的整数解共有4个,则m的取值范围是.16.已知D是△ABC的边BC所在直线上的一点,与B,C不重合,过D分别作DF∥AC 交AB所在直线于F,DE∥AB交AC所在直线于E.若∠B+∠C=105°,则∠FDE的度数是.17.分解因式:(1)x3﹣xy2.(2)m3﹣6m2+9m.18.解方程组或方程:(1)(2)=19.已知关于x、y的二元一次方程(m﹣3)x+(m+2)y=m﹣8,当m取每一个不同值时,(m﹣3)x+(m+2)y=m﹣8,都表示一个不同的方程,若这些方程有一个公共解,这个公共解是.20.当x分别取2019,2018,2017,……,2,1,,,…,,,时,分别计算分式的值,再将所得结果相加,其和等于.21.计算下列各题:(1)+(﹣1)2019﹣(﹣3)0(2)4a2b•(﹣3b2c)÷(2ab3).22.如图,已知A,B分别为数轴上的两点,点A表示的数是﹣30,点B表示的数是50.(1)请写出线段AB中点M表示的数是.(2)现有一只蚂蚁P从点B出发,以每秒3个单位长度的速度沿数轴向左移动,同时另一只妈蚁Q恰好从点A出发,以每秒2个单位长度的速度沿数轴向右移动,设两只蚂蚁在数轴上的点C相遇,求点C对应的数是多少?(3)若蚂蚁P从点B出发,以每秒3个单位长度的速度沿数轴向左运动,5秒钟后另一只蚂蚁Q恰好从A点出发,以每秒2个单位长度的速度沿数轴也向左运动,设两只妈蚁在数轴上的D点相遇,求D点表示的数是多少?23.某城市开展省运会,关心中小学生观众,门票价格优惠规定见表.某中学七年级甲、乙两个班共86人去省运会现场观看某一比赛项目,其中乙班人数多于甲班人数,甲班人数不少于35人.如果两班都以班级为单位分别团体购买门票,则一共应付8120元.购票张数1~40张41~80张81张(含81张)以上平均票价(元/张)1009080(1)如果甲、乙两个班联合起来作为一个团体购买门票,则可以节省不少钱,联合起来购买门票能节省多少钱?(2)问甲、乙两个班各有多少名学生?(3)如果乙班有m(0<m<20,且m为整数)名学生因事不能参加,试就m的不同取值,直接写出最省钱的购买门票的方案?24.已知,O是直线AB上的一点,∠COD是直角,OE平分∠BOC.(1)如图1,若∠AOC=30°,求∠DOE的度数;(2)在图1中,若∠AOC=a,直接写出∠DOE的度数(用含a的代数式表示);(3)将图1中的∠DOC绕顶点O顺时针旋转至图2的位置.①探究∠AOC和∠DOE的度数之间的关系,写出你的结论,并说明理由;②在∠AOC的内部有一条射线OF,满足:∠AOC﹣4∠AOF=2∠BOE+∠AOF,试确定∠AOF与∠DOE的度数之间的关系,说明理由.参考答案1.解:A、∠1与∠2是同位角,故此选项不合题意;B、∠1与∠2是同旁内角,故此选项不合题意;C、∠1与∠2是内错角,故此选项符合题意;D、∠1与∠2不是内错角,此选项不合题意;故选:C.2.解:A、(x+1)(x﹣2)=x2﹣x﹣2,是整式的乘法运算,故此选项不合题意;B、x2﹣2x+1=(x﹣1)2,故此选项不合题意;C、(3x﹣y)2=9x2﹣6xy+y2,故此选项不合题意;D、x2﹣2xy+y2=(x﹣y)2,是因式分解,故此选项符合题意.故选:D.3.解:A、4000名七年级学生的身高情况的全体是总体,故原题说法正确;B、每名学生的身高情况是个体,故原题说法正确;C、抽取的800学生的身高情况是样本,故原题说法正确;D、样本容量是4000,故原题说法错误;故选:D.4.解:A、≠,此选项不符合题意;B、=,符合题意;C、﹣=﹣≠,不符合题意;D、=≠,不符合题意;故选:B.5.解:①+②,得3x=9,解得x=3,把x=3代入①,得3+y=5,y=2,所以原方程组的解为.故选:C.6.解:如图,从左图到右图的变化过程中,解释的因式分解公式是:a2﹣b2=(a+b)(a﹣b),故选:B.7.解:由翻折的性质可知:∠AEF=∠FEA′,∵AB∥CD,∴∠AEF=∠1,∵∠1=2∠2,设∠2=x,则∠AEF=∠1=∠FEA′=2x,∴5x=180°,∴x=36°,∴∠AEF=2x=72°,故选:C.8.解:过点D作DF⊥AO交OB于点F.∵入射角等于反射角,∴∠1=∠3,∵CD∥OB,∴∠1=∠2(两直线平行,内错角相等);∴∠2=∠3(等量代换);在Rt△DOF中,∠ODF=90°,∠AOB=37°,∴∠2=90°﹣37°=53°;∴在△DEF中,∠DEB=180°﹣2∠2=74°.故选:A.9.解:把x=3代入程序流程得:=6<100,把x=6代入程序流程得:=21<100,把x=21代入程序流程得:=231>100,则最后输出的结果是231,故选:A.10.解:如图,∵a∥b,∴∠1=∠5,∵∠2+∠4=∠3+∠5,当∠2=∠3时,可以推出∠1=∠4,∠2与∠3是变化的,选项A,B中∠2∠3 不确定表示不了,C选项成立时m=10°,此时∠1=∠4=40°按照题目给的代数式∠C=30°不存在前面条件的二倍关系.故A,B,C错误.如图,当∠1=∠2=∠3时,∵∠1=∠2,∴a∥c,∵a∥b,∴c∥b,∴∠3=∠4,∵∠1=∠2=∠3,∴∠1=∠2=∠3=∠4,∴∠2=(∠1+∠4)=[(3m+10)°+(7m﹣30)°]=(5m﹣10)°,故选项D正确,故选:D.11.解:∵共射击10发,射中8环的频率是0.4,∴射中8环的频数是:10×0.4=4,故答案为:4.12.解:3﹣1÷3=,故答案为:.13.解:把x=a,y=b代入方程,可得:a﹣3b=﹣3,∴2019﹣2a+6b=2019﹣2(a﹣3b)=2019﹣2×(﹣3)=2019+6=2025.故答案为:2025.14.解:如图,当AC∥DE时,∠BAD=∠DAE=45°;当BC∥AD时,∠DAB=∠B=60°;综上所述,当两块三角尺至少有一组边互相平行,则∠BAD(0°<∠BAD<90°)所有符合条件的度数为45°和60°,故答案为:45°和60°.15.解:∵不等式组的解集是:3≤x<m,整数解共有4个,∴整数解是3、4、5、6,∴m的取值范围是6<m≤7.故答案为:6<m≤7.16.解:如图:分为三种情况:第一种情况:如图①,∵∠B+∠C=105°,∴∠A=180°﹣(∠B+∠C)=75°,∵DE∥AB,DF∥AC,∴∠A=∠DFB,∠FDE=∠DFB,∴∠FDE=∠A=75°;第二种情况:如图②,∵∠B+∠ACB=105°,∴∠BAC=180°﹣(∠B+∠ACB)=75°,∵DE∥AB,DF∥AC,∴∠BAC=∠E=75°,∠FDE+∠E=180°,∴∠FDE=105°;第三种情况:如图③,∵∠ABC+∠C=105°,∴∠BAC=180°﹣(∠ABC+∠C)=75°,∵DE∥AB,DF∥AC,∴∠BAC=∠E=75°,∠FDE+∠E=180°,∴∠FDE=105°.故答案为:75°或105°.17.解:(1)原式=x(x2﹣y2)=x(x﹣y)(x+y);(2)原式=m(m2﹣6m+9)=m(m﹣3)2.18.解:(1),把①代入②得:3x﹣x=8,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(8) 数学训练002
评价:
6.夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的长方形荷塘上架设小桥.若荷塘周长为280m ,且桥宽忽略不计,则小桥总长为________m .
7.如图,小亮从A 点出发前10m
,向右转15°,再前进10m ,又向右转15°,…,这样一直走下去,他第一次回到出发点A 时,一共走了________m .
8. 如图,四边形ABCD 中,点M ,N 分别在AB ,BC 上, 将△BMN 沿MN 翻折,得
△FM N ,若MF ∥AD ,FN ∥DC , 则∠B = °.
9. 如图,两个直角三角形重叠在一起,将其中一个三角形沿着点B 到点C 的方
向平移到
△DEF 的位置,AB=10,DH=4,平移距离为6,求阴影部分的面积.
10 我们已经知道三角形三个内角和是180°,对于如图1中,AC ,BD 交于O 点,形成的两个三角形中的角存在以下关系:①∠DOC=∠AOB ;②∠D+∠C=∠A+∠B .试探究下面问题:
已知∠BAD 的平分线AE 与∠BCD 的平分线CE 交于点E ,
(1)如图2,若AB ∥CD ,∠D=30°,∠B=60°,则∠E=_________;
(2)如图3,若AB 不平行CD ,∠D=30°,∠B=40°,则∠E=_________;
(3)在总结前两问的基础上,借助图3,探究∠E 与∠D 、∠B 之间是否存在
某种等量关系?若存在,请说明理由;若不存在,请举例说明.
(7) (6)。

相关文档
最新文档