七年级下学期4月份月考数学试卷含答案
2019-2020年七年级下学期月考数学试卷(4月份)

2019-2020年七年级下学期月考数学试卷(4月份)一、选择题(本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项符合题目要求.)1.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00 000 0076克,用科学记数法表示是()A.7.6×108克B.7.6×10﹣7克C.7.6×10﹣8克D.7.6×10﹣9克2.在以下现象中,属于平移的是()①在荡秋千的小朋友;②打气筒打气时,活塞的运动;③自行车在行进中车轮的运动;④传送带上,瓶装饮料的移动.A.①②B.①③C.②③D.②④3.如图,直线a∥b,∠1=70°,那么∠2等于()A.70°B.100°C.110°D.20°4.下列长度的三根木棒首尾相接,不能做成三角形框架的是()A.5cm、7cm、2cm B.7cm、13cm、10cmC.5cm、7cm、11cm D.5cm、10cm、13cm5.下列计算错误的是()[来源:学.科.网]A.a•a5÷a4=a2B.a3÷a=a3C.a2÷(﹣a)2=1 D.a3÷a•a2=a46.如果a=(﹣99)0,b=(﹣0.1)﹣1,c=(﹣)﹣2,那么a,b,c三数的大小为()A.a>b>c B.c>a>b C.a>c>b D.c>b>a[来源:]7.小明同学把一个含有45°角的直角三角板放在如图所示的两条平行线m、n上,测得∠α=120°,则∠β的度数是()A.45°B.55°C.65°D.75°8.下面是按一定规律排列的一列数:第1个数:;第2个数:;第3个数:;…那么,在第11个数、第12个数、第13个数、第14个数中,最大的数是()A.第11个数B.第12个数C.第13个数D.第14个数二、填空题(本大题共10个小题,每小题3分,共30分.)9.计算:(﹣2xy)3=.[来源:中.考.资.源.网]10.已知△ABC的三个内角分别是∠A、∠B、∠C,若∠A=30°,∠C=2∠B,则∠C=..11.已知22×83=2n,则n的值为.12.若x2﹣ax+9是一个完全平方式,则a=.13.如图,小亮从A点出发前10m,向右转15°,再前进10m,又向右转15°,…,这样一直走下去,他第一次回到出发点A时,一共走了m.14.计算:=.15.已知x+y=6,xy=4,x2+y2=.16.如图,a∥b,则∠A=.17.已知:(x+2)x+5=1,则x=.18.如图,△ABC的面积为1.分别倍长AB,BC,CA得到△A1B1C1.再分别倍长A1B1,B1C1,C1A1得到△A2B2C2.…按此规律,倍长n次后得到的△A n B n C n的面积为.三、解答题(本大题共10个小题,共96分.)19.计算(1)(﹣x)2•(﹣x)3+2x(﹣x)4﹣(﹣x)•x4;(2)(a﹣b)2•(a﹣b)4+(b﹣a)3•(a﹣b)3;(2);(4).20.计算(1)(﹣2ab2)2•(3a2b﹣2ab﹣1);(2)(2a﹣b)2•(2a+b)2;(3)(1+x﹣y)(x+y﹣1);(4)9992﹣1002×998.21.先简化,再求值:a(a﹣3b)+(a+b)2﹣a(a﹣b),其中a=1,b=﹣.22.如下图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.将△ABC 向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A′B′C′;(2)再在图中画出△A′B′C′的高C′D′,并求出△ABC的面积.23.如图,△ABC中,AD、AE分别是△ABC的高和角平分线,∠B=40°,∠DAE=12°.求∠C 的度数.24.化简求值:已知:(x+a)(x﹣)的结果中不含关于字母x的一次项,求(a+2)2﹣(1﹣a)(﹣a﹣1)的值.25.如图,在四边形ABCD中,∠ABC、∠ADC的平分线分别与CD、AB相交于点E、F.(1)若∠A与∠C互补,∠CDF=40°,求∠ABE的度数.(2)若∠A=∠C=90°,试判断DF与BE有怎样的位置关系,并请说明理由.26.(1)实验与观察:(用“>”、“=”或“<”填空)当x=﹣5时,代数式x2﹣2x+21;当x=1时,代数式x2﹣2x+21;…(2)归纳与证明:换几个数再试试,你发现了什么?请写出来并证明它是正确的;(3)拓展与应用:求代数式a2+b2﹣6a﹣8b+30的最小值.27.我们运用图(I)图中大正方形的面积可表示为(a+b)2,也可表示为c2+4×ab,即(a+b)2=c2+4×ab由此推导出一个重要的结论a2+b2=c2,这个重要的结论就是著名的“勾股定理”.这种根据图形可以极简单地直观推论或验证数学规律和公式的方法,简称“无字证明”.(1)请你用图(Ⅱ)的面积表达式验证勾股定理(其中四个直角三角形的较大的直角边长都为a,较小的直角边长都为b,斜边长都为c).(2)请你用(Ⅲ)提供的图形进行组合,用组合图形的面积表达式验证:(x+y)2=x2+2xy+y2(3)现有足够多的边长为x的小正方形,边长为y的大正方形以及长为x宽为y的长方形,请你自己设计图形的组合,用其面积表达式验证:(x+y)(x+2y)=x2+3xy+2y2.28.探究与发现:[来源:中.考.资.源.网]探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系.探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.探究三:若将△ADC改为任意四边形ABCD呢?已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P 与∠A+∠B的数量关系.探究四:若将上题中的四边形ABCD改为六边形ABCDEF(图4)呢?请直接写出∠P与∠A+∠B+∠E+∠F的数量关系:.江苏省扬州市江都市七校联谊xx学年七年级下学期月考数学试卷(4月份)一、选择题(本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项符合题目要求.)1.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00 000 0076克,用科学记数法表示是()A.7.6×108克B.7.6×10﹣7克C.7.6×10﹣8克D.7.6×10﹣9克考点:科学记数法—表示较小的数.分析:对于绝对值小于1的数,用科学记数法表示为a×10n形式,其中1≤a<10,n是一个负整数,除符号外,数字和原数左边第一个不为0的数前面0的个数相等,根据以上内容写出即可.解答:解:0.00 000 0076克=7.6×10﹣8克,故选C.点评:本题考查了科学记数法表示较小的数,注意:对于绝对值小于1的数,用科学记数法表示为a×10n形式,其中1≤a<10,n是一个负整数,除符号外,数字和原数左边第一个不为0的数前面0的个数相等.2.在以下现象中,属于平移的是()①在荡秋千的小朋友; [来源:中.考.资.源.网]②打气筒打气时,活塞的运动;③自行车在行进中车轮的运动;④传送带上,瓶装饮料的移动.A.①②B.①③C.②③D.②④考点:生活中的平移现象.分析:判断生活中的现,是否是平移,要根据平移的定义,进行判断,图形平移前后的形状和大小没有变化,只是位置发生变化.解答:解:①在荡秋千的小朋友,是旋转,故此选项错误;②打气筒打气时,活塞的运动,是平移,故此选项正确;③自行车在行进中车轮的运动,是旋转,故此选项错误;④传送带上,瓶装饮料的移动,是平移,故此选项正确;故选:D.点评:本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转而误选.3.如图,直线a∥b,∠1=70°,那么∠2等于()A.70°B.100°C.110°D.20°考点:平行线的性质.分析:先根据平行线的性质求出∠3的度数,再由补角的定义即可得出结论.解答:解:∵直线a∥b,∠1=70°,∴∠3=∠1=70°,∴∠2=180°﹣∠3=180°﹣70°=110°.故选C.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.[来源:]4.下列长度的三根木棒首尾相接,不能做成三角形框架的是()A.5cm、7cm、2cm B.7cm、13cm、10cmC.5cm、7cm、11cm D.5cm、10cm、13cm考点:三角形三边关系.专题:计算题.分析:根据三角形的三边关系“两边之和大于第三边,两边之差小于第三边”进行分析判断.解答:解:A中,5+2=7,不符合;B中,10+7>13,10﹣7<13,符合;C中,5+7>11,7﹣5<11,符合;D中,5+10>13,10﹣5<13,符合.故选A.点评:考查了三角形的三边关系,一定注意构成三角形的三边关系:两边之和大于第三边,两边之差小于第三边.5.下列计算错误的是()A.a•a5÷a4=a2B.a3÷a=a3C.a2÷(﹣a)2=1 D.a3÷a•a2=a4考点:同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.分析:根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;即可解答.解答:解:A、C、D计算结果正确;B、应为a3÷a=a2,故选:B.点评:本题考查同底数幂的除法,同底数幂的乘法,幂的乘方很容易混淆,一定要记准法则才能做题.6.如果a=(﹣99)0,b=(﹣0.1)﹣1,c=(﹣)﹣2,那么a,b,c三数的大小为()A.a>b>c B.c>a>b C.a>c>b D.c>b>a考点:负整数指数幂;有理数大小比较;零指数幂.分析:分别将a、b、c化简求值,然后即可比较大小.解答:解:∵a=(﹣99)0=1,b=(﹣0.1)﹣1=﹣10,c=(﹣)﹣2=,且﹣10<1<,即b<a<c.故选:B.点评:此题考查了零指数幂、负整数幂及数的比较大小,解题的关键是:分别将a、b、c 化简求值.7.小明同学把一个含有45°角的直角三角板放在如图所示的两条平行线m、n上,测得∠α=120°,则∠β的度数是()A.45°B.55°C.65°D.75°考点:平行线的性质;三角形内角和定理.专题:计算题.分析:根据平行线的性质得∠1=∠2,根据三角形外角性质有∠α=∠2+∠3,可计算出∠2=120°﹣45°=75°,则∠1=75°,根据对顶角相等即可得到∠β的度数.解答:解:如图,∵m∥n,∴∠1=∠2,∵∠α=∠2+∠3,而∠3=45°,∠α=120°,∴∠2=120°﹣45°=75°,∴∠1=75°,∴∠β=75°.故选:D.点评:本题考查了平行线的性质:两直线平行,同位角相等.也考查了三角形外角性质以及对顶角的性质.8.下面是按一定规律排列的一列数:第1个数:;第2个数:;第3个数:;…那么,在第11个数、第12个数、第13个数、第14个数中,最大的数是()A.第11个数B.第12个数C.第13个数D.第14个数考点:规律型:数字的变化类.分析:分别算出每一个数:第1个数=﹣=0;第2个数=﹣××=;第3个数=﹣××××=﹣;…由此得出第n个数的计算结果为﹣;由此得出规律解决问题.解答:解:第1个数=﹣=0;第2个数=﹣××==﹣;第3个数=﹣××××=﹣=﹣;…由此得出第n个数的计算结果﹣;随着n的数值增大,则计算结果越来越小.因此在第11个数、第12个数、第13个数、第14个数中,最大的数是第11个数.故选:A点评:此题考查数字的变化规律,找出数字之间的联系,找出规律解决问题.二、填空题(本大题共10个小题,每小题3分,共30分.)9.计算:(﹣2xy)3=﹣8x3y3.考点:幂的乘方与积的乘方.专题:计算题.分析:根据积得乘方等于每个因式分别乘方,再把所得的幂相乘,可得答案.解答:解:原式=(﹣2)3x3y3=﹣8x3y3,故答案为:﹣8x3y3.点评:本题考查了积的乘方,每个因式分别乘方,再把所得的幂相乘.10.已知△ABC的三个内角分别是∠A、∠B、∠C,若∠A=30°,∠C=2∠B,则∠C=100°..考点:三角形内角和定理.分析:根据三角形内角和是180°列出等式∠A+∠B+∠C=180°,据此易求∠C的度数.解答:解:∵在△ABC中,∠A=30°,∠C=2∠B,∠A+∠B+∠C=180°,∴30°+3∠B=180°,∴∠B=50°,∴∠C=2∠B=100°.故答案是:100°.点评:本题考查了三角形内角和.实际上三角形内角和等于180度是隐含在题干中的一个已知条件.11.已知22×83=2n,则n的值为11.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:逆运用幂的乘方的性质都转化为以2为底数的幂的运算,再根据同底数幂相乘,底数不变指数相加计算,然后根据指数相等解答.解答:解:∵22×83=22×(23)3=22×29=211,∴2n=211,∴n=11.故答案为:11.点评:本题考查了幂的乘方的性质,同底数幂的乘法的性质,熟记性质并理清指数的变化是解此类题目的关键,本题难点在于都转化为以2为底数的幂.12.若x2﹣ax+9是一个完全平方式,则a=±6.考点:完全平方式.分析:根据完全平方公式得出﹣ax=±2•x•3,求出即可.解答:解:∵x2﹣ax+9是一个完全平方式,∴﹣ax=±2•x•3,a=±6,故答案为:±6.点评:本题考查了对完全平方公式的应用,注意:完全平方公式有:(a+b)2=a2+2ab+b2,(a﹣b)2=a2﹣2ab+b2.13.如图,小亮从A点出发前10m,向右转15°,再前进10m,又向右转15°,…,这样一直走下去,他第一次回到出发点A时,一共走了240m.考点:多边形内角与外角.专题:应用题.分析:由题意可知小亮所走的路线为正多边形,根据多边形的外角和定理即可求出答案.解答:解:∵小亮从A点出发最后回到出发点A时正好走了一个正多边形,∴根据外角和定理可知正多边形的边数为n=360°÷15°=24,则一共走了24×10=240米.故答案为:240.点评:本题主要考查了多边形的外角和定理.任何一个多边形的外角和都是360°,用外角和求正多边形的边数可直接让360°除以一个外角度数即可.14.计算:=﹣.考点:幂的乘方与积的乘方;同底数幂的乘法.专题:计算题.分析:根据同底数幂的乘法,可得指数相同的幂的乘法,根据积的乘方运算,可得答案案.解答:解:原式=(﹣)[来源:中.考.资.源.网]==﹣,故答案为:﹣.点评:本题考查了积的乘方,先化成指数相同的幂的乘法,再进行积的乘方运算.15.已知x+y=6,xy=4,x2+y2=28.考点:完全平方公式.专题:应用题.分析:根据完全平方公式(x+y)2=x2+2xy+y2,把原式变形后求值.解答:解:∵x+y=6,xy=4,∴x2+y2=(x+y)2﹣2xy=36﹣8=28.故本题答案为:28.点评:本题考查了完全平方公式,通过对公式的变形,达到灵活使用公式的目的,难度适中.16.如图,a∥b,则∠A=22°.考点:三角形的外角性质;平行线的性质.专题:计算题.分析:首先根据两直线平行,内错角相等,得到∠2=∠3,又由三角形的外角等于与它不相相邻的两个角的和,得到∠A的值.解答:解:∵a∥b,∴∠2=∠3=50°,∵∠2=∠1+∠A,∠1=28°,∴∠A=∠2﹣∠1=50°﹣28°=22°.故答案为:22°.点评:此题考查了平行线的性质与三角形的外角的性质.题目比较简单,要注意利用图形.17.已知:(x+2)x+5=1,则x=﹣5或﹣1或﹣3.考点:零指数幂.专题:计算题;分类讨论.分析:根据:a0=1(a≠0),1的任何次方为1,﹣1的偶次方为1,解答本题.解答:解:根据0指数的意义,得当x+2≠0时,x+5=0,解得x=﹣5.当x+2=1时,x=﹣1,当x+2=﹣1时,x=﹣3,x+5=2,指数为偶数,符合题意.故填:﹣5或﹣1或﹣3.点评:本题的难点在于将幂为1的情况都考虑到.18.如图,△ABC的面积为1.分别倍长AB,BC,CA得到△A1B1C1.再分别倍长A1B1,B1C1,C1A1得到△A2B2C2.…按此规律,倍长n次后得到的△A n B n C n的面积为7n.考点:三角形的面积.专题:压轴题;规律型.分析:根据等底等高的三角形的面积相等可得三角形的中线把三角形分成两个面积相等的三角形,然后求出第一次倍长后△A1B1C1的面积是△ABC的面积的7倍,依此类推写出即可.解答:解:连接AB1、BC1、CA1,根据等底等高的三角形面积相等,△A1BC、△A1B1C、△AB1C、△AB1C1、△ABC1、△A1BC1、△ABC的面积都相等,所以,S△A1B1C1=7S△ABC,同理S△A2B2C2=7S△A1B1C1,=72S△ABC,依此类推,S△AnBnCn=7n S△ABC,∵△ABC的面积为1,∴S△AnBnCn=7n.故答案为:7n.点评:本题考查了三角形的面积,根据等底等高的三角形的面积相等求出一次倍长后所得的三角形的面积等于原三角形的面积的7倍是解题的关键.三、解答题(本大题共10个小题,共96分.)19.计算(1)(﹣x)2•(﹣x)3+2x(﹣x)4﹣(﹣x)•x4;(2)(a﹣b)2•(a﹣b)4+(b﹣a)3•(a﹣b)3;(2);(4).考点:整式的混合运算;零指数幂;负整数指数幂.专题:计算题.分析:(1)原式利用幂的乘方与积的乘方运算法则计算,合并即可得到结果;(2)原式变形后,利用同底数幂的乘法法则计算,合并即可得到结果;(3)原式第一项利用零指数幂法则计算,第二项利用负整数指数幂法则计算,第三项利用乘方的意义化简,最后一项利用负整数指数幂法则计算即可得到结果;(4)原式第二项利用负整数指数幂法则计算,第三项利用绝对值的代数意义化简,最后一项利用零指数幂法则计算即可得到结果.解答:解:(1)原式=﹣x5+2x5+x5=2x5;(2)原式=(a﹣b)6﹣(a﹣b)6=0;(3)原式=1﹣+9﹣4=;(4)原式=5﹣3+3﹣1=4.点评:此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.20.计算(1)(﹣2ab2)2•(3a2b﹣2ab﹣1);(2)(2a﹣b)2•(2a+b)2;(3)(1+x﹣y)(x+y﹣1);(4)9992﹣1002×998.考点:整式的混合运算.分析:(1)先算乘方,再按照单项式乘多项式的计算方法计算;(2)(3)(4)先利用平方差公式计算,再利用完全平方公式计算即可.解答:解:(1)(﹣2ab2)2•(3a2b﹣2ab﹣1)=4a2b4•(3a2b﹣2ab﹣1)=12a4b5﹣8a3b5﹣4a2b4;(2)(2a﹣b)2•(2a+b)2;=[(2a﹣b)•(2a+b)]2=(4a2﹣b2)2=16a4+b4﹣8a2b2;(3)(1+x﹣y)(x+y﹣1)=[x+(1﹣y)][x﹣(1﹣y)]=x2﹣(1﹣y)2=x2﹣y2+2y﹣1;(4)9992﹣1002×998=9992﹣(1000+2)(1000﹣2)=9992﹣10002+4=(999+1000)(999﹣1000)+4=﹣xx+4=﹣1995.点评:此题考查整式的混合运算,掌握计算方法和计算公式是解决问题的关键.21.先简化,再求值:a(a﹣3b)+(a+b)2﹣a(a﹣b),其中a=1,b=﹣.考点:整式的混合运算—化简求值.分析:先算乘法,再合并同类项,最后代入求出即可.解答:解:a(a﹣3b)+(a+b)2﹣a(a﹣b)=a2﹣3ab+a2+2ab+b2﹣a2+ab=a2+b2,当a=1,b=﹣时,原式=12+(﹣)2=1.点评:本题考查了整式的混合运算和求值的应用,(1)小题主要考查学生的化简能力和计算能力,难度适中.22.如下图,在每个小正方形边长为1的方格纸中,△ABC的顶点都在方格纸格点上.将△ABC 向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A′B′C′;(2)再在图中画出△A′B′C′的高C′D′,并求出△ABC的面积.考点:作图-平移变换.专题:探究型.分析:(1)根据图形平移的性质作出△A′B′C′即可;(2)由三角形的面积公式求出△A′B′C′的面积,再根据图形平移不变性的性质即可得出结论.解答:解:(1)如图1;(2)如图2,∵A′B′=4,C′D′=4,∴S△A′B′C′=A′B′×C′D′=×4×4=8,∵△A′B′C′由△ABC平移而成,∴S△ABC=S△A′B′C′=8.点评:本题考查的是作图﹣平移变换,熟知图形平移不变性的性质是解答此题的关键.23.如图,△ABC中,AD、AE分别是△ABC的高和角平分线,∠B=40°,∠DAE=12°.求∠C 的度数.考点:三角形内角和定理.分析:根据垂直得出∠ADC=∠ADB=90°,根据三角形内角和定理求出∠BAE,根据角平分线定义求出∠CAE=∠BAE=38°,求出∠CAD=26°,根据三角形内角和定理的求出即可.解答:解:∵AD⊥BC,∴∠ADC=∠ADB=90°,∵∠B=40°,∠DAE=12°,∴∠BAE=90°﹣∠B﹣∠DAE=38°,∵AE平分∠BAC,∴∠CAE=∠BAE=38°,∵∠DAE=12°,∴∠CAD=38°﹣12°=26°,∵∠ADC=90°,∴∠C=90°﹣∠CAD=64°.点评:本题考查了三角形内角和定理,垂直定义,角平分线定义的应用,能运用定理求出各个角的度数是解此题的关键,注意:三角形的内角和等于180°.24.化简求值:已知:(x+a)(x﹣)的结果中不含关于字母x的一次项,求(a+2)2﹣(1﹣a)(﹣a﹣1)的值.考点:多项式乘多项式.分析:首先利用多项式的乘法法则计算:(x+a)(x﹣),结果中不含关于字母x的一次项,即一次项系数等于0,即可求得a的值,然后把所求的式子化简,然后代入求值即可.解答:解:(x+a)(x﹣)=x2+ax﹣x﹣a=x2+(a﹣)x﹣a由题意得a﹣=0则a=(a+2)2﹣(1﹣a)(﹣a﹣1)=a2+4a+4+1﹣a2=4a+5当a=时,原式=4×+5=11.点评:本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项.25.如图,在四边形ABCD中,∠ABC、∠ADC的平分线分别与CD、AB相交于点E、F.[来源:中.考.资.源.网](1)若∠A与∠C互补,∠CDF=40°,求∠ABE的度数.(2)若∠A=∠C=90°,试判断DF与BE有怎样的位置关系,并请说明理由.考点:平行线的判定;余角和补角.专题:常规题型.分析:(1)根据四边形内角和得到∠ABC+∠ADC=180°,再根据角平分线定义得到∠ABE=∠ABC,∠CDF=∠ADC,而∠CDF=40°,则∠ADC=80°,所以2∠ABE+80°=180°,解得∠ABE=50°;(2)根据四边形内角和得到∠ABC+∠ADC=180°,再根据角平分线定义得到∠ABE=∠ABC,∠ADF=∠ADC,则∠ABE+∠ADF=90°,加上∠AFD+∠ADF=90°,利用等角的余角相等得∠AFD=∠ABE,然后根据平行线的判定定理得到DF∥BE.解答:解:(1)∵在四边形ABCD中,∠A与∠C互补,∴∠ABC+∠ADC=180°,∵∠ABC、∠ADC的平分线分别与CD、AB相交于点E、F.∴∠ABE=∠ABC,∠CDF=∠ADC,而∠CDF=40°,∴∠ADC=2×40°=80°,∴2∠ABE+80°=180°,∴∠ABE=50°;(2)DF与BE平行.理由如下:∵在四边形ABCD中,∠A=∠C=90°,∴∠ABC+∠ADC=180°,∵∠ABC、∠ADC的平分线分别与CD、AB相交于点E、F.∴∠ABE=∠ABC,∠ADF=∠ADC,∴∠ABE+∠ADF=90°,而∠AFD+∠ADF=90°,∴∠AFD=∠ABE,∴DF∥BE.点评:本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.也考查了补角和余角.26.(1)实验与观察:(用“>”、“=”或“<”填空)当x=﹣5时,代数式x2﹣2x+2>1;当x=1时,代数式x2﹣2x+2=1;…(2)归纳与证明:换几个数再试试,你发现了什么?请写出来并证明它是正确的;(3)拓展与应用:求代数式a2+b2﹣6a﹣8b+30的最小值.考点:因式分解-运用公式法;非负数的性质:偶次方.分析:(1)利用代入法把x的值代入代数式可得答案;(2)首先把代数式变形为(x﹣1)2+1,根据非负数的性质可得,(x﹣1)2≥0,进而得到(x ﹣1)2+1≥1;(3)首先把代数式化为(a﹣3)2+(b﹣4)2+5,根据偶次幂具有非负性可得(a﹣3)2≥0,(b﹣4)2≥0,进而得到(a﹣3)2+(b﹣4)2+5≥5.解答:解:(1)把x=﹣5代入x2﹣2x+2中得:25+10﹣2=33>1;把x=1代入x2﹣2x+2中得:1﹣2+1=1,故答案为:>,=;(2)∵x2﹣2x+2=x2﹣2x+1+1=(x﹣1)2+1,X为任何实数时,(x﹣1)2≥0,∴(x﹣1)2+1≥1;(3)a2+b2﹣6a﹣8b+30=(a﹣3)2+(b﹣4)2+5.∵(a﹣3)2≥0,(b﹣4)2≥0,∴(a﹣3)2+(b﹣4)2+5≥5,∴代数式a2+b2﹣6a﹣8b+30的最小值是5.点评:此题主要考查了非负数的性质,关键是掌握偶次幂具有非负性.27.我们运用图(I)图中大正方形的面积可表示为(a+b)2,也可表示为c2+4×ab,即(a+b)2=c2+4×ab由此推导出一个重要的结论a2+b2=c2,这个重要的结论就是著名的“勾股定理”.这种根据图形可以极简单地直观推论或验证数学规律和公式的方法,简称“无字证明”.(1)请你用图(Ⅱ)的面积表达式验证勾股定理(其中四个直角三角形的较大的直角边长都为a,较小的直角边长都为b,斜边长都为c).(2)请你用(Ⅲ)提供的图形进行组合,用组合图形的面积表达式验证:(x+y)2=x2+2xy+y2(3)现有足够多的边长为x的小正方形,边长为y的大正方形以及长为x宽为y的长方形,请你自己设计图形的组合,用其面积表达式验证:(x+y)(x+2y)=x2+3xy+2y2.考点:勾股定理的证明;多项式乘多项式;完全平方公式的几何背景.分析:(1)根据阴影部分的面积=大正方形的面积﹣小正方形的面积=4个直角三角形的面积,即可证明;(2)可以拼成一个边长是x+y的正方形,它由两个边长分别是x、y的正方形和两个长、宽分别是x、y的长方形组成;(3)可以拼成一个长、宽分别是x+y和x+2y的长方形,它由边长是x的正方形,以及边长为y的正方形和长宽分别是x和y的矩形进而得出答案.解答:解:(1)大正方形的面积为:c2,中间空白部分正方形面积为:(b﹣a)2;四个阴影部分直角三角形面积和为:4×ab;由图形关系可知:大正方形面积=空白正方形面积+四直角三角形面积,即有:c2=(b﹣a)2+4×ab=b2﹣2ab+a2+2ab=a2+b2;(2)如图1所示:大正方形边长为(x+y)所以面积为:(x+y)2,它的面积也等于两个边长分别为x,y和两个长为x宽为y的矩形面积之和,即x2+2xy+y2所以有:(x+y)2=x2+2xy+y2成立;(3)如图2所示:大矩形的长、宽分别为(x+y),(x+2y),则其面积为:(x+y)•(x+2y),从图形关系上可得大矩形为一个边长为x的正方形以及2个边长为y的正方形和三个小矩形构成的则其面积又可表示为:x2+3xy+2y2,则有:(x+y)(x+2y)=x2+3xy+2y2.点评:此题主要考查了勾股定理的证明,注意熟练掌握通过不同的方法计算同一个图形的面积来证明一些公式的方法.28.探究与发现:探究一:我们知道,三角形的一个外角等于与它不相邻的两个内角的和.那么,三角形的一个内角与它不相邻的两个外角的和之间存在何种数量关系呢?已知:如图1,∠FDC与∠ECD分别为△ADC的两个外角,试探究∠A与∠FDC+∠ECD的数量关系.探究二:三角形的一个内角与另两个内角的平分线所夹的钝角之间有何种关系?已知:如图2,在△ADC中,DP、CP分别平分∠ADC和∠ACD,试探究∠P与∠A的数量关系.探究三:若将△ADC改为任意四边形ABCD呢?已知:如图3,在四边形ABCD中,DP、CP分别平分∠ADC和∠BCD,试利用上述结论探究∠P 与∠A+∠B的数量关系.探究四:若将上题中的四边形ABCD改为六边形ABCDEF(图4)呢?请直接写出∠P与∠A+∠B+∠E+∠F的数量关系:∠P=(∠A+∠B+∠E+∠F)﹣180°.考点:三角形的外角性质;三角形内角和定理.专题:探究型.分析:探究一:根据三角形的一个外角等于与它不相邻的两个内角的和可得∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,再根据三角形内角和定理整理即可得解;探究二:根据角平分线的定义可得∠PDC=∠AD C,∠PCD=∠ACD,然后根据三角形内角和定理列式整理即可得解;探究三:根据四边形的内角和定理表示出∠ADC+∠BCD,然后同理探究二解答即可;探究四:根据六边形的内角和公式表示出∠ADC+∠BCD,然后同理探究二解答即可.解答:解:探究一:∵∠FDC=∠A+∠ACD,∠ECD=∠A+∠ADC,∴∠FDC+∠ECD=∠A+∠ACD+∠A+∠ADC=180°+∠A;探究二:∵DP、CP分别平分∠ADC和∠ACD,∴∠PDC=∠ADC,∠PCD=∠ACD,∴∠DPC=180°﹣∠PDC﹣∠P CD,=180°﹣∠ADC﹣∠ACD,=180°﹣(∠ADC+∠ACD),=180°﹣(180°﹣∠A),=90°+∠A;探究三:∵DP、CP分别平分∠ADC和∠BCD,∴∠PDC=∠ADC,∠PCD=∠BCD,∴∠DPC=180°﹣∠PDC﹣∠PCD,=180°﹣∠ADC﹣∠BCD,=180°﹣(∠ADC+∠BCD),=180°﹣(360°﹣∠A﹣∠B),=(∠A+∠B);探究四:六边形ABCDEF的内角和为:(6﹣2)•180°=720°,∵DP、CP分别平分∠EDC和∠B CD,∴∠P=∠ADC,∠PCD=∠ACD,∴∠P=180°﹣∠PDC﹣∠PCD,=180°﹣∠ADC﹣∠ACD,=180°﹣(∠ADC+∠ACD),=180°﹣(720°﹣∠A﹣∠B﹣∠E﹣∠F),=(∠A+∠B+∠E+∠F)﹣180°,即∠P=(∠A+∠B+∠E+∠F)﹣180°.点评:本题考查了三角形的外角性质,三角形的内角和定理,多边形的内角和公式,此类题目根据同一个解答思路求解是解题的关键.。
2020-2021七年级下学期月考数学试卷含答案解析

一、选择题(每题3分,共24分)1.(3分)下列图形中匕1和匕2是对顶角的是()2.(3分)实数-兀,-3.14,0,V2四个数中,最小的是()A.-JiB.■3.14C.扼D.03.(3分)如图,AB II CD,AE平分ZCAB交CD于点E,A.65°B115° C.125°D.130°4.(3分)如图,点E在BC的延长线上,下列条件中不能判定AB II CD的是()A.匕3=匕4B.z1=z2C.zB=zDCED.zD+z DAB=180°5.(3分)如图,若将木条a绕点0旋转后与木条b平行,则旋转的最小角度为()q°力150。
bA.65°B.85°C.95°D.115°6.(3分)估计M+1的值在()A.2到3之间B.3到4之间C.4到5之间D.5到6之间7.(3分)如图,在6X6方格中有两个涂有阴影的图形M、N,①中的图形M平移后位置如②所示,以下对图形M的平移方法叙述正确的是()z1图①图②A.向右平移2个单位,向下平移3个单位B.向右平移1个单位,向下平移3个单位C.向右平移1个单位,向下平移4个单位D.向右平移2个单位,向下平移4个单位8.(3分)如图,CD II AB,OE平分匕AOD,OF±OE, OG±CD,匕D=50°,则下列结论:®ZAOE=65°;②OF平分匕BOD;(3)zGOE=zDOF;④ZGOE=25°.其中正确的是()A.①②③B.①②④C.②③④D.①②③④二、填空题(每小题3分,共21分)9.(3分)9的算术平方根是;16的平方根是;64的立方根是.10.(3分)将命题“对顶角相等”改写成“如果…那么・•”的形式:,这个命题的逆命题是命题(填:真或假)11.(3分)如图,计划把河水引到水池A中,先作AB±CD,垂足为B,然后沿AB开渠,能使所开的渠道最短,这样设计的依据是.12.(3分)如图,将长方形纸片ABCD折叠,使点D与点B重合,点C落在点C'处,折痕为EF.如果匕ABE=20°,那么ZEFB=度.13.(3分)如图,EF II AD,AD II BC,CE平分匕BCF, ZDAC=115°,ZACF=25°,贝l]zFEC=度.14.(3分)a、b、c是同一平面内不重合的三条直线,下列四个命题:①如果a II b,a±c,那么b±c;②如果b II a, c II a,那么b II c;③如果b±a,c±a,那么b±c;④如果b_La,c±a,那么b II c.其中真命题是(填写所有真命题的序号)15.(3分)观察下列各式的规律:三、解答题(共75分)16.(8分)计算:(1)I V3~2|-74+^27;(2)I-3|-屈+扼+(-2)2.17.(8分)求下列各式中的x.(1)4x2=81;(2)(x+1)3-27=0.18.(5分)AABC在网格中的位置如图所示,请根据下列要求作图:(1)过点C作AB的平行线;(2)过点A作BC的垂线段,垂足为D;(3)将6ABC先向下平移3格,再向右平移2格得到AEFG (点A的对应点为点E,点B的对应点为点F,点C的对应点为点G)19.(6分)如图,已矢口AB^BC,BC±CD,z1=z2.试判断BE与CF的关系,并说明你的理由.解:BE II CF.理由:•.•AB^BC,BC±CD(已知)==90°匕1=匕2•••zABC-z1=zBCD-z2,1H z EBC=z BCF20.(6分)已知2a+1的平方根为土3,a+3b-3的算术平方根为4.(1)求a,b的值;(2)求a+b的平方根.21.(6分)如图所示,点B,E分别在AC,DF±,BD, CE均与AF相交,匕1=匕2,zC=zD,求证:匕A=/F.22.(6分)请根据如图所示的对话内容回答下列问题.我有一ME方体的魔方,它的体积是216cm*123|我有体的纸盒,它的体积是600cmL纸盒Z a S|的宽与你的魔方的棱长该纸盒的长与高相等。
江苏省2022年七年级下学期4月份月考数学试卷 (2)

江苏省七年级下学期4月份月考数学试卷一、选择题(本大题共8小题,每小题3分,共24分,每小题仅有一个答案正确,请把你认为正确的答案前的字母填入下表相应的空格)1.下列计算正确的是()A.2a+a2=3a3B.a6÷a2=a3C.(a2)3=a6D.3a2﹣2a=a22.下列各式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.(x+1)(﹣x﹣1)C.(﹣m﹣n)(﹣m+n)D.(3x﹣y)(﹣3x+y)3.下列从左到右的变形,属于因式分解的是()A.(x+3)(x﹣2)=x2+x﹣6 B.a x﹣ay﹣1=a(x﹣y)﹣1C.8a2b3=2a2•4b3D.x2﹣4=(x+2)(x﹣2)4.若x是不为0的有理数,已知M=(x2+1)(x2﹣1),N=(x2+1)2,则M与N的大小关系是()A.M>N B.M<N C.M=N D.无法确定5.2(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1的个位数字为()A.1B.3C.7D.96.已知9m =,3n =;则下列结论正确的是()A.2m﹣n=1 B.2m﹣n=3 C.2m+n=3 D.=37.如图所示,两个正方形的边长分别为a和b,如果a+b=10,ab=20,那么阴影部分的面积是()A.10 B.20 C.30 D.408.△ABC中三边长a,b,c满足条件|a﹣2|+b2﹣6b+9=0,则c边不可能为()A.1B.2C.3D.4二、填空题(本大题共10小题,每小题3分,共30分)9.柴静的纪录片《穹顶之下》揭示了当今雾霾对人们生活的极大危害,同时它也给我们普及了PM 2.5是指大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为.10.若(|a﹣3|﹣1)0+(2a﹣1)﹣4有意义,则a的取值范围是.11.已知x(x﹣1)﹣(x2﹣y)=﹣2,则﹣xy=.12.把多项式﹣16x3+40x2y提出一个公因式﹣8x2后,另一个因式是.13.若(2x﹣3)x+3=1,则x=.14.已知a=2﹣100,b=3﹣75,c=5﹣50,将a、b、c用“<”从小到大连接起来:.15.我们规定一种运算:,例如,.按照这种运算规定,当x=时,.16.若3x+4y﹣3=0,则8x﹣2•16y+1=.17.已知x﹣6y=5,那么x2﹣6xy﹣30y的值是.18.已知9a•5•15b=36•55,则b﹣a=.三、解答题(本大题共9小题,共96分)19.计算(1)(﹣)﹣3﹣(3.14﹣π)0+()202X×(﹣2)202X(2)a•a2•(﹣a)3+(﹣2a3)2﹣a8÷a2(3)(2x﹣5y+1)(﹣2x+5y+1)(4)﹣2a2(12ab+b2)﹣5ab(a2﹣ab)20.因式分解(1)a3﹣4ab2(2)3x(a﹣b)﹣6y(b﹣a)(3)(x2+y2)2﹣4x2y2(4)81x4﹣72x2y2+16y4.21.先化简,再求值已知代数式(ax﹣3)(2x+4)﹣x2﹣b化简后,不含有x2项和常数项.(1)求a、b的值;(2)求(b﹣a)(﹣a﹣b)+(﹣a﹣b)2﹣a(2a+b)的值.22.已知n为正整数,且x2n=4(1)求x n﹣3•x3(n+1)的值;(2)求9(x3n)2﹣13(x2)2n的值.23.已知4x=m,8y=n.(1)求22x+3y;(2)求26x﹣9y.24.小颖家开了甲、乙两个超市,两个超市在3月份的销售额均为a万元,在4月份和5月份这两个月中,甲超市的销售额平均每月增长x%,而乙超市的销售额平均每月减少x%.(1)5月份甲超市的销售额比乙超市多多少?(2)如果a=150,x=2,那么5月份甲超市的销售额比乙超市多多少万元?25.阅读理解题有些大数值问题可以通过用字母代替数转化成整式问题来解决,请先阅读下面的解题过程,再解答后面的问题.例:若x=123456789×123456786,y=123456788×123456787,试比较x,y的大小.解:设123456788=a,那么x=(a+1)(a﹣2)=a2﹣a﹣2y=a(a﹣1)=a2﹣a,∵x﹣y=(a2﹣a﹣2)﹣(a2﹣a)=﹣2<0∴x<y看完后,你学到了这种方法吗?再亲自试一试吧,你准行!问题:计算:1.202X×0.202X×2.4030﹣1.202X3﹣1.202X×0.202X2.26.所谓完全平方式,就是对于一个整式A,如果存在另一个整式B,使A=B2,则称A 是完全平方式,例如:a4=(a2)2、4a2﹣4a+1=(2a﹣1)2.(1)下列各式中完全平方式的编号有;①a6;②x2+4x+4y2;③4a2+2ab+b2;④a2﹣ab+b2;⑤x2﹣6x﹣9;⑥a2+a+0.25(2)若4x2+5xy+my2和x2﹣nxy+y2都是完全平方式,求(m ﹣)﹣1的值;(3)多项式9x2+1加上一个单项式后,使它能成为一个完全平方式,那么加上的单项式可以是哪些?(请罗列出所有可能的情况,直接写答案)27.实践操作题如图,有足够多的边长为a的小正方形(A类)、长为a宽为b的长方形(B类)以及边长为b的大正方形(C类),发现利用图①中的三种材料各若干可以拼出一些长方形来解释某些等式.比如图②可以解释为:(a+2b)(a+b)=a2+3ab+2b2(1)取图①中的若干个(三种图形都要取到)拼成一个长方形,使其面积为(3a+b)(2a+2b),在下面虚框③中画出图形,并根据图形回答(3a+b)(2a+2b)=;(2)若取其中的若干个(三种图形都要取到)拼成一个长方形,使其面积为a2+5ab+6b2.根据你所拼成的长方形可知,多项式a2+5ab+6b2可以分解因式为;(3)若现在有3张A类纸片,6张B类纸片,10张C类纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形,则拼成的正方形边长最长可以是;(4)若取其中的六张B类卡片拼成一个如图④所示的长方形,通过不同方法计算阴影部分的面积,你能得到什么等式?并用乘法法则说明这个等式成立.七年级下学期月考数学试卷(4月份)一、选择题(本大题共8小题,每小题3分,共24分,每小题仅有一个答案正确,请把你认为正确的答案前的字母填入下表相应的空格)1.下列计算正确的是()A.2a+a2=3a3B.a6÷a2=a3C.(a2)3=a6D.3a2﹣2a=a2考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方.分析:根据合并同类项,可判断A、D,根据同底数幂的除法,可判断B,根据幂的乘方,可判断C.解答:解:A、不是同类项不能合并,故A错误;B、底数不变指数相减,故B错误;C、底数不变指数相乘,故C正确;D、不是同类项不能合并,故D错误;故选:C.点评:本题考查了幂的运算,根据法则计算是解题关键.2.下列各式能用平方差公式计算的是()A.(2a+b)(2b﹣a) B.(x+1)(﹣x﹣1) C.(﹣m﹣n)(﹣m+n)D.(3x﹣y)(﹣3x+y)考点:平方差公式.专题:计算题.分析:利用平方差公式的结构特征判断即可.解答:解:能用平方差公式计算的是(﹣m﹣n)(﹣m+n),故选C.点评:此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.3.下列从左到右的变形,属于因式分解的是()A.(x+3)(x﹣2)=x2+x﹣6 B.a x﹣ay﹣1=a(x﹣y)﹣1C.8a2b3=2a2•4b3D.x2﹣4=(x+2)(x﹣2)考点:因式分解的意义.分析:根据分解因式就是把一个多项式化为几个整式的积的形式的,利用排除法求解.解答:解:A、是多项式乘法,不是因式分解,错误;B 、右边不是积的形式,错误;C、不是把多项式化成整式的积,错误;D、是平方差公式,x2﹣4=(x+2)(x﹣2),正确.故选D.点评:这类问题的关键在于能否正确应用分解因式的定义来判断.4.若x是不为0的有理数,已知M=(x2+1)(x2﹣1),N=(x2+1)2,则M与N的大小关系是()A.M>N B.M<N C.M=N D.无法确定考点:完全平方公式;非负数的性质:偶次方;平方差公式.分析:利用平方差公式对M进行化简,将N利用完全平方公式展开,即可比较两者的大小.解答:解:∵M=(x2+1)(x2﹣1)=x4﹣1,N=(x2+1)2=x4+2x2+1,x是不为0的有理数,∴N>M,故选:B.点评:本题主要考查了完全平方公式几个特征:①左边是两个数的和的平方;②右边是一个三项式,其中首末两项分别是两项的平方,都为正,中间一项是两项积的2倍;其符号与左边的运算符号相同.平方差公式两个数的和与这两个数的差相乘,等于这两个数的平方差,即(a+b)(a﹣b)=a2﹣b2.5.2(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1的个位数字为()A.1B.3C.7D.9考点:平方差公式;尾数特征.专题:计算题.分析:原式中2变形为(3﹣1)后,利用平方差公式计算即可得到结果.解答:解:原式=(3﹣1)(3+1)(32+1)(34+1)(38+1)(316+1)(332+1)+1=(32﹣1)(32+1)(34+1)(38+1)(316+1)(332+1)+1=(34﹣1)(34+1)(38+1)(316+1)(332+1)+1=(38﹣1)(38+1)(316+1)(332+1)+1=(316﹣1)(316+1)(332+1)+1=(332﹣1)(332+1)+1=364﹣1+1=364,则结果的个位数字为1.故选A点评:此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.6.已知9m =,3n =;则下列结论正确的是()A.2m﹣n=1 B.2m﹣n=3 C.2m+n=3 D .=3考点:幂的乘方与积的乘方.分析:由9m =,可得32m =,即可得32m=3×3n=3n+1,从而可判断出答案.解答:解:∵9m =,∴32m =,∴32m=3×3n=3n+1,∴2m=n+1,即2m﹣n=1.故选A.点评:本题考查了幂的乘方与积的乘方,解答本题的关键是掌握幂的乘方与积的乘方运算法则.7.如图所示,两个正方形的边长分别为a和b,如果a+b=10,ab=20,那么阴影部分的面积是()A.10 B.20 C.30 D.40考点:整式的混合运算.专题:计算题.分析:根据题意得到S阴影部分=S△BCD+S正方形CEFG﹣S△BGF,利用三角形面积公式和正方形的面积公式得S阴影部分=•a•a+b2﹣•b•(a+b),变形后得到S阴影部分=[(a+b)2﹣3ab],然后把a+b=10,ab=20整体代入计算即可.解答:解:S阴影部分=S△BCD+S正方形CEFG﹣S△BGF=•a•a+b2﹣•b•(a+b)=a2+b2﹣ab ﹣b2=[(a2+b2)﹣ab]=[(a+b)2﹣3ab],当a+b=10,ab=20时,S阴影部分=[102﹣3×20]=20.故选B.点评:本题考查了整式的混合运算:先进行整式的乘方运算,再进行整式的乘除运算,然后进行整式的加减运算.也考查了整体思想的运用.8.△ABC中三边长a,b,c满足条件|a﹣2|+b2﹣6b+9=0,则c边不可能为()A.1B.2C.3D.4考点:因式分解的应用;非负数的性质:绝对值;非负数的性质:偶次方;三角形三边关系.分析:已知等式左边后三项利用完全平方公式变形,根据非负数之和为0,非负数分别为0求出a与b的值,即可得出第三边c的范围.解答:解:∵|a﹣2|+b2﹣6b+9=|a﹣2|+(b﹣3)2=0,∴a=2,b=3,∵△ABC的三边长分别为a,b,c,b﹣a<c<b+a,∴3﹣2<c<3+2,即1<c<5.故选:A.点评:此题考查了因式分解的应用,三角形的三边关系,以及非负数的性质,熟练掌握完全平方公式是解本题的关键.二、填空题(本大题共10小题,每小题3分,共30分)9.柴静的纪录片《穹顶之下》揭示了当今雾霾对人们生活的极大危害,同时它也给我们普及了PM 2.5是指大气压中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为2.5×10﹣6.考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.000 0025=2.5×10﹣6,故答案为:2.5×10﹣6.点评:本题考查用科学记数法表示较小的数,一般形式为a ×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.若(|a﹣3|﹣1)0+(2a﹣1)﹣4有意义,则a的取值范围是a≠2且a≠4且a≠.考点:负整数指数幂;零指数幂.分析:根据零指数幂有意义的条件,负整数指数幂有意义的条件,可得|a﹣3|﹣1≠0且2a﹣1≠0,依此即可求解.解答:解:∵(|a﹣3|﹣1)0+(2a﹣1)﹣4有意义,∴|a﹣3|﹣1≠0且2a﹣1≠0,解得a≠2且a≠4且a≠.故答案为:a≠2且a≠4且a≠.点评:考查了负整数指数幂,零指数幂,关键是根据题意得到|a﹣3|﹣1≠0且2a﹣1≠0.11.已知x(x﹣1)﹣(x2﹣y)=﹣2,则﹣xy=2.考点:提公因式法与公式法的综合运用.分析:已知的式子可以化成x﹣y=2的形式,所求的式子可以化成(x﹣y)2代入求解即可.解答:解:x(x﹣1)﹣(x2﹣y)=﹣2,即x2﹣x﹣x2+y=﹣2,则x﹣y=2.故原式=(x﹣y)2=×4=2.故答案是:2.点评:本题考查了代数式的化简求值,正确利用完全平方公式的变形,把所求的式子化成(x﹣y)2的形式是关键.12.把多项式﹣16x3+40x2y提出一个公因式﹣8x2后,另一个因式是2x﹣5y.考点:因式分解-提公因式法.分析:根据提公因式法分解因式解答即可.解答:解:﹣16x3+40x2y=﹣8x2•2x+(﹣8x2)•(﹣5y)=﹣8x2(2x﹣5y),所以另一个因式为2x﹣5y.故答案为:2x﹣5y.点评:本题考查了提公因式法分解因式,把多项式的各项写成公因式与另一个因式相乘的形式是解题的关键.13.若(2x﹣3)x+3=1,则x=﹣3或2或1.考点:零指数幂.专题:计算题;分类讨论.分析:分别根据x+3=0且2x﹣3≠0,2x﹣3=1,2x﹣3=﹣1且x+3为偶数三种情况讨论.解答:解:(1)当x+3=0且2x﹣3≠0,解得x=﹣3;(2)当2x﹣3=1时,解得x=2;(3)2x﹣3=﹣1且x+3为奇数时无解.(4)当2x﹣3=﹣1,即x=1时,x+3=4,原式成立,故x=﹣3或2或1.点评:本题考查的是非0数的0次幂等于1,解答此题的关键是熟知1的任何次幂等于1;﹣1的偶次幂等于1.14.已知a=2﹣100,b=3﹣75,c=5﹣50,将a、b、c用“<”从小到大连接起来:b<c<a.考点:实数大小比较;负整数指数幂.分析:首先将a,b,c化成分数形式再比较大小.解答:解:∵a=2﹣100==,b=3﹣75==,c=5﹣50==,∴b<c<a,故答案为:b<c<a.点评:本题主要考查了负整数指数幂和实数的大小比较,掌握负整数指数幂:a﹣p=(a≠0,p为正整数),将分母化为指数相同的幂是解答此题的关键.15.我们规定一种运算:,例如,.按照这种运算规定,当x=5时,.考点:整式的混合运算;解一元一次方程.专题:新定义.分析:根据题中的新定义将所求式子化为普通方程,整理后求出x的值即可.解答:解:=(x+1)(x﹣1)﹣(x﹣2)(x+3)=0,整理得:x2﹣1﹣(x2+x﹣6)=﹣x+5=0,解得:x=5.故答案为:5点评:此题考查了整式的混合运算,属于新定义题型,弄清题中的新定义是解本题的关键.16.若3x+4y﹣3=0,则8x﹣2•16y+1=2.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:首先根据3x+4y﹣3=0,求出3x+4y的值是多少;然后根据8x﹣2•16y+1=23x﹣6•24y+4=23x+4y﹣2,求出8x﹣2•16y+1的值是多少即可.解答:解:∵3x+4y﹣3=0,∴3x+4y=3,∴8x﹣2•16y+1=23x﹣6•24y+4=23x+4y﹣2=23﹣2=2,∴8x﹣2•16y+1的值是2.故答案为:2.点评:(1)此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).(2)此题还考查了同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加,要熟练掌握,解答此题的关键是要明确:①底数必须相同;②按照运算性质,只有相乘时才是底数不变,指数相加.17.已知x﹣6y=5,那么x2﹣6xy﹣30y的值是25.考点:因式分解-提公因式法.分析:原式后两项提取公因式,把已知等式变形后代入计算即可求出值.解答:解:∵x﹣6y=5,即6y=x﹣5,∴原式=x2﹣6y(x+5)=x2﹣(x+5)(x﹣5)=x2﹣x2+25=25.故答案为:25.点评:此题考查了因式分解﹣提公因式法,熟练掌握提取公因式的方法是解本题的关键.18.已知9a•5•15b=36•55,则b﹣a=.考点:幂的乘方与积的乘方;同底数幂的乘法;负整数指数幂.分析:先根据幂的乘方与积的乘方法则得到9a•5•15b=32a•5•(3b•5b)=32a+b•51+b,由9a•5•15b=36•55,得出32a+b•51+b =36•55,那么2a+b=6,1+b=5,求出a与b的值,再代入b﹣a,计算即可求解.解答:解:∵9a•5•15b=32a•5•(3b•5b)=32a+b•51+b,9a•5•15b=36•55,∴32a+b•51+b=36•55,∴2a+b=6,1+b=5,∴b=4,a=1,∴b﹣a=4﹣1=.故答案为.点评:本题考查了幂的乘方和积的乘方,同底数幂的乘法,负整数指数幂,掌握运算法则是解答本题的关键.三、解答题(本大题共9小题,共96分)19.计算(1)(﹣)﹣3﹣(3.14﹣π)0+()202X×(﹣2)202X(2)a•a2•(﹣a)3+(﹣2a3)2﹣a8÷a2(3)(2x﹣5y+1)(﹣2x+5y+1)(4)﹣2a2(12ab+b2)﹣5ab(a2﹣ab)考点:整式的混合运算;零指数幂;负整数指数幂.专题:计算题.分析:(1)原式第一项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,第三项利用积的乘方运算法则变形,计算即可得到结果;(2)原式利用同底数幂的乘除法则,以及幂的乘方与积的乘方运算法则计算即可得到结果;(3)原式利用平方差公式变形,再利用完全平方公式展开即可得到结果;(4)原式利用单项式乘以多项式法则计算,去括号合并即可得到结果.解答:解:(1)原式=﹣8﹣1+(﹣×)202X×(﹣)=﹣;(2)原式=﹣a6+4a6﹣a6=2a6;(3)原式=1﹣(2x﹣5y)2=1﹣4x2+20xy﹣25y2;(4)原式=﹣24a3b﹣2a2b2﹣5a3b+5a2b2=﹣29a3b+3a2b2.点评:此题考查了整式的混合运算,以及实数的运算,熟练掌握运算法则是解本题的关键.20.因式分解(1)a3﹣4ab2(2)3x(a﹣b)﹣6y(b﹣a)(3)(x2+y2)2﹣4x2y2(4)81x4﹣72x2y2+16y4.考点:提公因式法与公式法的综合运用.分析:(1)先提取公因式a,再对余下的多项式利用平方差公式继续分解;(2)先提取公因式3(a﹣b),然后整理即可得解;(3)先利用平方差公式分解因式,再利用完全平方公式继续分解因式即可;(4)先利用完全平方公式分解因式,再利用平方差公式继续分解因式即可.解答:解:(1)a3﹣4ab2,=a(a2﹣4b2),=a(a+2b)(a﹣2b);(2)3x(a﹣b)﹣6y(b﹣a),=3x(a﹣b)+6y(a﹣b),=3(a﹣b)(x+2y);(3)(x2+y2)2﹣4x2y2,=(x2+2xy+y2)(x2﹣2xy+y2),=(x+y)2(x﹣y)2;(4)81x4﹣72x2y2+16y4,=(9x2﹣4y2)2,=(3x+2y)2(3x﹣2y2).点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.21.先化简,再求值已知代数式(ax﹣3)(2x+4)﹣x2﹣b化简后,不含有x2项和常数项.(1)求a、b的值;(2)求(b﹣a)(﹣a﹣b)+(﹣a﹣b)2﹣a(2a+b)的值.考点:整式的混合运算—化简求值.分析:(1)先算乘法,合并同类项,即可得出关于a、b的方程,求出即可;(2)先算乘法,再合并同类项,最后代入求出即可.解答:解:(1)(ax﹣3)(2x+4)﹣x2﹣b=2ax2+4ax﹣6x﹣12﹣x2﹣b=(2a﹣1)x2+(4a﹣6)x+(﹣12﹣b),∵代数式(ax﹣3)(2x+4)﹣x2﹣b化简后,不含有x2项和常数项.,∴2a﹣1=0,﹣12﹣b=0,∴a=,b=﹣12;(2)∵a=,b=﹣12,∴(b﹣a)(﹣a﹣b)+(﹣a﹣b)2﹣a(2a+b)=a2﹣b2+a2+2ab+b2﹣2a2﹣ab=ab=×(﹣12)=﹣6.点评:本题考查了整式的混合运算和求值的应用,能正确运用整式的运算法则进行化简是解此题的关键,难度适中.22.已知n为正整数,且x2n=4(1)求x n﹣3•x3(n+1)的值;(2)求9(x3n)2﹣13(x2)2n的值.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:(1)根据同底数幂的乘法法则及幂的乘方法则将原式化简为(x2n)2,再把x2n=4代入进行计算即可;(2)根据同底数幂的乘法法则及幂的乘方法则将原式化简为9(x2n)3﹣13(x2n)2,再把x2n=4代入进行计算即可.解答:解:(1)∵x2n=4,∴x n﹣3•x3(n+1)=x n﹣3•x3n+3=x4n=(x2n)2=42=16;(2)∵x2n=4,∴9(x3n)2﹣13(x2)2n=9x6n﹣13x4n=9(x2n)3﹣13(x2n)2=9×43﹣13×42=576﹣208=368.点评:本题考查的是幂的乘方与同底数幂的乘法法则,熟知幂的乘方法则是底数不变,指数相乘是解答此题的关键.23.已知4x=m,8y=n.(1)求22x+3y;(2)求26x﹣9y.考点:幂的乘方与积的乘方;同底数幂的乘法;同底数幂的除法.分析:分别将4x,8y化为底数为2的形式,然后分别代入(1)(2)求解即可.解答:解:(1)∵4x=m,8y=n,∴22x=m,23y=n,(1)22x+3y=22x•23y=mn;②26x﹣9y=26x÷29y=(22x)3÷(23y)3=.点评:本题考查了同底数幂的乘法、同底数幂的除法以及幂的乘方,掌握运算法则是解答本题的关键.24.小颖家开了甲、乙两个超市,两个超市在3月份的销售额均为a万元,在4月份和5月份这两个月中,甲超市的销售额平均每月增长x%,而乙超市的销售额平均每月减少x%.(1)5月份甲超市的销售额比乙超市多多少?(2)如果a=150,x=2,那么5月份甲超市的销售额比乙超市多多少万元?考点:整式的混合运算.专题:应用题.分析:先列出两超市3~5月的销售额的表格.(1)用5月份甲超市的销售额﹣乙超市的销售额;(2)将a=150,x=2代入计算即可.解答:解:两超市3~5月的销售额可列表格如下:3月份4月份5月份甲超市销售额 a a(1+x%)a(1+x%)(1+x%)=a(1+x%)2乙超市销售额 a a(1﹣x%)a(1﹣x%)(1﹣x%)=a(1﹣x%)2(1)5月份甲超市与乙超市的差额为a(1+x%)2﹣a(1﹣x%)2=4ax%(万元);…(2)当a=150,x=2时,代入(1)中的化简式得4ax%=12(万元).…点评:本题考查了整式的混合运算,解题的关键是分别得到甲、乙两个超市各月的销售额.25.阅读理解题有些大数值问题可以通过用字母代替数转化成整式问题来解决,请先阅读下面的解题过程,再解答后面的问题.例:若x=123456789×123456786,y=123456788×123456787,试比较x,y的大小.解:设123456788=a,那么x=(a+1)(a﹣2)=a2﹣a﹣2y=a(a﹣1)=a2﹣a,∵x﹣y=(a2﹣a﹣2)﹣(a2﹣a)=﹣2<0∴x<y看完后,你学到了这种方法吗?再亲自试一试吧,你准行!问题:计算:1.202X×0.202X×2.4030﹣1.202X3﹣1.202X×0.202X2.考点:整式的混合运算.专题:阅读型.分析:设0.202X=a,则1.202X=1+a,2.4030=2a,原式变形后计算即可得到结果.解答:解:设0.202X=a,则1.202X=1+a,2.4030=2a,原式=(1+a)a×2a﹣(1+a)3﹣a2(1+a)=2a2+2a3﹣a2﹣a3﹣1﹣a﹣2a﹣2a2﹣a2﹣a3=﹣2a2﹣3a﹣1=﹣2×0.202X2﹣3×(0.202X)﹣1=﹣1.6857045.点评:此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.26.所谓完全平方式,就是对于一个整式A,如果存在另一个整式B,使A=B2,则称A是完全平方式,例如:a4=(a2)2、4a2﹣4a+1=(2a﹣1)2.(1)下列各式中完全平方式的编号有①②⑥;①a6;②x2+4x+4y2;③4a2+2ab+b2;④a2﹣ab+b2;⑤x2﹣6x﹣9;⑥a2+a+0.25(2)若4x2+5xy+my2和x2﹣nxy+y2都是完全平方式,求(m﹣)﹣1的值;(3)多项式9x2+1加上一个单项式后,使它能成为一个完全平方式,那么加上的单项式可以是哪些?(请罗列出所有可能的情况,直接写答案)考点:完全平方式.专题:计算题.分析:(1)利用完全平方公式的结构特征判断即可;(2)利用完全平方公式的结构特征求出m与n的值,即可确定出原式的值;(3)利用完全平方公式的结构特征判断即可.解答:解:(1)①a6=(a2)3;②x2+4x+4y2,不是完全平方式;③4a2+2ab+b2=(2a+b)2;④a2﹣ab+b2,不是完全平方式;⑤x2﹣6x﹣9,不是完全平方式;⑥a2+a+0.25=(a+)2,各式中完全平方式的编号有①②⑥;(2)∵4x2+5xy+my2和x2﹣nxy+y2都是完全平方式,∴m=,n=±1,当n=1时,原式=;当n=﹣1时,原式=;(3)单项式可以为﹣1,﹣9x2,6x,﹣6x.点评:此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.27.实践操作题如图,有足够多的边长为a的小正方形(A类)、长为a宽为b的长方形(B类)以及边长为b的大正方形(C类),发现利用图①中的三种材料各若干可以拼出一些长方形来解释某些等式.比如图②可以解释为:(a+2b)(a+b)=a2+3ab+2b2(1)取图①中的若干个(三种图形都要取到)拼成一个长方形,使其面积为(3a+b)(2a+2b),在下面虚框③中画出图形,并根据图形回答(3a+b)(2a+2b)=6a2+8ab+2b2;(2)若取其中的若干个(三种图形都要取到)拼成一个长方形,使其面积为a2+5ab+6b2.根据你所拼成的长方形可知,多项式a2+5ab+6b2可以分解因式为(a+2b)(a+3b);(3)若现在有3张A类纸片,6张B类纸片,10张C类纸片,每种纸片至少取一张,把取出的这些纸片拼成一个正方形,则拼成的正方形边长最长可以是a+3b;(4)若取其中的六张B类卡片拼成一个如图④所示的长方形,通过不同方法计算阴影部分的面积,你能得到什么等式?并用乘法法则说明这个等式成立.考点:因式分解的应用;完全平方公式的几何背景.专题:应用题.分析:(1)画出图形,结合图形和面积公式得出即可;(2)根据图形和面积公式得出即可;(3)由完全平方公式可得三种纸片拼出一个正方形,可以让正方形的边长分别为a+b,a+2b,a+3b,由此即可确定拼出的正方形的边长最长是多少;(4)用两种方法求出阴影部分的面积,即整个矩形面积减去6个B类卡片和阴影部分矩形的面积列式即可.解答:解:(1)如图:(3a+b)(2a+2b)=6a2+8ab+2b2;(2)a2+5ab+6b2=(a+2b)(a+3b);(3)∵有3张A类纸片,6张B类纸片,10张C类纸片,∴由完全平方公式可得每种纸片至少取一张,把取出的这些纸片拼成一个正方形,可以让正方形的边长分别为a+b,a+2b,a+3b,所以拼出的正方形的边长最长可以为a+3b;(4)整个矩形面积为:(a+2b)(a+b),6个B类卡片的面积为:6ab,阴影部分矩形的面积为:(2b﹣a)(b﹣a),(a+2b)(a+b)﹣6ab=a2+2b2﹣3ab,(2b﹣a)(b﹣a)=a2+2b2﹣3ab,∴(a+2b)(a+b)﹣6ab=(2b﹣a)(b﹣a),故答案为:6a2+8ab+2b2;(a+2b)(a+3b);a+3b.点评:本题考查了分解因式的应用,长方形的面积,完全平方公式的应用,主要考查学生的观察图形的能力和化简能力.。
2024—2025学年最新人教版七年级下学期数学第一次月考考试试卷(含数学答题卡)

最新人教版七年级下学期数学第一次月考考试试卷考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟一、选择题(每题只有一个正确选项,每小题3分,满分30分)1、下列实数是无理数的是()A.2.1B.0C.D.﹣32、如图所示的车标,可以看作由“基本图案”经过平移得到的是()A.B.C.D.3、已知点P在第四象限,且到x轴的距离为2,到y轴距离是4,则点P的坐标为()A.(4,﹣2)B.(﹣4,2)C.(﹣2,4)D.(2,﹣4)4、下列命题中是假命题的是()A.实数与数轴上的点一一对应B.同位角相等C.无理数是无限不循环小数D.81的算术平方根是95、如图,能判定AD∥BC的是()A.∠1=∠2B.∠1=∠3C.∠3=∠4D.∠B+∠BCD=180°6、估计+1的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间7、已知:≈0.71,≈2.24,≈7.1,≈22.4,请根据以上规律得到的结果()A.0.071B.0.224C.0.025D.0.02248、如图:一块直角三角板的60°角的顶点A与直角顶点C分别在两平行线FD、GH上,斜边AB平分∠CAD,交直线GH于点E,则∠ECB的大小为()A.60°B.45°C.30°D.25°9、如图,在△ABC中,∠ABC=90°,AB=5cm,AC=4cm,BC=3cm,则点C到AB的距离为()A.4cm B.3cm C.2.4cm D.2.5cm10、将一副三角板按如图放置,其中∠B =∠C =45°,∠E =60°,∠D =30°,则下列结论正确的有( )①∠BAE +∠CAD =180°;②如果∠2与∠E 互余,则BC ∥DA ;③如果BC ∥AD ,则有∠2=45°;④如果∠CAD =150°,必有∠4=∠C .A .①③④B .①②④C .②③④D .①②③④二、填空题(每小题3分,满分18分)11、比较大小: 3.(填“>”、“=”或“<”) 12、6的平方根是 .13、1﹣的绝对值是 .14、如图,将周长为18的△ABC 沿BC 方向平移3个单位长度得到△DEF ,则四边形ABFD 的周长为 .15、如图,如果AB ∥CD ,则角α=140°,γ=20°,则β= .16、如图,圆的直径为1个单位长度,该圆上的点A 与数轴上表示1的点重合,将该圆沿数轴向左滚动1圈,点A 到达A '的位置,则点A '表示的数是 .第8题图 第16题图第9题图第10题图 第14题图 第15题图最新人教版七年级下学期数学第一次月考考试试卷(答卷)考生注意:本试卷共三道大题,25道小题,满分120分,时量120分钟姓名:____________ 学号:_____________座位号:___________11、_______ 12、______13、_______ 14、______15、_______ 16、______三、解答题(17、18、19题每题6分,20、21每题8分,22、23每题9分,24、25每题10分,共计72分,解答题要有必要的文字说明)17、计算:.18、求下列各式中实数x的值(1)(x﹣1)3=8;(2)25(x+1)2﹣36=0.19、如果一个正数m的两个平方根分别是2a﹣3和a﹣9,n是﹣1的立方根.(1)求m和n的值.(2)求m﹣11n的算术平方根.20、如图,三角形ABC在平面直角坐标系中.(1)请写出三角形ABC各顶点的坐标;(2)求出三角形ABC的面积.21、如图,已知数轴上的点A,B,C分别表示实数a,b,c.(1)化简:(2)若,b=﹣z2,c=﹣4mn,且满足x与y互为相反数,z是绝对值最小的负整数,m,n互为倒数,试求98a+99b+100c的值.22、如图,已知∠1=∠2,∠C=∠D.(1)求证:BD∥CE;(2)如果∠DEC=115°,求∠C的度数.23、已知点P(2a﹣2,a+5),解答下列各题:(1)若点P在x轴上.求出点P的坐标;(2)若点Q的坐标为(4,5),直线PQ∥x轴,求出点P的坐标;(3)若点P到x轴、y轴的距离相等,求出点P的坐标,并说出P点所在的象限.24、如图,PQ∥MN,A、B分别为直线MN、PQ上两点,且∠BAN=45°,若射线AM绕点A顺时针旋转至AN后立即回转,射线BQ绕点B逆时针旋转至BP后立即回转,两射线分别绕点A、点B不停地旋转,若射线AM转动的速度是a°/秒,射线BQ转动的速度是b°/秒,且a、b满足|a﹣5|+(b﹣1)2=0.(友情提醒:钟表指针走动的方向为顺时针方向)(1)a=,b=;(2)若射线AM、射线BQ同时旋转,问至少旋转多少秒时,射线AM、射线BQ互相垂直.(3)若射线AM绕点A顺时针先转动18秒,射线BQ才开始绕点B逆时针旋转,在射线BQ到达BA之前,问射线AM再转动多少秒时,射线AM、射线BQ互相平行?25、已知AB∥CD,直线MN交AB、CD于点M、N.(1)如图1所示,点E在线段MN上,设∠MBE=x°,∠MND=y°,且满足+(y﹣60)2=0,求∠MEB的度数;(2)如图2所示,点E在线段MN上,∠MBE=∠MEB,DF平分∠EDC,交BE的延长线于点F,试找出∠DEF、∠END、∠EDN之间的数量关系,并证明;(3)如图3所示,点P在射线NT上运动时,∠PCD与∠TMB的角平分线交于点Q,求的值.。
人教版数学七年级下册第三次月考试卷含答案

人教版数学七年级下册第三次月考试题一、单选题(每小题3分,共36分)1.4的算术平方根是()A.-2B.2C.±2D.22.二元一次方程5a-11b=21()A.有且只有一解B.有无数解C.无解D.有且只有两解3.下列式子正确的是()A.a2>0B.a2≥0C.(a+1)2>1D.(a﹣1)2>1 4.下列语句:①一条直线有且只有一条垂线;②不相等的两个角一定不是对顶角;③两条不相交的直线叫做平行线;④若两个角的一对边在同一直线上,另一对边互相平行,则这两个角相等;⑤不在同一直线上的四个点可以画6条直线;⑥如果两个角是邻补角,那么这两个角的平分线组成的图形是直角.其中错误的有()A.2个B.3个C.4个D.5个5.下列实数中是无理数的是()A.0.38B.πC D.2276.如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBDC.∠A=∠ABE D.∠C=∠ABC7.如图,已知AB∥CD,∠A=40°,∠D=45°,则∠1的度数是()A .80°B .85°C .90°D .95°8.下列语句:①同一平面上,三条直线只有两个交点,则三条直线中必有两条直线互相平行;②如果两条平行线被第三条直线所截,同旁内角相等,那么这两条平行线都与第三条直线垂直;③过一点有且只有一条直线与已知直线平行,其中()A .①、②是真命题B .②、③是真命题C .①、③是真命题D .以上结论皆错9.线段MN 是由线段EF 经过平移得到的,若点E(﹣1,3)的对应点M(2,5),则点F(﹣3,﹣2)的对应点N 的坐标是()A .(﹣1,0)B .(﹣6,0)C .(0,﹣4)D .(0,0)10.当a<0时,-a 的平方根是()A .aB a -C .aD .-a 11.若﹣2a m b 4与5a n+2b 2m+n 可以合并成一项,则m n 的值是()A .2B .0C .﹣1D .112.不等式组12x a x <+⎧⎨>-⎩有3个整数解,则a 的取值范围是()A .1<a≤2B .0<a≤1C .0≤a<1D .1≤a<2二、填空题13.在平面直角坐标系中,已知线段MN 的两个端点的坐标分别是M (-4,-1)、N (0,1),将线段MN 平移后得到线段M ′N ′(点M 、N 分别平移到点M ′、N ′的位置),若点M ′的坐标为(-2,2),则点N ′的坐标为_________.14.关于x 的某个不等式组的解集在数轴上表示为如图,则不等式组的解集为______.15.如果电影院中“5排7号”记作(5,7),那么(3,4)表示的意义是_____.16.若()1231a a x y --+=是关于x 、y 的二元一次方程,则a=____.17.某商品进价是1000元,售价为1500元.为促销,商店决定降价出售,但保证利润率不低于5%,则商店最多降____元出售商品.18.在平面直角坐标系中,点P(x,y)经过某种变换后得到点P′(-y+1,x+2),我们把点P′(-y +1,x+2)叫做点P(x,y)的终结点.已知点P1的终结点为P2,点P2的终结点为P3,点P3的终结点为P4,这样依次得到P1,P2,P3,P4,…,P n.若点P1的坐标为(2,0),则点P2017的坐标为____________.三、解答题19120.解方程组:35215x yx y-=⎧⎨-+=⎩.21.解不等式组21023 23xx x+>⎧⎪-+⎨≥⎪⎩.22.如图,直线AB、CD相交于点O,OE平分∠BOC,∠COF=90°,(1)若∠BOE=70°,求∠AOF的度数;(2)若∠BOD:∠BOE=1:2,求∠AOF的度数.23.如图,已知∠1=∠2,∠3+∠4=180°.求证:AB∥EF24.某花卉种植基地欲购进甲、乙两种君子兰进行培育.若购进甲种2株,乙种3株,则共需成本l700元;若购进甲种3株,乙种l 株.则共需成本l500元.(1)求甲、乙两种君子兰每株成本分别为多少元?(2)该种植基地决定在成本不超过30000元的前提下购入甲、乙两种君子兰,若购入乙种君子兰的株数比甲种君子兰的3倍还多10株,求最多购进甲种君子兰多少株?25.已知,在平面直角坐标系中,点A,B 的坐标分别是(a,0),(b,0)420a b ++-=.(1)求a,b 的值;(2)在y 车由上是否存在点C ,使三角形ABC 的面积是12?若存在,求出点C 的坐标;若不存在,请说明理由.(3)已知点P 是y 车由正半轴上一点,且到x 车由的距离为3,若点P 沿x 轴负半轴方向以每秒1个单位长度平移至点Q ,当运动时间t 为多少秒时,四边形ABPQ 的面积S 为15个平方单位写出此时点Q 的坐标.参考答案1.B【解析】试题分析:因22=4,根据算术平方根的定义即可得4的算术平方根是2.故答案选B.考点:算术平方根的定义.2.B【解析】【详解】解:二元一次方程5a-11b=21中a,b都没有限制故a,b可任意实数,只要方程成立即可,故原成有无数解,故选B3.B【解析】试题分析:根据偶次方具有非负性解答即可.解:a2≥0,A错误;B正确;(a+1)2≥0,C错误;(a﹣1)2≥0,D错误.故选B.考点:非负数的性质:偶次方.4.C【解析】①一条直线有无数条垂线,故①错误;②不相等的两个角一定不是对顶角,故②正确;③在同一平面内,两条不相交的直线叫做平行线,故③错误;④若两个角的一对边在同一直线上,另一对边互相平行,则这两个角相等或互补,故④错误;⑤不在同一直线上的四个点可画4或6条直线,故⑤错误;⑥如果两个角是邻补角,那么这两个角的平分线组成的图形是直角,故⑥正确.所以错误的有4个,故选C.5.B【解析】根据无理数的三种形式,结合选项找出无理数的选项.解:A、0.38是有理数,故本选项错误;B、π是无理数,故本选项正确;C、=2,是有理数,故本选项错误;D、227是有理数,故本选项错误.故选B.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.6.C【解析】【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A、∠C=∠ABE不能判断出EB∥AC,故本选项错误;B、∠A=∠EBD不能判断出EB∥AC,故本选项错误;C、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故本选项正确;D、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故本选项错误.故选C.【点睛】本题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.7.B【解析】试题分析:∵AB∥CD,∴∠A=∠C=40°,∵∠1=∠D+∠C,∵∠D=45°,∴∠1=∠D+∠C=45°+40°=85°,故选B.考点:平行线的性质.8.A【解析】三条直线只有两个交点,则其中两条直线互相平行,所以①正确;如果两条平行线被第三条截,同旁内角相等,那么这两条平行线都与第三条直线垂直,所以②正确;过直线外一点有且只有一条直线与已知直线平行,所以③错误。
2023-2024学年四川省成都市天府七中七年级(下)月考数学试卷(4月份)+答案解析

2023-2024学年四川省成都市天府七中七年级(下)月考数学试卷(4月份)一、选择题:本题共8小题,每小题4分,共32分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.下列各运算中,计算正确的是()A. B.C. D.2.芝麻被称为“八谷之冠”,是世界上最古老的油料作物之一,它作为食物和药物,得到广泛的使用.经测算,一粒芝麻的质量约为,将用科学记数法表示为()A. B. C. D.3.如图,从人行横道线上的点M处过马路,沿线路MC行走距离最短,其数学依据是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.在同一平面内,过一点有且只有一条直线与已知直线垂直4.若是关于x,y的二元一次方程的一组解,则a的值为()A.1B.2C.3D.45.如图所示,将四张全等的长方形硬纸片围成一个正方形,根据图形阴影部分面积的关系,可以直观地得到一个关于a、b的恒等式为()A. B.C. D.6.下列说法正确的是()A.过直线外一点有且只有一条直线与已知直线平行B.两条直线被第三条直线所截,形成的同位角相等C.从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离D.两条不相交的线段叫平行线7.如图,点E在AC的延长线上,下列条件能判断的是()A.B.C.D.8.小明、小华两人练习跑步,如果小华先跑10m,则小明跑6s就可追上他;如果小华先跑2s,则小明跑4s就可追上他,若设小明的速度为,小华的速度为,则下列符合题意的方程组是()A. B. C. D.二、填空题:本题共10小题,每小题4分,共40分。
9.已知,,则______.10.已知,,则的值为______.11.如图,直线a、b相交于点O,将量角器的中心与点O重合,发现表示的点在直线a上,表示的点在直线b上,则______12.是完全平方式,则______.13.如图,点O在直线AB上,,,那么的度数是______14.已知方程组的解满足,则k的值为______.15.已知,则代数式的值为______.16.已知,则的值为______.17.我国古代数学的许多发现都曾位居世界前列,其中“杨辉三角”就是一例,如图,这个三角形的构造法则:两腰上的数都是1,其余每个数均为其上方左右两数之和,它给出了为正整数的展开式按a的次数由大到小的顺序排列的系数规律.例如,在三角形中第三行的三个数1,2,1,恰好对应展开式中的系数;第四行的四个数1,3,3,1,恰好对应着展开式中的系数等等.若的展开式中不含的项,则代数式的值为______.18.如图,已知,在内部且下列说法:①如果,则图中有两对互余的角;②如果作OE平分,则;③如果作OM平分,ON在内部,且,则OD平分④如果在外部分别作、的余角、,则;其中正确的有______.三、解答题:本题共8小题,共78分。
2023-2024学年湖北省潜江市初中联考协作体七年级(下)月考数学试卷(4月份)+答案解析

2023-2024学年湖北省潜江市初中联考协作体七年级(下)月考数学试卷(4月份)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.在我们常见的英文字母中,也存在着内错角,在下面几个字母中,含有内错角的字母是()A.EB.FC.ND.X2.在下列各组由运动项目的图标组成的图形中,能将其中一个图形只经过平移得到另一个图形的是()A. B.C. D.3.一个数的平方根与这个数的算术平方根相等,这个数是()A.1B.C.0D.1或04.下列各数中,是的平方根的是()A. B. C. D.5.中AC边的高,表示正确的是()A. B.C. D.6.如图,已知,,则的度数是()A.B.C.D.7.如图,下列条件:①,②,③,④中,能判断直线的有()A.1个B.2个C.3个D.4个8.下列说法正确的是()A.在同一平面内,a,b,c是直线,且,,则B.在同一平面内,a,b,c是直线,且,,则C.在同一平面内,a,b,c是直线,且,,则D.在同一平面内,a,b,c是直线,且,,则9.下列命题是假命题的是()A.两条直线被第三条直线所截,同位角相等B.一个锐角的余角一定小于这个角的补角C.相等的角不一定是对顶角D.若,则10.正方形ABCD在数轴上的位置如图所示,点A,B对应的数分别为和0,若正方形ABCD绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点C所对应的数为1;翻转2次后,点D所对应的数为2;翻转3次后,点A所对应的数为3;翻转4次后,点B所对应的数为4,…,则连续翻转2024次后,数轴上数2024所对应的点是()A.A点B.B点C.C点D.D点二、填空题:本题共5小题,每小题3分,共15分。
11.把命题“对顶角相等”改写成“如果…那么…”的形式:______.12.如图,直线m,n相交于点A,点P是直线m上一点,则点P到直线n的距离是线段______的长度.13.已知,则______.14.对于任意不相等的两个正实数a、b,定义运算a※,如3※,则6※______.15.如图,两个大小一样的直角三角形重叠在一起,将其中一个三角形沿着点B到点C的方向平移到三角形DEF的位置,,,平移距离为6,则阴影部分的面积为______.三、解答题:本题共9小题,共75分。
2021-2022学年江苏省苏州市七年级(下)月考数学试卷(4月份)

2021-2022学年苏州市七年级(下)月考数学试卷(4月份)一.选择题(每题3分,共24分)1.(3分)下列各式从左到右的变形,是因式分解的是()A.ab+bc+d=a(b+c)+d B.(a+2)(a﹣2)=a2﹣4C.a3﹣1=(a﹣1)(a2+a+1)D.6ab2=2ab•3b2.(3分)如图,由下列条件不能得到AB∥CD的是()A.∠3=∠4B.∠B+∠BCD=180°C.∠1=∠2D.∠B=∠53.(3分)已知a=(﹣0.3)0,b=﹣3﹣1,c=(−13)−2,比较a,b,c的大小()A.a<b<c B.b<c<a C.a<c<b D.b<a<c4.(3分)若M=(x﹣2)(x﹣7),N=(x﹣6)(x﹣3),则M与N的关系为()A.M=N B.M>N C.M<N D.M与N的大小由x的取值而定5.(3分)(﹣8)2022+(﹣8)2021能被下列数整除的是()A.3B.5C.7D.96.(3分)有一块直角三角板DEF放置在△ABC上,三角板DEF的两条直角边DE、DF恰好分别经过点B、C,在△ABC中,∠DBA+∠DCA=40°,则∠A的度数是()A.40°B.44°C.45°D.50°7.(3分)如图,正方形卡片A类,B类和长方形卡片C类若干张,要拼一个长为(a+mb),宽为(3a+b)的大长方形(m为常数),若知道需用到的B类卡片比A类卡片少1张,则共需C类卡片()张.A.5B.6C.7D.88.(3分)将△ABC纸片沿DE按如图的方式折叠.若∠C=50°,∠1=85°,则∠2等于()A.10°B.15°C.20°D.35°二.填空题(每题3分,共24分)9.(3分)熔喷布,俗称口罩的“心脏”,是口罩中间的过滤层,能过滤细菌,阻止病菌传播.经测量,医用外科口罩的熔喷布厚度约为0.000156米,将0.000156用科学记数法表示应为.10.(3分)已知一个多边形的每个内角都相等,其内角和为2340°,则这个多边形每个外角的度数是°.11.(3分)若2023x=5,2023y=4,则20232x﹣y的值为.12.(3分)小兰在计算一个二项式的平方时,得到的正确结果是x2+(■﹣1)xy+9y2,但中间项的某一部分不慎被墨汁污染了,则■处所对应的数可能是.13.(3分)如图,海关大厦与电视台大厦的大楼顶部各有一个射灯,当光柱相交时,且它们都在同一个平面内,若∠1=76°,则∠2+∠3=.14.(3分)如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G=°.15.(3分)定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi(a、b 为实数)的数叫做复数,其中a叫这个复数的实部,b叫这个复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似.例如:(4+i)+(6﹣2i)=(4+6)+(1﹣2)i=10﹣i;(2﹣i)(3+i)=6﹣3i+2i﹣i2=6﹣i﹣(﹣1)=7﹣i;(2+i)2=4+4i+i2=4+4i﹣1=3+4i.根据以上信息,完成下面计算:(2+i)(1﹣2i)+(2﹣i)2=.16.(3分)如图,在四边形ABCD中,∠A+∠B=210°,作∠ADC、∠BCD的平分线交于点O1,再作∠O1DC、∠O1CD的平分线交于点O2,则∠O2的度数为.三.解答题(共72分)17.(12分)计算(1)x5•(﹣2x)3+x9÷x2•x﹣(3x4)2;(2)(2a﹣3b)2﹣4a(a﹣2b);(3)(3x﹣y)2(3x+y)2;(4)(2a﹣b+5)(2a+b﹣5).18.(12分)因式分解:(1)2a2b﹣8ab2+8b3.(2)a2(m﹣n)+9(n﹣m).(3)81x4﹣16.(4)(m2+5)2﹣12(m2+5)+36.19.(6分)已知:如图,∠1=∠2,∠3=∠E.求证:AD∥BE.20.(6分)已知x+y=3,xy=54,求下列各式的值:(1)(x2﹣2)(y2﹣2);(2)x2y﹣xy2.21.(8分)解决下列问题:(1)若4a﹣3b+7=0,求32×92a+1÷27b的值;(2)已知x满足22x+4﹣22x+2=96,求x的值.(3)对于任意有理数a、b、c、d,我们规定符号(a,b)⋇(c,d)=ad﹣bc+2,例如:(1,3)⋇(2,4)=1×4﹣2×3+2=0.当a2+a+5=0时,求(2a+1,a﹣2)⋇(3a+2,a﹣3)的值.22.(8分)阅读材料:已知a+b=8,ab=15,求a2+b2的值.解:a2+b2=(a+b)2﹣2ab=64﹣30=34.参考上面的方法求解下列问题:(1)已知x满足(x﹣2)(3﹣x)=﹣1,求(x﹣2)2+(3﹣x)2的值.(2)如图①,已知长方形ABCD的周长为12,分别以AD、AB为边,向外作正方形ADEF、ABGH,且正方形ADEF、ABGH的面积和为20.①长方形ABCD的面积;②如图②,连接HF、CF、CH,求△CFH的面积.23.(10分)利用我们学过的完全平方公式与不等式知识能解决方程或代数式的一些问题,阅读下列两则材料:材料一:已知m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0,∴(m﹣n)2+(n﹣4)2=0,∵(m﹣n)2≥0,(n﹣4)2≥0∴(m﹣n)2=0,(n﹣4)2=0∴m=n=4.材料二:探索代数式x2+4x+2与﹣x2+2x+3是否存在最大值或最小值?①x2+4x+2=(x2+4x+4)﹣2=(x+2)2﹣2,∵(x+2)2≥0,∴x2+4x+2=(x+2)2﹣2≥﹣2.∴代数式x2+4x+2有最小值﹣2;②﹣x2+2x+3=﹣(x2﹣2x+1)+4=﹣(x﹣1)2+4,∵﹣(x﹣1)2≤0,∴﹣x2+2x+3=﹣(x﹣1)2+4≤4.∴代数式﹣x2+2x+3有最大值4.学习方法并完成下列问题:(1)代数式x2﹣6x+3的最小值为;(2)如图,在紧靠围墙的空地上,利用围墙及一段长为100米的木栅栏围成一个长方形花圃,为了设计一个尽可能大的花圃,设长方形垂直于围墙的一边长度为x米,则花圃的最大面积是多少?(3)已知△ABC的三条边的长度分别为a,b,c,且a2+b2+74=10a+14b,且c为正整数,求△ABC周长的最小值.24.(10分)【生活常识】射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图1,MN是平面镜,若入射光线AO与水平镜面夹角为∠1,反射光线OB与水平镜面夹角为∠2,则∠1=∠2.【应用探究】有两块平面镜OM,ON,入射光线AB经过两次反射,得到反射光线CD.(1)如图2,若OM⊥ON,试证明AB∥CD;(2)如图3,光线AB与CD相交于点P,若∠MON=48°,求∠BPC的度数;(3)如图4,光线AB与CD所在的直线相交于点P,∠MON=α,∠BPC=β,试猜想α与β之间满足的数量关系,并说明理由.2021-2022学年江苏省苏州市七年级(下)月考数学试卷(4月份)参考答案与试题解析一.选择题(每题3分,共24分)1.(3分)下列各式从左到右的变形,是因式分解的是()A.ab+bc+d=a(b+c)+d B.(a+2)(a﹣2)=a2﹣4C.a3﹣1=(a﹣1)(a2+a+1)D.6ab2=2ab•3b【分析】根据因式分解的定义,因式分解是把多项式写成几个整式积的形式,对各选项分析判断后利用排除法求解.【解答】解:A.原式右边不是整式积的形式,不是因式分解,故本选项不符合题意;B.原式是整式的乘法,不是因式分解,故本选项不符合题意;C.原式符合因式分解的定义,是因式分解,故本选项符合题意;D.原式不符合因式分解的定义,故本选项不符合题意;故选:C.2.(3分)如图,由下列条件不能得到AB∥CD的是()A.∠3=∠4B.∠B+∠BCD=180°C.∠1=∠2D.∠B=∠5【分析】根据平行线的判定(①同位角相等,两直线平行,②内错角相等,两直线平行,③同旁内角互补,两直线平行)判断即可.【解答】解:A、∵∠3=∠4,∴AB∥CD,不符合题意;B、∵∠B+∠BCD=180°,∴AB∥CD,不符合题意;C、∵∠1=∠2,∴AD∥BC,不能推出AB∥CD,符合题意;D、∵∠B=∠5,∴AB∥CD,不符合题意.3.(3分)已知a=(﹣0.3)0,b=﹣3﹣1,c=(−13)−2,比较a,b,c的大小()A.a<b<c B.b<c<a C.a<c<b D.b<a<c【分析】直接利用零指数幂的性质、负整数指数幂的性质分别化简,进而判断得出答案.【解答】解:∵a=(﹣0.3)0=1,b=﹣3﹣1=−13,c=(−13)−2=9,∴b<a<c.故选:D.4.(3分)若M=(x﹣2)(x﹣7),N=(x﹣6)(x﹣3),则M与N的关系为()A.M=NB.M>NC.M<ND.M与N的大小由x的取值而定【分析】利用多项式乘多项式法则先计算M、N,再计算M﹣N的值,最后根绝M﹣N的值得结论.【解答】解:∵M﹣N=(x﹣2)(x﹣7)﹣(x﹣6)(x﹣3)=x2﹣9x+14﹣(x2﹣9x+18)=x2﹣9x+14﹣x2+9x﹣18=﹣4<0,∴M﹣N<0,∴M<N.故选:C.5.(3分)(﹣8)2022+(﹣8)2021能被下列数整除的是()A.3B.5C.7D.9【分析】先将算式因式分解,找到含有选项的因数即可.【解答】解:∵(﹣8)2022+(﹣8)2021=(﹣8)2021×(﹣8)+(﹣8)2021=(﹣8)2021×(﹣8+1)=(﹣8)2021×(﹣7)=82021×7.∴能被7整除.6.(3分)有一块直角三角板DEF放置在△ABC上,三角板DEF的两条直角边DE、DF恰好分别经过点B、C,在△ABC中,∠DBA+∠DCA=40°,则∠A的度数是()A.40°B.44°C.45°D.50°【分析】在△DBC和△ABC中分别使用内角和定理,即可得出答案.【解答】解:由题意得:∠DBA+∠DCA+∠DBC+∠DCB+∠A=180°,且∠DBC+∠DBC+∠D=180°,∴∠DBA+∠DCA+∠A=∠D,∴∠A=90°﹣(∠DBA+∠DCA)=50°.故选:D.7.(3分)如图,正方形卡片A类,B类和长方形卡片C类若干张,要拼一个长为(a+mb),宽为(3a+b)的大长方形(m为常数),若知道需用到的B类卡片比A类卡片少1张,则共需C类卡片()张.A.5B.6C.7D.8【分析】设A类卡片需用x张,C类卡片需用y张,则B类卡片需用(x﹣1)张,根据拼成的长方形面积与卡片的面积相等列出方程,求解即可.【解答】解:设A类卡片需用x张,C类卡片需用y张,则B类卡片需用(x﹣1)张,由题意,得(a+mb)(3a+b)=a2x+(x﹣1)b2+aby.∴3a2+3mab+ab+mb2=a2x+(x﹣1)b2+aby.即:3a2+mb2+(3m+1)ab=a2x+(x﹣1)b2+aby.∴x=3,m=x﹣1,y=.3m+1.∴m=2,y=7.8.(3分)将△ABC纸片沿DE按如图的方式折叠.若∠C=50°,∠1=85°,则∠2等于()A.10°B.15°C.20°D.35°【分析】根据三角形的内角和定理和四边形的内角和即可得到结论.【解答】解:如图,∵∠C=50°,∴∠3+∠4=∠A+∠B=∠A′+∠B′=180°﹣∠C=130°,∵∠1+∠2+∠3+∠4+∠A′+∠B′=360°,∠1=85°,∴∠2=360°﹣85°﹣2×130°=15°,故选:B.二.填空题(每题3分,共24分)9.(3分)熔喷布,俗称口罩的“心脏”,是口罩中间的过滤层,能过滤细菌,阻止病菌传播.经测量,医用外科口罩的熔喷布厚度约为0.000156米,将0.000156用科学记数法表示应为 1.56×10﹣4.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 156=1.56×10﹣4,故答案是:1.56×10﹣4.10.(3分)已知一个多边形的每个内角都相等,其内角和为2340°,则这个多边形每个外角的度数是24°.【分析】根据多边形的内角和是2340°列出方程可得边数,再根据外角的度数可得答案.【解答】解:设多边形的边数为n,则(n﹣2)×180°=2340°,解得:x=15,则这个多边形的边数是:360°÷15=24°.故答案为:24.11.(3分)若2023x =5,2023y =4,则20232x ﹣y 的值为 254 .【分析】利用同底数幂的除法的法则及幂的乘方的法则对式子进行整理,再代入相应的值运算即可.【解答】解:当2023x =5,2023y =4时,20232x ﹣y =20232x ÷2023y=(2023x )2÷2023y=52÷4=254, 故答案为:254.12.(3分)小兰在计算一个二项式的平方时,得到的正确结果是x 2+(■﹣1)xy +9y 2,但中间项的某一部分不慎被墨汁污染了,则■处所对应的数可能是 7或﹣5 .【分析】根据完全平方公式即可求出答案.【解答】解:∵(x ±3y )2=x 2±6xy +9y 2,∴■﹣1=±6,∴■处所对应的数可能是7或﹣5,故答案为:7或﹣5.13.(3分)如图,海关大厦与电视台大厦的大楼顶部各有一个射灯,当光柱相交时,且它们都在同一个平面内,若∠1=76°,则∠2+∠3= 284° .【分析】过点E 作EM ∥AB ,根据平行线的性质求解即可.【解答】解:如图,过点E 作EM ∥AB ,∵AB∥CD,∴AB∥CD∥EM,∴∠2+∠AEM=180°,∠3+∠CEM=180°,∴∠2+∠AEM+∠3+∠CEM=360°,即∠1+∠2+∠3=360°,∴∠2+∠3=284°.故答案为:284°.14.(3分)如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G=540°.【分析】利用三角形外角性质得到∠1=∠B+∠F+∠C,然后利用五边形的内角和求∠A+∠B+∠C+∠F+∠D+∠E+∠G的度数.【解答】解:如图,∵∠1=∠B+∠2,而∠2=∠F+∠C,∴∠1=∠B+∠F+∠C,∵∠A+∠1+∠D+∠E+∠G=∠A+∠B+∠C+∠F+∠D+∠E+∠G=(5﹣2)×180°=540°.故答案为540.15.(3分)定义:如果一个数的平方等于﹣1,记为i2=﹣1,这个数i叫做虚数单位,把形如a+bi(a、b 为实数)的数叫做复数,其中a叫这个复数的实部,b叫这个复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似.例如:(4+i)+(6﹣2i)=(4+6)+(1﹣2)i=10﹣i;(2﹣i)(3+i)=6﹣3i+2i﹣i2=6﹣i﹣(﹣1)=7﹣i;(2+i)2=4+4i+i2=4+4i﹣1=3+4i.根据以上信息,完成下面计算:(2+i)(1﹣2i)+(2﹣i)2=7﹣7i.【分析】直接利用已知结合多项式乘多项式以及完全平方公式化简,进而得出答案.【解答】解:(2+i)(1﹣2i)+(2﹣i)2=2﹣4i+i﹣2i2+4+i2﹣4i=6﹣i2﹣7i=6﹣(﹣1)﹣7i=7﹣7i.故答案为:7﹣7i.16.(3分)如图,在四边形ABCD中,∠A+∠B=210°,作∠ADC、∠BCD的平分线交于点O1,再作∠O1DC、∠O1CD的平分线交于点O2,则∠O2的度数为142.5°.【分析】根据四边形的内角和为360°可得∠ACD+∠BCD=150°,再根据角平分线的定义可得∠CDO2+∠DCO2=37.5°,再根据内角和定理可得答案.【解答】解:∵四边形的内角和是360°,∠A+∠B=210°,∴∠ACD+∠BCD=150°,∵∠ADC、∠BCD的平分线交于点O1,∠O1DC、∠O1CD的平分线交于点O2,∴∠CDO2=12∠CDO1=14∠ADC,∠DCO2=12∠DCO1=14∠BCD,∴∠CDO2+∠DCO2=14(∠ADC+∠BCD)=37.5°,∴∠O2=180°﹣37.5°=142.5°.故答案为:142.5°.三.解答题(共72分)17.(12分)计算(1)x5•(﹣2x)3+x9÷x2•x﹣(3x4)2;(2)(2a﹣3b)2﹣4a(a﹣2b);(3)(3x﹣y)2(3x+y)2;(4)(2a﹣b+5)(2a+b﹣5).【分析】(1)根据积的乘方,同底数幂的乘除法和合并同类项的方法可以解答本题;(2)根据完全平方公式和单项式乘多项式可以解答本题;(3)根据平方差公式和完全平方公式可以解答本题;(4)根据平方差公式和完全平方公式可以解答本题.【解答】解:(1)x5•(﹣2x)3+x9÷x2•x﹣(3x4)2=x5•(﹣8x3)+x8﹣(9x8)=﹣8x8+x8﹣9x8=﹣16x8;(2)(2a﹣3b)2﹣4a(a﹣2b)=4a2﹣12ab+9b2﹣4a2+8ab=﹣4ab+9b2;(3)(3x﹣y)2(3x+y)2=[(3x﹣y)(3x+y)]2=(9x2﹣y2)2=81x4﹣18x2y2+y4;(4)(2a﹣b+5)(2a+b﹣5)=[2a﹣(b﹣5)][2a+(b﹣5)]=4a2﹣(b﹣5)2=4a2﹣b2+10b﹣25.18.(12分)因式分解:(1)2a2b﹣8ab2+8b3.(2)a2(m﹣n)+9(n﹣m).(3)81x4﹣16.(4)(m2+5)2﹣12(m2+5)+36.【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式变形后,提取公因式,再利用平方差公式分解即可;(3)原式利用平方差公式分解即可;(4)原式利用完全平方公式,以及平方差公式分解即可.【解答】解:(1)原式=2b(a2﹣4ab+4b2)=2b(a﹣2b)2;(2)原式=a2(m﹣n)﹣9(m﹣n)=(m﹣n)(a2﹣9)=(m﹣n)(a+3)(a﹣3);(3)原式=(9x2﹣4)(9x2+4)=(3x+2)(3x﹣2)(9x2+4);(4)原式=(m2+5﹣6)2=(m2﹣1)2=(m+1)2(m﹣1)2.19.(6分)已知:如图,∠1=∠2,∠3=∠E.求证:AD∥BE.【分析】先根据题意得出∠1+∠3=∠2+∠E,再由∠2+∠E=∠5可知,∠1+∠3=∠5,即∠ADC=∠5,据此可得出结论.解法二,证明∠3=∠4即可解决问题.【解答】证明:∵∠1=∠2,∠3=∠E,∴∠1+∠3=∠2+∠E.∵∠2+∠E=∠5,∴∠1+∠3=∠5,∴∠ADC =∠5,∴AD ∥BE .解法二:∵∠1=∠2,∴BD ∥EC ,∴∠4=∠E ,∵∠3=∠E ,∴∠3=∠4,∴AD ∥BE .20.(6分)已知x +y =3,xy =54,求下列各式的值:(1)(x 2﹣2)(y 2﹣2);(2)x 2y ﹣xy 2.【分析】(1)先利用多项式乘多项式法则计算整式,再变形已知代入求值.(2)先分解整式,再变形已知代入求值.【解答】解:(1)原式=x 2y 2﹣2x 2﹣2y 2+4=(xy )2﹣2(x 2+y 2)+4.∵x +y =3,xy =54,∴x 2+y 2=(x +y )2﹣2xy=9﹣2×54=9−52=132.∴原式=(54)2﹣2×132+4 =2516−13+4=−11916.(2)原式=xy(x﹣y).∵x+y=3,xy=5 4,∴(x﹣y)2=(x+y)2﹣4xy=9﹣4×5 4=4.∴x﹣y=±2.∴原式=54×(±2)=±52.21.(8分)解决下列问题:(1)若4a﹣3b+7=0,求32×92a+1÷27b的值;(2)已知x满足22x+4﹣22x+2=96,求x的值.(3)对于任意有理数a、b、c、d,我们规定符号(a,b)⋇(c,d)=ad﹣bc+2,例如:(1,3)⋇(2,4)=1×4﹣2×3+2=0.当a2+a+5=0时,求(2a+1,a﹣2)⋇(3a+2,a﹣3)的值.【分析】(1)利用幂的乘方将原式中各数变形为底数为3,然后根据同底数幂的乘除法运算法则进行计算,从而代入求值;(2)利用提公因式法进行因式分解,从而结合同底数幂的运算法则进行计算;(3)根据新定义运算法则列式计算,从而利用整体思想代入求值.【解答】解:(1)原式=32×(32)2a+1÷(33)b=32×34a+2÷33b=32+4a+2﹣3b=34a+4﹣3b,∵4a﹣3b+7=0,∴4a﹣3b=﹣7,∴原式=3﹣7+4=3﹣3=127;(2)22x+4﹣22x+2=96,22x+2×22﹣22x+2=96,22x+2×(22﹣1)=96,22x+2×3=96,22x+2=32,∴2x+2=5,解得:x=3 2;(3)原式=(2a+1)(a﹣3)﹣(a﹣2)(3a+2)+2=2a2﹣6a+a﹣3﹣(3a2+2a﹣6a﹣4)+2=2a2﹣6a+a﹣3﹣3a2﹣2a+6a+4+2=﹣a2﹣a+3,∵a2+a+5=0,∴a2+a=﹣5,∴原式=﹣(a2+a)+3=﹣(﹣5)+3=5+3=8.22.(8分)阅读材料:已知a+b=8,ab=15,求a2+b2的值.解:a2+b2=(a+b)2﹣2ab=64﹣30=34.参考上面的方法求解下列问题:(1)已知x满足(x﹣2)(3﹣x)=﹣1,求(x﹣2)2+(3﹣x)2的值.(2)如图①,已知长方形ABCD的周长为12,分别以AD、AB为边,向外作正方形ADEF、ABGH,且正方形ADEF、ABGH的面积和为20.①长方形ABCD的面积;②如图②,连接HF、CF、CH,求△CFH的面积.【分析】(1)设a=x﹣2,b=3﹣x,可得a+b=1,ab=(x﹣2)(3﹣x)=1,由(a+b)2=a2+b2+2ab 代入求出a2+b2的值即可;(2))①设AB=a,BC=b,则2a+2b=12,即a+b=6,由正方形ADEF、ABGH的面积和为20,得到a2+b2=20,根据(a+b)2=a2+b2+2ab代入求出ab即可;②S△CFH=S正方形CGME﹣S△CHG﹣S△CEF﹣S△FHM,即(a+b)2−12a(a+b)−12b(a+b)−12ab,变形为12[(a+b)2﹣ab],整体代入计算即可.【解答】解:(1)设a=x﹣2,b=3﹣x,则a+b=1,ab=(x﹣2)(3﹣x)=﹣1,由(a+b)2=a2+b2+2ab得,1=a2+b2﹣2,∴a2+b2=3,即(x﹣2)2+(3﹣x)2的值为3;(2)①设AB=a,BC=b,则2a+2b=12,即a+b=6,由于正方形ADEF、ABGH的面积和为20,即a2+b2=20,由(a+b)2=a2+b2+2ab得,36=20+2ab,∴ab=8,即长方形ABCD的面积为8;②如图,S△CFH=S正方形CGME﹣S△CHG﹣S△CEF﹣S△FHM=(a+b)2−12a(a+b)−12b(a+b)−12ab=12(a2+b2+ab)=12[(a+b)2﹣ab]=12(36﹣8)=14.23.(10分)利用我们学过的完全平方公式与不等式知识能解决方程或代数式的一些问题,阅读下列两则材料:材料一:已知m2﹣2mn+2n2﹣8n+16=0,求m、n的值.解:∵m2﹣2mn+2n2﹣8n+16=0,∴(m2﹣2mn+n2)+(n2﹣8n+16)=0,∴(m﹣n)2+(n﹣4)2=0,∵(m﹣n)2≥0,(n﹣4)2≥0∴(m﹣n)2=0,(n﹣4)2=0∴m=n=4.材料二:探索代数式x2+4x+2与﹣x2+2x+3是否存在最大值或最小值?①x2+4x+2=(x2+4x+4)﹣2=(x+2)2﹣2,∵(x+2)2≥0,∴x2+4x+2=(x+2)2﹣2≥﹣2.∴代数式x2+4x+2有最小值﹣2;②﹣x2+2x+3=﹣(x2﹣2x+1)+4=﹣(x﹣1)2+4,∵﹣(x﹣1)2≤0,∴﹣x2+2x+3=﹣(x﹣1)2+4≤4.∴代数式﹣x2+2x+3有最大值4.学习方法并完成下列问题:(1)代数式x2﹣6x+3的最小值为﹣6;(2)如图,在紧靠围墙的空地上,利用围墙及一段长为100米的木栅栏围成一个长方形花圃,为了设计一个尽可能大的花圃,设长方形垂直于围墙的一边长度为x米,则花圃的最大面积是多少?(3)已知△ABC的三条边的长度分别为a,b,c,且a2+b2+74=10a+14b,且c为正整数,求△ABC周长的最小值.【分析】(1)将代数式配方即可;(2)设花圃的面积为S平方米,根据题意得S=x(100﹣2x)配方成﹣2(x﹣25)2+1250,即可求出最大面积;(3)根据配方法可得a和b的值,再根据三角形的三边关系即可求出c的最小值,进一步求周长最小值即可.【解答】解:(1)x2﹣6x+3=x2﹣6x+9﹣9+3=(x﹣3)2﹣6,∵(x﹣3)2≥0,∴x2﹣6x+3=(x﹣3)2﹣6≥﹣6,故答案为:﹣6.(2)设花圃的面积为S平方米,根据题意,得S=x(100﹣2x)=﹣2x2+100x=﹣2(x2﹣50x+625﹣625)=﹣2(x﹣25)2+1250,∵﹣2(x﹣25)2≤0,∴S=﹣2(x﹣25)2+1250≤1250,当x=25时,100﹣50=50<100,∴花圃的最大面积为1250平方米;(3)∵a2+b2+74=10a+14b,∴a2﹣10a+25+b2﹣14b+49=0,∴(a﹣5)2+(b﹣7)2=0,∴a=5,b=7,∴2<c<12,∵c为正整数,∴c最小为3,∴△ABC周长的最小值为5+7+3=15.24.(10分)【生活常识】射到平面镜上的光线(入射光线)和变向后的光线(反射光线)与平面镜所夹的角相等.如图1,MN是平面镜,若入射光线AO与水平镜面夹角为∠1,反射光线OB与水平镜面夹角为∠2,则∠1=∠2.【应用探究】有两块平面镜OM,ON,入射光线AB经过两次反射,得到反射光线CD.(1)如图2,若OM⊥ON,试证明AB∥CD;(2)如图3,光线AB与CD相交于点P,若∠MON=48°,求∠BPC的度数;(3)如图4,光线AB与CD所在的直线相交于点P,∠MON=α,∠BPC=β,试猜想α与β之间满足的数量关系,并说明理由.【分析】(1)根据平行线的判定方法以及直角三角形的两个锐角互余证明即可;(2)由题意∠PCB+∠PBC=360°﹣2(∠2+∠3)=360°﹣134°×2=92°,再根据三角形内角和定理解决问题即可;(3)由题意∠P+∠EBD=∠O+∠4,∠4=∠3=∠O+∠2,∠1=∠2=∠PBD,推出β+∠1=α+α+∠1可得结论.【解答】解:(1)如题图2中,∠1=∠2,∠3=4.∵OM⊥ON.∴∠3+∠2=90°,∴∠1+∠4=90°,∴∠1+∠2+∠3+∠4=180°,∵(∠1+∠2+∠3+∠4)+(∠ABC+∠BCD)=360°,∴∠ABC+∠BCD=180°,∴AB∥CD;(2)如题图3中,∵∠MON=46°,∴∠2+∠3=180°﹣∠MON=180°﹣46°=134°,∵∠1=∠2,∠3=∠4,∴∠PCB+∠PBC=360°﹣2(∠2+∠3)=360°﹣134°×2=92°,∴∠BPC=180°﹣∠PCB﹣∠PBC=180°﹣92°=88°;(3)结论:β=2α.理由:如题图4中,∵∠P+∠PBD=∠O+∠4,∠4=∠3=∠O+∠2,∠1=∠2=∠PBD,∴β+∠1=α+α+∠1,∴β=2α.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
26.阅读下面的文字,解答问题:大家知道 是无理数,而无理数是无限不循环小数,因此 的小数部分我们不可能全部写出来,而 <2于是可用 来表示 的小数部分.请解答下列问题:
(1) 的整数部分是_______,小数部分是_________;
(2)如果 的小数部分为 的整数部分为 求 的值;
(1)判断下列数对是不是“共生有理数对”,(直接填“是”或“不是”).
, .
(2)若 是“共生有理数对”,求 的值;
(3)若 是“共生有理数对”,则 必是“共生有理数对”.请说明理由;
(4)请再写出一对符合条件的 “共生有理数对”为(注意:不能与题目中已有的“共生有理数对”重复).
25.(1)计算: ;
A. B. C. D.
7.有下列四种说法:
①数轴上有无数多个表示无理数的点;
②带根号的数不一定是无理数;
③平方根等于它本身的数为0和1;
④没有最大的正整数,但有最小的正整数;
其中正确的个数是( )
A.1B.2C.3D.4
8.按照下图所示的操作步骤,若输出y的值为22,则输入的值x为()
A.3B.-3C.±3D.±9
七年级下学期4月份月考数学试卷含答案
一、选择题
1.若 , ,且 ,则 的值为()
A. B. C.5D.
2.下列说法错误的是( )
A.﹣4是16的平方根B. 的算术平方根是2
C. 的平方根是 D. =5
3.下列选项中的计算,不正确的是( )
A. B. C. D.
4.下列说法中正确的个数有()
①0是绝对值最小的有理数;
9.观察下列各等式:
……
根据以上规律可知第11行左起第11个数是()
A.-130B.-131C.-132D.-133
10.在实数 ,0,﹣ , 中,是无理数的是( )
A. B.0C.﹣ D.
二、填空题
11.用“☆”定义一种新运算:对于任意有8,﹣7,﹣6,﹣5,﹣4,﹣3,﹣2,﹣1,0,1,2,3,4,5,6,7,8,中任选两个有理数做a,b(a≠b)的值,并计算a☆b,那么所有运算结果中的最大值是_____.
(2)填空: __________.
22.先阅读然后解答提出的问题:
设a、b是有理数,且满足 ,求ba的值.
解:由题意得 ,
因为a、b都是有理数,所以a﹣3,b+2也是有理数,
由于 是无理数,所以a-3=0,b+2=0,
所以a=3,b=﹣2,所以 .
问题:设x、y都是有理数,且满足 ,求x+y的值.
②无限小数是无理数;
③数轴上原点两侧的数互为相反数;
④相反数等于本身的数是0;
⑤绝对值等于本身的数是正数;
A.2个B.3个C.4个D.5个
5.下列数中π、 ,﹣ , ,3.1416,3.2121121112…(每两个2之间多一个1), 中,无理数的个数是( )
A.1个B.2个C.3个D.4个
6.若一个正方形边长为 ,面积为3,即 ,可知 是无理数,它的大小在下列哪两个数之间( )
16. 的算术平方根为_______.
17.为了求 的值,令 ,则 ,因此 ,所以 ,即 ,仿照以下推理计算 的值是____________.
18.规定用符号 表示一个实数的整数部分,如 ,按此规定 _____.
19.将 , , 这三个数按从小到大的顺序用“<”连接________.
20.已知: , ,则 (精确到0.01)≈__________.
三、解答题
21.(阅读材料)
数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:“39”.邻座的乘客十分惊奇,忙间其中计算的奥妙.
你知道怎样迅速准确的计算出结果吗?请你按下面的步骤试一试:
第一步:∵ , , ,
∴ .
∴能确定59319的立方根是个两位数.
12.观察下面两行数:
2,4,8,16,32,64…①
5,7,11,19,35,67…②
根据你发现的规律,取每行的第8个数,并求出它们的和_______(要求写出最后的计算结果).
13.请先在草稿纸上计算下列四个式子的值:① ;② ;③ ;④ ,观察你计算的结果,用你发现的规律直接写出下面式子的值 __________.
(3)已知: 其中 是整数,且 求 的平方根。
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【分析】
首先根据平方根的定义求出a、b的值,再由ab<0,可知a、b异号,由此即可求出a-b的值.
【详解】
解:∵a2=4,b2=9,
∴a=±2,b=±3,
而ab<0,
∴①当a>0时,b<0,即当a=2时,b=-3,a-b=5;
14.对于三个数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{-1,2,3}= ,min{-1,2,3}=-1,如果M{3,2x+1,4x-1}=min{2,-x+3,5x},那么x=_______.
15. 的平方根是_______; 的立方根是__________.
第二步:∵59319的个位数是9,
∴能确定59319的立方根的个位数是9.
第三步:如果划去59319后面的三位319得到数59,
而 ,则 ,可得 ,
由此能确定59319的立方根的十位数是3,因此59319的立方根是39.
(解答问题)
根据上面材料,解答下面的问题
(1)求110592的立方根,写出步骤.
23.观察下列等式: , , ,
将以上三个等式两边分别相加得: =
(1)猜想并写出: =.
(2)直接写出下列各式的计算结果:
① =;
② =;
(3)探究并计算: .
24.观察下列两个等式: , ,给出定义如下:我们称使等式 成立的一对有理数 为“共生有理数对”,记为 ,如:数对 , ,都是“共生有理数对”.
②a<0时,b>0,即a=-2时,b=3,a-b=-5.
故选:A.
【点睛】
本题考查了平方根的概念.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.
2.C
解析:C
【分析】
分别根据平方根的定义,算术平方根的定义判断即可得出正确选项.
【详解】
A.﹣4是16的平方根,说法正确;