常用概率分布可靠性

合集下载

概率分布的种类与性质

概率分布的种类与性质

概率分布的种类与性质概率分布是概率论中的重要概念,用于描述随机变量的取值与其对应的概率。

不同的随机变量具有不同的概率分布,而概率分布又可以分为多种种类。

本文将介绍常见的概率分布种类及其性质。

一、离散型概率分布离散型概率分布是指随机变量取有限个或可数个值的概率分布。

常见的离散型概率分布有以下几种:1. 伯努利分布(Bernoulli Distribution)伯努利分布是最简单的离散型概率分布,它描述了只有两个可能结果的随机试验,如抛硬币的结果(正面或反面)。

伯努利分布的概率质量函数为:P(X=k) = p^k * (1-p)^(1-k),其中k=0或1,p为成功的概率。

2. 二项分布(Binomial Distribution)二项分布是一种重要的离散型概率分布,它描述了n次独立重复的伯努利试验中成功次数的概率分布。

二项分布的概率质量函数为: P(X=k) = C(n,k) * p^k * (1-p)^(n-k),其中k=0,1,...,n,C(n,k)为组合数,p为成功的概率。

3. 泊松分布(Poisson Distribution)泊松分布是一种用于描述单位时间或单位空间内随机事件发生次数的离散型概率分布。

泊松分布的概率质量函数为:P(X=k) = (λ^k * e^(-λ)) / k!,其中k=0,1,2,...,λ为平均发生率。

二、连续型概率分布连续型概率分布是指随机变量取值为连续区间内的概率分布。

常见的连续型概率分布有以下几种:1. 均匀分布(Uniform Distribution)均匀分布是一种简单的连续型概率分布,它在给定区间内的取值概率相等。

均匀分布的概率密度函数为:f(x) = 1 / (b-a),其中a为区间下界,b为区间上界。

2. 正态分布(Normal Distribution)正态分布是一种重要的连续型概率分布,也被称为高斯分布。

正态分布具有钟形曲线,对称分布于均值周围。

可靠性中常用的概率分布

可靠性中常用的概率分布
(x 0)
(3-4)
指数分布的累积分布函数
F(x)=1-e-x
(3-5)
——若产品在一定时间区间内的失效数服从泊松分布,则该产品的 寿命服从指数分布。
3.5 正态分布
正态分布密度函数定义为:
f (x)
1
2
exp
1 2
x
2, x来自其中: -均值, -标准差。
(3-6)
标准正态分布
例如,对于图(下左)中所示的两种分布形式(一种为 Weibull分布,另一种为正态分布),虽然它们的概率密度 函数曲线差别很小,但其累积分布函数(反映可靠性特征) 在小概率区域的差别却十分显著,如图(下右)所示。
Probability density function
Probability
0.35
当 (t) 为常数时,满足上述条件的计数过程 {N (t),t 0} 为
时齐泊松随机过程。
泊松随机过程的概率密度分布
(t) 0.5 h 1
P(m, t )
n
t/h
3.4 指数分布
指数分布的定义
指数分布的密度函数为
e x
f (x) 0
式中为常数,是指数分布的失效率。
(x 0; 0)
(3-3)
P{X k} Cnk pk (1 p)nk
(k 0,1,2,..., n)
泊松过程
泊松随机过程作为一种重要的计数过程, 可以很好地用于描述“顾客流”、“粒子流” 、“信号流”等事件的概率特性。
设 {N(t),t 0} 为一计数过程,且满足以下条件: (1) N(0)=0; (2) {N (t),t 0} 是一个独立增量过程,即任取 0 t1 t2 tm
失效率函数

可靠性中常用的概率分布

可靠性中常用的概率分布

名称记号概率分布及其定义域、参数条件均值E(X)方差D(X)图形二项分布np npq二项分布:当进行一种试验只有两种可能的结果时,叫成败型试验。

在可靠性工程中,二项分布可用来计算部件相同并行工作冗余系统的成功概率,也适用于计算一次使用系统的成功概率。

返回可靠性中常用的概率分布名称记号概率分布及其定义域、参数条件均值E(X)方差D(X)图形泊松分布P(λ)λλ泊松分布:一个系统,在运行过程中由于负载超出了它所能允许的范围造成失效,在一段运行时间内失效发生的次数X是一随机变量,当这随机变量有如下特点时,X服从泊松分布。

特点1:当时间间隔取得极短时,智能有0个或1个失效发生;特点2:出现一次失效的概率大小与时间间隔大小成正比,而与从哪个时刻开始算起无关;特点3:各段时间出现失效与否,是相互独立的。

例如:飞机被击中的炮弹数,大量螺钉中不合格品出现的次数,数字通讯中传输数字中发生的误码个数等随机变数,就相当近似地服从泊松分布。

名称记号概率分布及其定义域、参数条件均值E(X)方差D(X)图形超几何分布H(n,M,N)返回可靠性中常用的概率分布名称记号概率分布及其定义域、参数条件均值E(X)方差D(X)图形指数分布e(λ)指数分布:许多电子产品的寿命分布一般服从指数分布。

有的系统的寿命分布也可用指数分布来近似。

它在可靠性研究中是最常用的一种分布形式。

指数分布是伽玛分布和威布尔分布的特殊情况,产品的失效是偶然失效时,其寿命服从指数分布。

可靠性中常用的概率分布名称记号概率分布及其定义域、参数条件均值E(X)方差D(X)图形威布尔分布(Ⅲ型极值分布)W(k,a,b)威布尔分布:在可靠性工程中被广泛应用,尤其适用于机电类产品的磨损累计失效的分布形式。

由于它可以利用概率纸很容易地推断出它的分布参数,被广泛应用与各种寿命试验的数据处理。

可靠性中常用的概率分布名称记号概率分布及其定义域、参数条件均值E(X)方差D(X)图形正态分布(高斯分布)N(μ,σ)μσ2正态分布:是在机械产品和结构工程中,研究应力分布和强度分布时,最常用的一种分布形式。

第3章 可靠性分布函数

第3章 可靠性分布函数

6
车辆可靠性设计
第三章 可靠性常用分布函数
三、指数分布 e()
指数分布在质量可靠性工程中常用来描述产品在正常 运转期间的寿命。
密度函数 f (t ) e t
不可靠度函数 F(t) 1 et
可靠度函数 R(t) et
失效率函数 (t) f (t) / R(t)
平均寿命 寿命方差
E(T ) 1
14
车辆可靠性设计
第三章 可靠性常用分布函数
例6(教材例3-5):有100个某种材料的试件进行抗拉强 度试验,现测得试件材料的强度呈正态分布,均值 μ=600MPa ,标准差 σ=50MPa。求:(1)试件强度 =600MPa时的存活率、失效概率和失效试件数;(2)强 度落在(550~450)MPa 区间内的失效概率和失效试件数; (3)失效概率为 0.05时材料的强度值。
2
1)特征:
① 曲线关于x 对称。
x
1
② 在均值x 处有最大值,其值为 2 。
③ 标准差σ越小,曲线 f (x)的峰值越高,因而 X落在μ附近的概率越大。
10
车辆可靠性设计
第三章 可靠性常用分布函数
2)标准正态分布故障密度函数
0 , 1 的正态分布称为标准正态分布
(x)
1
x2
e2
D(T ) 2 1 2
可靠寿命
11
TR
ln R
特征寿命 T (e1) 1
7
车辆可靠性设计
第三章 可靠性常用分布函数
例3:某仪器的寿命T服从指数分布,其平均无故障连 续工 作时间MTBF为25h,试求其失效率为多少?若 要求 可靠性为90%,问应如何选择连续工作时间?
解:失效率为:

第3章 可靠性分布函数

第3章 可靠性分布函数

6
车辆可靠性设计
第三章 可靠性常用分布函数
三、指数分布 e()
指数分布在质量可靠性工程中常用来描述产品在正常 运转期间的寿命。
密度函数 f (t ) e t
不可靠度函数 F(t) 1 et
可靠度函数 R(t) et
失效率函数 (t) f (t) / R(t)
平均寿命 寿命方差
E(T ) 1
a
(z) 1 (z)
(z) 值可查正态分布表
13
车辆可靠性设计
第三章 可靠性常用分布函数
例5:已知某轴在精加工后,其直径尺寸呈正态分布, 均值 μ=14.90mm,标准差σ =0.05mm。规定直径尺寸在 (14.90±0.1)mm内时就为合格品,求合格品的概率。
解:先将正态分布标准化
合格品的概率为:
解:(1)
查正态分布表得失效概率 F(Z)=0.5 存活率 R(x=600)=1-F(Z)=0.5 试件失效数 n=100*0.5=50(件)
15
车辆可靠性设计
(2) 失效概率
第三章 可靠性常用分布函数
失效件数 n=100*0.0214≈2(件)
(3) 失效概率F(Z)=0.05,存活率1-F(Z)=0.95
查正态分布表得Z=-1.64,由式
因此材料强度值为518MPa。
16
车辆可靠性设计
2
非标准正态分布
标准正态分布
设z x (标准正态变量)
(z) f (x)
(z) (z)
1
z2
e2
2
( z) 值可查正态分布密度函数数值表
11
车辆可靠性设计
第三章 可靠性常用分布函数
2、正态分布不可靠度函数

可靠性概率分布讲解

可靠性概率分布讲解

关于可靠性分布函数及其工程应用的讨论学号:*********姓名:***目录一、引言 (3)二、分布函数及其应用的讨论 (3)(一)、指数分布 (3)1.定义: (3)2.指数分布的可靠度与不可靠度函数 (4)3.图像分析 (4)4.应用 (5)(二)、正态分布 (6)1.定义: (6)2.正态分布的可靠度与不可靠度函数 (6)3.失效率函数 (6)4.图像分析 (7)5.应用 (8)(三)、对数正态分布 (9)1.定义: (9)2.对数正态分布的可靠度与不可靠度函数 (9)3.对数正态分布失效率 (9)4.图像分析 (9)5应用 (11)(四)、威布尔分布 (12)1.三参数威布尔分布的定义: (12)2.可靠度与不可靠度函数 (12)3.威布尔分布失效率 (12)4.图像分析 (12)5.应用 (15)三、小结 (16)参考文献 (17)附录 (18)一、引言可靠性是指产品在规定的条件下,规定时间内,完成规定功能的能力,是对产品无故障工作能力的度量。

可靠性作为衡量产品质量的一个重要的指标,已广泛的应用于各个工程领域。

与可靠性相反,产品丧失规定功能称为失效或故障。

工程机械系统是由零件和部件组成的,零件或部件的失效会导致系统的失效。

然而,失效的原因是多种多样的,如结构缺陷、工艺缺陷、使用不当、老化等等。

引起每种失效的原因也可能是不同的,如性能退化可能由于疲劳、蠕变、裂纹扩展、磨损或者腐蚀等导致的[1]。

实践表明,系统或零、部件的失效时间往往是不确定的,要定量描述系统或零、部件的失效时间,应当采用统计学方法。

将失效时间作为一个随机变量,用一个恰当的概率分布函数去描述它。

从数据的统计分析中找出产品寿命分布的规律,是进一步分析产品故障,预测故障发展,研究其失效机理及制定维修策略的重要手段。

可靠性分析与评估是可靠性分析中非常重要的一部分,它是指在产品的寿命周期内,根据产品的可靠性分布模型、结构,以及相关的可靠性信息,利用统计方法,对产品的可靠性指标做出估计的过程。

可靠性基本概念

可靠性基本概念

可靠性设计主要符号表可靠性的概念可靠性的经典定义:产品在规定条件下和规定时间内,完成规定功能的能力产品:指作为单独研究和分别试验对象的任何元件、设备或系统,可以是零件、部件,也可以是由它们装配而成的机器,或由许多机器组成的机组和成套设备,甚至还把人的作用也包括在内。

在具体使用“产品”这一词时,其确切含义应加以说明。

例如汽车板簧、汽车发动机、汽车整车等。

规定条件:一般指的是使用条件,环境条件。

包括应力温度、湿度、尘砂、腐蚀等,也包括操作技术、维修方法等条件。

规定时间:是可靠性区别于产品其他质量属性的重要特征,一般也可认为可靠性是产品功能在时间上的稳定程度。

因此以数学形式表示的可靠性各特征量都是时间的函数。

这里的时间概念不限于一般的年、月、日、分、秒,也可以是与时间成比例的次数、距离。

例如应力循环次数、汽车行驶里程。

规定功能:道德要明确具体产品的功能是什么,怎样才算是完成规定功能。

产品丧失规定功能称为失效,对可修复产品通常也称为故障。

怎样才算是失效或故障,有时很容易判定,但更多情况则很难判定。

当产品指的是某个螺丛,显然螺栓断裂就是失效;当产品指的是某个设备,对某个零件损坏而该设备仍能完成规定功能就不能算失效或故障,有时虽有某些零件损坏或松脱,但在规定的短时间内可容易地修复也可不算是失效或故障。

若产品指的是某个具有性能指标要求的机器,当性能下降到规定的指标后,虽然仍能继续运转,但已应算是失效或故障。

究竟怎样算是失效或故障,有时要涉及厂商与用户不同看法的协商,有时要涉及当时的技术水平和经济政策等而作出合理的规定。

能力:只是定性的理解是比较抽象的,为了衡量检验,后面将加以定量描述。

产品的失效或故障均具有偶然性,一个产品在某段时间内的工作情况并不很好地反映该产品可靠性的高低,而应该观察大量该种产品的工作情况并进行合理的处理后才能正确的反映该产品的可靠性,因此对能力的定量需用概率和数理统计的方法。

按产品可靠性的形成,可靠性可分为固有可靠性和使用可靠性。

几种常见的概率分布及应用

几种常见的概率分布及应用

几种常见的概率分布及应用常见的概率分布有很多种,在统计学和概率论中,这些分布被广泛应用于各种领域,包括自然科学、工程、经济和社会科学等。

下面是几种常见的概率分布及其应用:1. 均匀分布(Uniform Distribution):均匀分布是最简单的概率分布之一,它的概率密度函数在一个给定的区间内是常数。

这种分布广泛应用于统计推断、模拟和随机数生成等领域。

2. 二项分布(Binomial Distribution):二项分布适用于具有两个可能结果的离散试验,如抛硬币、打靶等。

在二项分布中,每个试验都是独立的,并且具有相同的概率。

二项分布在实验研究和贝叶斯统计等领域有广泛的应用。

3. 泊松分布(Poisson Distribution):泊松分布适用于描述单位时间或空间内稀有事件发生次数的概率分布。

它在复杂事件模型、风险评估和可靠性分析等领域有广泛的应用。

4. 正态分布(Normal Distribution):正态分布是最常见的连续概率分布之一,也被称为高斯分布。

它具有对称的钟形曲线,广泛应用于自然科学、社会科学和工程等领域。

正态分布在统计推断、回归分析、贝叶斯统计等方面发挥着重要作用。

5. 指数分布(Exponential Distribution):指数分布适用于描述事件发生之间的时间间隔的概率分布。

它在可靠性工程、队列论、生存分析等领域有广泛的应用。

6. γ分布(Gamma Distribution):γ分布是一类连续概率分布,用于描述正数随机变量的分布,如等待时间、寿命和利润等。

它在贝叶斯统计、过程控制和金融分析等领域被广泛使用。

7. t分布(T-Distribution):t分布是一种用于小样本情况下的概率分布,它类似于正态分布,但考虑了样本容量较小的情况。

t分布在统计推断和假设检验等方面有广泛的应用。

8. χ²分布(Chi-Square Distribution):χ²分布是一种用于度量变量之间的独立性和相关性的概率分布。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

别为
x
E(X
)
e(
y
2 y
2
)
(2-15)
1
x
D(X
)
x
(
e
2 y
1) 2
(2-16)
xm e y
(2-17)
由于y=1nx呈正态分 布,所以有关正态分 布的一切性质和计算 方法都可在此应用。 只要令 Z 1nx y y ,便可应用标准 正态分布表,查出累 积概率F(Z),反之 由F(Z)变可查出
三、正态分布
• 正态分布是一个基本的概率分布,也是最常用 的一种概率分布。
• 正态分布在机械可靠性设计中大量应用,如材 料强度、磨损寿命、齿轮轮齿弯曲、疲劳强度 以及难以判断其分布的场合。
若产品寿命或某特征值有故障(失效)密度
f (t)
1
(t)2
e 22
2
(t≥0,μ≥0,σ≥0)
则称t服从正态分布。
均值和方差都是 ,
其累积分布函数为
P( r≤k)= k r e (2-6)
r0
r!
例2—1 今有25个零件进行可靠性试验,已知在给定 的试验时间内每个零件的失效概率为0.02,试分别用 二项分布和泊松分布求25次试验中恰有两个零件失效 的概率。
解 已知n=25, =np=0.5,P=0.02
)
Γ2
(1 1 )](2-23)
式中Γ(x)为伽玛函数,可查伽玛函数表 得到Γ(x)值
两参数威布尔分布的数学期望及方差为
态分布,记作N(0, 1),其概率密度函数和 累积分布函数为
f (z)
F(Z)=1Biblioteka z2e221
z2 z dZ
e2
2
(2-9) (2-10)
上式F(z)值可查标 准正态分布面积表
为了便于计算,经过变量置换,可将非标准正态分布
化为标准正态分布。
令z
x

代入式(2-8)得
F(x) 2 1x eZ 22d z(x )
式(2-5)表示事件发生r次的概率,
其中 为事件发生次数的均
值, 它不随时间的变化而改变。
当试验次数n很大而每次试验事件发生的概率P很小 时,泊松分布是二项分布很好的近似,一般当n≥20,
P≤0.05,二者的近似性就已很好,即有近似公式
CnrPr(1P)nr
re
r!
式中 =np
不难证明,泊松分布的
R(t)和失效率(t)的影响情况。如果应用威布尔概率纸,
把随机变量x和相应的F(x)在威布尔概率纸上描点时, 可得出以不同卢为斜率的直线,所以形状参数 f(t) 也称威布尔斜率。它是三个参数中最重要的具有 实质意义的参数。
β =3 β =2
β =1 β =1/2
t
不同β 值的威布尔分布 ( =1,γ=0)
由于产品千变万化,寿命分布的类型很多,许多情况下要确定 产品的失效服从何种分布是很困难的,一般有两种方法:一是根 据其物理背景来定,即产品的寿命分布与内在结构以及物理、化 学、力学性能有关,与产品发生失效时的物理过程有关。通过失 效分析,证实该产品的失效模式或失效机理与某种分布类型的物 理背景相接近时,可由此确定它的寿命分布类型。二是通过进行 可靠性寿命实验或者分析产品在使用过程中数据资料来获得产品 的失效数据,利用统计推断的方法来判断它属于何种分布。在可 靠性工程中,常用的分布有二项分布、泊松分布、指数分布、正 态2分021/布4/18、威布尔分布等。
如果某随机事件的不可靠度为: F(t)=p,
可靠度 R(t)=1-F(t)=q , 则式(2-2) 变为
k
P(r≤k)= Cnr[F(t)]r[R(t)]nr r0
(2-4)
二、泊松分布
泊松分布也是离散型随机 变量的一种分布 ,它描述 在给定时间内发生的平均 次数为常数时事件发生次 数的概率分布。
由二项分布Pn(X-r)= Cnr prqnr
=C
2 2
5
×0.022×0.9823=0.0754
由泊松分布P(X-r)= r e
= 0 .5 2 e 0.5 =0.0758
r!
2!
可见两种分布计算的结果非常近似,而二项分布计算 较烦,泊松分布计算则简单些。 但是应该指出,泊松分布不仅是二项分布的一种近似式, 就其本身而言也是可靠性学科中一个重要的分布。
例如一部仪器上各种类型的 缺陷数,铸件上的砂眼数, 一段时间内设备发生的故障 次数等。这些事件的共同特 点是,知道发生的次数或个 数,但是不知道它不发生的 次数或个数。而对于二项分 布,不但知道事件发生的次 数,也知道不发生的次数。
泊松分布的表达式为
P(X=r)= r e e r!
(2-5)
C概nr 率,而为每个组合的概率是P r q n r ,所以事件发生r次的
Pn(X=r)= Cnr prqnr
式中
C
r n
正好是二项式系数,故称该随机事件发生的
概率服从二项分布
二项分布的累积分布函数为
k
P(r ≤k)
Cnr pr qnr 1
r0
(2-1)
由累积分布函数的性质可知
n pn ( X r)
• 例2-2 有100个某种材料的试件进行抗拉
强度试验,今测得试件材料的强度均值 =600MPa,标准差=50MPa求:(1)试件的 强度均值=600MPa时的存活率、失效概 率和失效试件数, (2)强度落在(550— 450)MPa区间内的失效概率和失效试件 数; (3)失效概率为0.05(存活率为0.95) 时材料的强度值。
四、对数正态分布
如果随机变量X的自然对数y=1nx服从正态分布, 则称X服从对数正态分布。由于随机变量的取值x 总是大于零,以及概率密度函数(x)的向右倾斜不 对称,见图
因此对数正态分布是描述不对称随机变量的一种 常用的分布。材料的疲劳强度和寿命,系统的修 复时间等都可用对数正态分布拟合,其概率密度 函数和累积分布函数分别为
解: (1)由附表1查得失效概率F(Z)=0.5 • 存活率 R(x=500)=1-F(Z)=1-0.5=0.5 • 试件失效数 n=100×0.5件=50件 (2)失效概率 P(450<X<550)
=
(550600)(450600)
50
50
= (-2)-(-3)=0.022750-0.0013499
式中 为形状参数;
为尺度参数;
为位置参数。
当 =0,则称为两参数威布尔分布。其
概率密度函数和累积分布函数分别为
f (x) (x)1e(x)
(2-20)
x
( )
F(x) 1e
(2-21)
讨论三个参数对威布尔分布的影响:
形状参数 ,它影响分布曲线的形状,图2—10~图
2—12示出了形状参数对概率密度函数f(x),可靠度
Z 1nx y y
五、威布尔分布
• 威布尔分布是一种含有三参数 或两参数的分布,常用来描述 材料疲劳失效、轴承失效等寿 命分布的,由于适应性强而获 得广泛的应用。
三参数威布尔分布的概率密度函数为
f(x)(xy)1e(xy) (2-18)
累积概率分布为
x
( )
F(x) 1e (2-19)
图2—13给出了 不变而 取不同值 时的威布尔分布曲线,可见 当改变时,
仅曲线起点的位置改变,曲线的形状不 变。当随机变量为零件寿命时, 表示 开
始发生失效的时间t,
即t= 之前发生失效的概率为零,因此
也称为最小保证寿命。
f(t) γ = - 0.5 γ =0 γ =0.5
γ =1
t
f (x)
1
1(yy )
e 2 y
xy 2
(2-13)
x
F(x)
1
1(yy)
e 2 y dx x>0 (2-14)
0 xy 2
式中 y 和 y 为y=1nx的均值和标准差。
实际上常用到随机变量的中位值xm,它表示 随机变量的中心值,
其定义为 P(X≤xm)=P(X>xm)=0.50
对数正态分布的均值、标准差和中位值分

对正态分布曲线位置和形状的影响
• 则有: 不可靠度
F(t)0t
1
(t)2
e 22 dt
2

可靠度
t
R(t)1
1
(t)2
e 22 dt
0 2


故障率
(t) f (t)
R(t)
正态分布计算可用数学代换把上式 变换成标准正态分布,查表简单计 算,得出各参数值。
当 =0, =1时,称随机变量X服从标准正
不同 γ值的威布尔分布 ( =1, β =2)
尔图分2—布1曲4给线出。了由图 可不见变,而起始取点不相同同值(时的不威变布),
分布曲线形状相似( 不变),只是在横坐标轴
方向上离散程度不同。
f(t)
=2
=1/3 =1/2
=1
t
不同值的威布尔分布 (β=2,γ=0)
当随机变量为零件的工作时间t,若t=则式
正态分布的概率密度函数和累积分布函数分 别为:
f (x) 1 e(x22)2
2
-∞<x<∞
(2-7)
F(x) 1
x (x)dx
e 22
2
(2-8)
正态分布可记为N( , ),它是—种对称的分布,其参数
均值决定正态分布曲线的位置,表征随机变量分布的集中趋 势,而标准差决定正态分布的形状,表征随机变量分布的离 散程度 。
r0
k
Cnr
r0
prqnr
1 (2-2)
二项分布是离散型随机事件的一种分布 ,
相关文档
最新文档