串联质谱技术的应用综述
串联质谱筛查技术在新生儿疾病诊断中的应用及挑战

串联质谱筛查技术在新生儿疾病诊断中的应用及挑战随着医学科学的不断发展,新生儿疾病的早期诊断变得越来越重要。
新生儿疾病,特别是遗传代谢病,如果不及时发现和治疗,可能会导致严重的并发症和智力障碍。
串联质谱筛查技术作为一种高效、准确的疾病筛查方法,为新生儿疾病的早期诊断提供了有力的手段,但也面临着一些挑战。
首先,了解什么是串联质谱筛查技术。
串联质谱(LC-MS/MS)是一种基于质谱技术的高分辨率分析方法,可以通过测量样品中化合物的质荷比来确定其组成。
在新生儿疾病的筛查中,LC-MS/MS技术通常与高效液相色谱(HPLC)结合使用,以实现高灵敏度和高选择性。
目前,串联质谱筛查技术已经被广泛应用于新生儿疾病的筛查和诊断,特别是遗传代谢病如苯丙酮尿症、甲基丙二酸衍生物尿症等。
在新生儿疾病诊断中,串联质谱筛查技术具有许多优势。
首先,它可以同时检测多种代谢产物,从而一次性筛查多种疾病,节省时间和成本。
其次,准确性高,可以检测出低浓度的代谢产物,有助于早期诊断。
此外,该技术还具有较低的假阳性率和假阴性率,有效排除检测结果的误差。
最重要的是,串联质谱筛查技术可以提供全面的代谢信息,帮助医生制定更准确的治疗方案。
然而,串联质谱筛查技术在新生儿疾病诊断中也面临着一些挑战。
首先,设备的价格昂贵,不是所有地区和医疗机构都能够承担这样的成本。
此外,该技术需要高度专业的操作技能,仅凭技术只不足以支持诊断工作,还需要与专业医师的临床经验相结合。
另一个挑战是样本处理过程中的可能污染和交叉污染,这可能会影响检测的准确性,因此需要严格的操作规范和质量控制。
此外,串联质谱筛查技术在新生儿疾病诊断中还需要面对一些特殊情况的挑战。
例如,对于早产儿和低出生体重儿,其生理特点和代谢机制可能与足月儿不同,因此需要进一步研究和调整筛查方法。
此外,由于新生儿代谢的快速变化和多样性,针对不同年龄段的适用性和准确性也需要进一步评估。
在新生儿疾病的早期筛查中,即使是先进的技术也需要与其他临床指标和医学评估相结合,以提供更全面、准确的诊断结果。
仪器分析之串联质谱

仪器分析之串联质谱串联质谱(Tandem Mass Spectrometry,简称MS/MS)是一种用于分析化学样品的仪器分析技术,它结合了质谱仪的离子化和分析能力,可以用于分析复杂样品的定性和定量分析。
本文将介绍串联质谱的原理、仪器组成、应用领域等。
串联质谱的原理基于质谱仪的两个重要特性:离子化和质量分析。
在离子化过程中,化学样品中的分子被转化为带电离子,一般通过电离源实现,如电喷雾离子源(Electrospray Ionization,简称ESI)和电子轰击离子源(Electron Impact Ionization,简称EI)等。
离子化后的样品会进入质量分析阶段,其中会通过质量过滤来选择特定的离子异质体。
然后,所选离子会再次发生离子化,产生新的离子异质体。
根据这些离子异质体之间的关系,可以推导出样品中的化合物的结构和组成。
串联质谱的仪器组成主要包括两个重要部分:质谱仪和质谱分析器。
质谱仪主要负责离子化和质量分析。
离子化过程中,样品通常会被加热或溶解在溶剂中,并通过样品引入系统进行离子化。
质量分析中,离子进入质谱仪后,会经过离子透镜、碰撞池等部分,然后进入质量分析器。
质量分析器通常包括四极质量分析器、飞行时间质量分析器或离子陷阱质量分析器等,这些分析器根据不同的设计原理来分析离子。
质量过滤器根据离子的质量对其进行选择,在高真空环境下分析离子。
然而,串联质谱也有一些局限性。
首先,仪器的复杂性和高成本限制了其在许多实验室中的应用。
其次,样品的预处理过程可能会导致一些损失,影响到分析结果的准确性。
而且,针对不同的样品和分析目标,需要选择合适的离子化源和质谱分析器。
综上所述,串联质谱作为一种仪器分析技术,结合了质谱仪的离子化和质量分析能力,可用于复杂样品的定性和定量分析。
它在生物医学研究、食品安全、环境科学和化学分析等领域有广泛的应用。
尽管面临仪器复杂性、样品处理和选择合适的仪器等挑战,但串联质谱仍然是一种重要的分析工具,可以为科学研究和工业应用提供有价值的信息。
高效液相色谱质谱联用技术的应用进展

高效液相色谱质谱联用技术的应用进展一、本文概述随着分析化学技术的飞速发展,高效液相色谱质谱联用技术(HPLC-MS)已成为现代分析领域中的一项重要工具。
该技术结合了高效液相色谱(HPLC)的高分离能力与质谱(MS)的高灵敏度、高选择性,为复杂样品中痕量组分的定性和定量分析提供了强大的技术支持。
本文旨在综述近年来高效液相色谱质谱联用技术在不同领域中的应用进展,包括食品安全、环境监测、生物医药、药物代谢动力学以及法医学等。
通过对相关文献的梳理和评述,本文旨在展示HPLC-MS 技术在这些领域中的最新应用成果,探讨其面临的挑战和发展趋势,为相关领域的研究人员和技术人员提供有益的参考和启示。
二、HPLC-MS技术的基本原理高效液相色谱质谱联用技术(HPLC-MS)是一种强大的分析技术,结合了高效液相色谱(HPLC)和质谱(MS)的优势,用于复杂样品中痕量组分的定性和定量分析。
其基本原理主要基于色谱分离和质谱检测两个过程。
在HPLC-MS中,HPLC首先负责将混合物中的各组分进行高效分离。
这通常是通过将混合物溶解在流动相中,然后通过色谱柱进行分离。
色谱柱内填充有特定的固定相,通过固定相和流动相之间的相互作用,如吸附、分配、离子交换等,实现对不同组分的分离。
流动相通常以一定的流速通过色谱柱,将各组分依次洗脱出来。
分离后的组分随后进入质谱系统进行检测。
质谱仪通过电离源将组分转化为带电离子,这些离子在电场和磁场的作用下发生偏转,形成质谱图。
质谱图上的每个峰代表一个特定的质量/电荷比(m/z)的离子,通过对质谱图的分析,可以确定组分的分子量和结构信息。
HPLC-MS技术的优势在于其高分离效能和高灵敏度。
通过优化色谱条件和质谱参数,可以实现复杂样品中痕量组分的准确检测和鉴定。
HPLC-MS还具有广泛的应用范围,可应用于生物、医药、环境、食品等多个领域的研究和分析。
近年来,随着仪器技术的不断发展和创新,HPLC-MS联用技术也在不断进步。
串联质谱技术的应用综述

《有机结构分析II》串联质谱技术的应用液相色谱-质谱法(LC/MS)将应用范围极广的分离方法与灵敏、专属、能提供相对分子质量和结构信息的质谱法结合起来, 因此已成为一种重要的现代分离分析技术。
虽然与LC相连的单极质谱仪也能够提供相对分子质量的信息, 但不足之处在于基质对待测组分的干扰难以排除及待测组分的结构信息不能充分利用。
液相色谱与串联质谱联用可在一级质谱MS条件下获得很强的待测组分的准分子离子峰, 几乎不产生碎片离子, 并可对准分子离子进行多级裂解, 进而获得丰富的化合物碎片信息, 可用来推断化合物结构, 确认目标化合物, 辨认重叠色谱峰以及在高背景或干扰物存在的情况下对目标化合物定量, 因而成为药物代谢过程和产物研究, 复杂组分中某一组分的鉴定和定量测定, 以及药用植物成分研究中更为强有力的工具。
本文对液相色谱-串联质谱法(LC-MSn)的原理及其在药物代谢方面的应用作简要介绍。
1 串联质谱(MS/MS)基本原理1.1 离子源离子源的种类包括:电子轰击电离(EI)、化学电离(CI)、快原子轰击(FAB)、场电离(FI)和场解吸(FD)、大气压电离源(API)、基质辅助激光解吸离子化(MALDI)和电感耦合等离子体离子化(ICP)等。
现在主要采用大气压离子化技术(API), 包括电喷雾离子化(ESI)、大气压化学离子化(APCI)和大气压光电离化(APPI)。
API 是软电离技术, 通常只产生分子离子峰, 因此可直接测定混合物。
其中,ESI应用十分广泛, 适用于极性、热不稳定、难气化的成分分离分析, 小到无机离子, 大到蛋白质、核酸。
ESI-MS中可以容易地控制碎片的裂解程度。
用串联质谱可以选择特定的离子, 通过碰撞诱导解离(CID)使其碎裂成碎片离子;另一种方法是通过改变锥孔(取样口)电压(源内CID)的方式, 无选择地将源内所有的离子击碎。
1.2 质量分析器及其特点质量分析器是质谱计的核心, 不同类型的质量计其功能、应用范围、原理和实验方法均有所不同。
串联质谱技术在新生儿筛查上的应用

2000年代至今
串联质谱技术在新生儿筛查领域得到广泛应用,用于检测遗传代谢性疾病和先天性缺陷等疾病。
03
02
01
VS
高灵敏度、高特异性和高通量,能够同时检测多种代谢产物,适用于大规模筛查。
局限性
设备成本较高,操作复杂,需要专业人员操作和维护,同时检测成本也相对较高。
串联质谱技术在新生儿筛查上的应用
CATALOGUE
目录
串联质谱技术概述串联质谱技术在新生儿筛查中的应用串联质谱技术在新生儿筛查中的实践案例串联质谱技术在新生儿筛查的未来展望
串联质谱技术概述
CATALOGUE
01
1970年代
质谱技术开始应用于医学领域,用于检测生物样品中的代谢产物。
1990年代
普及和标准化
随着串联质谱技术的普及和标准化,新生儿筛查将更加规范和统一,提高筛查质量和效率。
拓展筛查病种
随着技术的进步,串联质谱技术将能够筛查更多的疾病,包括罕见病和遗传病。
THANKS
感谢观看
详细描述
பைடு நூலகம்
总结词:串联质谱技术在新生儿筛查中的挑战与解决方案
串联质谱技术在新生儿筛查的未来展望
CATALOGUE
04
随着医学技术的进步,新生儿筛查的时间点将更早,甚至在出生前进行。
早期筛查
利用基因检测和代谢组学技术,实现更精准、个性化的筛查。
精准筛查
借助人工智能和大数据分析,提高筛查的准确性和效率。
某地区新生儿串联质谱筛查项目实施情况
总结词
某地区自2010年起开展新生儿串联质谱筛查项目,覆盖了该地区所有新生儿。该项目采用气相色谱-质谱联用技术,对新生儿足跟血进行筛查,检测氨基酸、脂肪酸等代谢物水平。该项目实施以来,共筛查了数十万名新生儿,发现了大量遗传代谢性疾病患儿,为早期干预和治疗提供了有力支持。
气相色谱串联质谱的应用研究进展

气相色谱串联质谱的应用研究进展一、本文概述气相色谱串联质谱(Gas Chromatography-Mass Spectrometry,GC-MS)是一种高效、精确的分离和分析技术,广泛应用于化学、生物、环境、食品、医药等多个领域。
该技术结合了气相色谱的高分离效能和质谱的高灵敏度、高分辨率特点,使得复杂混合物中的组分得以有效分离和精确鉴定。
近年来,随着仪器设备的不断更新和技术的持续进步,GC-MS在诸多领域的应用研究取得了显著进展。
本文旨在综述气相色谱串联质谱的应用研究进展。
简要介绍GC-MS的基本原理和仪器结构,为后续应用研究的讨论提供基础。
然后,重点阐述GC-MS在环境分析、食品安全、药物代谢、生物标志物检测、法医学鉴定等领域的应用案例和研究进展。
通过对这些案例的深入剖析,展示GC-MS在不同领域中的实际应用价值和潜在发展空间。
展望GC-MS未来的发展趋势和应用前景,以期为该领域的研究人员和技术人员提供有益的参考和启示。
二、气相色谱串联质谱的基本原理与技术特点气相色谱串联质谱(Gas Chromatography-Mass Spectrometry,GC-MS)是一种将气相色谱(GC)与质谱(MS)相结合的分析技术,其基本原理在于利用气相色谱对复杂样品中的化合物进行高效分离,然后通过质谱对分离后的化合物进行定性和定量分析。
GC-MS技术结合了色谱和质谱的优点,具有灵敏度高、分辨率强、定性准确等特点,因此在许多领域如环境科学、食品安全、药物分析、法医鉴定等都有着广泛的应用。
GC-MS的基本原理主要包括两个部分:首先是气相色谱的分离过程,样品中的化合物在载气的带动下进入色谱柱,根据化合物在固定相和移动相之间的分配系数不同,实现化合物的分离。
接着是质谱的检测过程,分离后的化合物进入质谱仪,在离子源中被电离成离子,离子在电场和磁场的作用下发生偏转,根据离子的质荷比不同,在检测器上形成质谱图,从而实现对化合物的定性和定量分析。
串联质谱的原理及应用

串联质谱的原理及应用一、原理概述串联质谱(Tandem Mass Spectrometry)是一种高灵敏度、高分辨率的质谱技术,被广泛应用于化学、生物学、医学等领域。
其基本原理是利用离子源将样品离子化,然后在电场或磁场的作用下,将离子进行分离和检测。
串联质谱技术的主要优势在于其高选择性、高灵敏度、高分辨率以及快速分析能力。
二、技术原理串联质谱技术的主要原理是,通过第一级质谱仪选择性地分离出某种特定质量的离子,然后将其传递到第二级质谱仪进行进一步的分离和检测。
第二级质谱仪通常具有更高的分辨率和更精细的分离能力,可以提供关于离子结构的更多信息。
在串联质谱中,两个或多个质量分析器串联在一起,使得离子可以在不同的质量分析器之间进行多次分离和检测,从而获得更丰富的信息。
三、串联质谱的应用串联质谱的应用范围非常广泛,包括但不限于以下几个方面:1. 新生儿代谢病筛查:串联质谱技术已被广泛应用于新生儿代谢病筛查中,通过对新生儿血液或尿液中的代谢产物进行分析,能够早期发现并诊断出多种遗传代谢病,如氨基酸代谢病、有机酸代谢病等。
2. 药物代谢研究:串联质谱技术在药物代谢研究中也有重要应用,通过对药物及其代谢产物的分析,可以了解药物的吸收、分布、代谢和排泄等过程,为新药研发提供重要信息。
3. 生物标志物检测:串联质谱技术可以用于检测生物体中的生物标志物,如肿瘤标志物、心血管疾病标志物等,对于疾病预防、诊断和治疗具有重要意义。
4. 蛋白质组学研究:串联质谱技术在蛋白质组学研究中也有重要应用,通过对蛋白质的鉴定和定量分析,可以了解蛋白质的结构、功能和相互作用等,为生物医学研究提供重要信息。
四、串联质谱在新生儿代谢病筛查中的实际操作在新生儿代谢病筛查中,串联质谱技术通常被用来检测新生儿血液中的氨基酸、有机酸和酰基肉碱等代谢产物。
通过对这些代谢产物的定量分析,可以早期发现并诊断出多种遗传代谢病,如氨基酸代谢病、有机酸代谢病等。
药物分析中的质谱色谱联用技术应用

药物分析中的质谱色谱联用技术应用质谱色谱联用技术,在药物分析领域得到了广泛的应用。
这种技术的发展,使药物的分析更加准确、快速和可靠。
本文将探讨质谱色谱联用技术在药物分析中的应用,并分析其优势和挑战。
一、质谱色谱联用技术的基本原理质谱色谱联用技术是将质谱仪和色谱仪进行耦合,通过两者之间的联用,实现化合物的分离、检测和定性分析。
质谱色谱联用技术基本原理是先利用色谱技术对混合样品进行分离,然后将分离后的物质引入质谱仪,利用质谱技术对物质进行检测和分析。
二、质谱色谱联用技术在药物分析中的应用1. 药物成分的分析:质谱色谱联用技术可以对药物中的各种成分进行分离和鉴定,帮助分析人员了解药物的组成和结构,并准确测定药物的含量。
2. 药物代谢产物的鉴定:通过质谱色谱联用技术,研究人员可以对药物在体内代谢的产物进行分离和鉴定。
这有助于研究药物代谢途径和转化机制,进而指导药物的合理使用和开发。
3. 药物残留的检测:质谱色谱联用技术可以对食品、环境和生物样品中的药物残留进行检测。
这对于保障食品和环境的安全性以及药物的合理使用至关重要。
4. 药物质量控制:质谱色谱联用技术可以对药物的质量进行控制和评估。
通过对药物的质量特性进行分析,可以确保药物的质量符合相关标准和要求。
三、质谱色谱联用技术的优势1. 分离效果好:质谱色谱联用技术将色谱和质谱两种分析技术优势相结合,使得样品的分离效果更好。
可以处理复杂的样品,避免了色谱或质谱单独使用时可能出现的问题。
2. 高灵敏度:质谱色谱联用技术具有高灵敏度,可以检测到很低浓度的化合物。
这对于药物分析中需要检测微量成分的场合非常重要。
3. 高选择性:质谱色谱联用技术可以根据样品的性质和需要,选择不同的色谱和质谱模式,从而实现对目标化合物的选择性分析。
四、质谱色谱联用技术的挑战1. 仪器复杂性:质谱色谱联用技术需要进行仪器的联用和调试,对操作人员的技术要求较高。
同时,多个仪器之间的数据传输和处理也需要专业的软件支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《有机结构分析II》串联质谱技术的应用液相色谱-质谱法(LC/MS)将应用范围极广的分离方法与灵敏、专属、能提供相对分子质量和结构信息的质谱法结合起来, 因此已成为一种重要的现代分离分析技术。
虽然与LC相连的单极质谱仪也能够提供相对分子质量的信息, 但不足之处在于基质对待测组分的干扰难以排除及待测组分的结构信息不能充分利用。
液相色谱与串联质谱联用可在一级质谱MS条件下获得很强的待测组分的准分子离子峰, 几乎不产生碎片离子, 并可对准分子离子进行多级裂解, 进而获得丰富的化合物碎片信息, 可用来推断化合物结构, 确认目标化合物, 辨认重叠色谱峰以及在高背景或干扰物存在的情况下对目标化合物定量, 因而成为药物代谢过程和产物研究, 复杂组分中某一组分的鉴定和定量测定, 以及药用植物成分研究中更为强有力的工具。
本文对液相色谱-串联质谱法(LC-MSn)的原理及其在药物代谢方面的应用作简要介绍。
1 串联质谱(MS/MS)基本原理1.1 离子源离子源的种类包括:电子轰击电离(EI)、化学电离(CI)、快原子轰击(FAB)、场电离(FI)和场解吸(FD)、大气压电离源(API)、基质辅助激光解吸离子化(MALDI)和电感耦合等离子体离子化(ICP)等。
现在主要采用大气压离子化技术(API), 包括电喷雾离子化(ESI)、大气压化学离子化(APCI)和大气压光电离化(APPI)。
API 是软电离技术, 通常只产生分子离子峰, 因此可直接测定混合物。
其中,ESI应用十分广泛, 适用于极性、热不稳定、难气化的成分分离分析, 小到无机离子, 大到蛋白质、核酸。
ESI-MS中可以容易地控制碎片的裂解程度。
用串联质谱可以选择特定的离子, 通过碰撞诱导解离(CID)使其碎裂成碎片离子;另一种方法是通过改变锥孔(取样口)电压(源内CID)的方式, 无选择地将源内所有的离子击碎。
1.2 质量分析器及其特点质量分析器是质谱计的核心, 不同类型的质量计其功能、应用范围、原理和实验方法均有所不同。
磁质谱:分为单聚焦磁场分析器和双聚焦分析器。
离子源中生成的离子通过扇形磁场和狭缝聚焦形成离子束。
离子离开离子源后, 进入垂直于其前进方向的磁场。
不同质荷比的离子在磁场的作用下, 前进方向产生不同的偏转, 从而使离子束发散。
由于不同质荷比的离子在扇形磁场中有其特有的运动曲率半径, 通过改变磁场强度, 检测依次通过狭缝出口的离子, 从而实现离子的空间分离, 形成质谱。
高分辨的双聚焦质谱仪可以测定分子离子的精确质量数(误差在5 ppm以下), 可以确定元素组成。
四极杆分析器(简写为Q):因其由四根平行的棒状电极组成而得名。
离子束在与棒状电极平行的轴上聚焦, 一个直流固定电压(DC)和一个射频电压(RF)作用在棒状电极上, 两对电极之间的电位相反。
对于给定的直流和射频电压, 特定质荷比的离子在轴向稳定运动, 其他质荷比的离子则与电极碰撞湮灭。
将DC和RF以固定的斜率变化, 可以实现质谱扫描功能。
四极杆分析器对选择离子分析具有较高的灵敏度。
离子阱分析器(TRAP):由两个端盖电极和位于它们之间的类似四极杆的环电极构成。
端盖电极施加直流电压或接地, 环电极施加射频电压(RF),通过施加适当电压就可以形成一个势能阱(离子阱)。
根据RF电压的大小, 离子阱就可捕获某一质量范围的离子。
离子阱可以储存离子, 待离子累积到一定数量后, 升高环电极上的RF电压, 离子按质量从高到低的次序依次离开离子阱, 被电子倍增监测器检测。
离子阱分析器现已可以分析质荷比高达数千的离子。
离子阱在全扫描模式下仍然具有较高灵敏度, 而且单个离子阱通过时间序列的设定就可以实现多级质谱(MSn)的功能。
飞行时间分析器(TOF):具有相同动能, 不同质量的离子, 因其飞行速度不同而分离。
如果固定离子飞行距离, 则不同质量离子的飞行时间不同, 质量小的离子飞行时间短而首先到达检测器。
各种离子的飞行时间与质荷比的平方根成正比。
离子以离散包的形式引入质谱仪, 这样可以统一飞行的起点, 依次测量飞行时间。
离子包通过一个脉冲或者一个栅系统连续产生, 但只在某一特定的时间引入飞行管。
TOF具有较大的质量分析范围和较高的质量分辨率, 尤其适合蛋白等生物大分子分析, 常用MALDI为离子源。
其分辨率随着质荷比的增大而降低。
傅里叶变换-离子回旋共振分析器(FT-ICRMS):在一定强度磁场中, 离子做圆周运动, 离子运行轨道受共振变换电场限制。
当变换电场频率和回旋频率相同时, 离子稳定加速, 运动轨道半径越来越大, 动能也越来越大。
当电场消失时, 沿轨道飞行的离子在电极上产生交变电流。
对信号频率进行分析可得出离子质量。
将时间与相应的频率谱利用计算机经过傅里叶变换形成质谱。
优点为分辨率很高, 质荷比可以精确到千分之一道尔顿, 但价格十分昂贵。
液相色谱与串联质谱联用的质量分析器中最常用的是四极杆分析器, 其次是离子阱分析器和飞行时间分析器。
1.3 串联质谱的方式两个或更多的质谱连接在一起, 称为串联质谱。
串联质谱根据连接方式的不同一般分为空间串联和时间串联。
空间串联型又分磁扇型串联, 四极杆串联, 混合串联等。
如果用B表示扇形磁场, E表示扇形电场, 那么串联质谱主要方式有:空间串联(如磁扇型串联方式:BEB, EBE, BEBE等;四极杆串联:Q-Q-Q;混合型串联:BE-Q、Q-TOF和EBE-TOF等)②时间串联:离子阱质谱仪和回旋共振质谱仪。
另外, 还有Q-TRAP等。
1.4 串联质谱的工作无论是哪种方式的串联, 都必须有碰撞活化室,从第一级MS分离出来的特定离子, 经过碰撞活化(碰撞气常用N2和Ar等)后, 再经过第二级MS进行质量分析, 以便取得更多的信息。
最常见的串联质谱为三级四极杆串联质谱(QQQ)。
第一级和第三级四极杆分析器分别为MS1和MS2, 第二级四极杆分析器所起作用是将从MS1得到的各个峰进行轰击, 实现母离子碎裂后进入MS2再行分析。
1.5 串联质谱数据采集方式串联质谱主要有4种数据采集方式:①子离子扫描:选择一定的母离子经CID 活化, MS2记录产生的子离子。
该方式特别适合于软电离(如ESI,CI, FD, FAB)得到的分子离子进一步裂解以获得分子的结构信息。
通常先收集母体药物的子离子谱,再获得代谢物的子离子谱, 根据生物转化/代谢的位点, 可以提供丰富的结构信息。
合理化裂解的这些碎片离子通常可提示药物代谢物的可能结构。
②母离子扫描:选择MS2 中的某一子离子, 测定MS1中的所有母离子。
该方式能帮助追溯碎片离子的来源, 能对产生某种特征碎片离子的一类化合物进行快速筛选。
这种扫描功能在药物代谢中非常重要。
③中性丢失扫描:MS1 和MS2 同时扫描, 但MS2与MS1 始终保持质量差(即中性丢失质量)Am, 最终的谱图将显示那些来自一级谱图中通过裂解丢失中性碎片(Am)的离子。
中性丢失谱最能反映化台物的特定官能团, 如有中性丢失18Da的意味着-H2O。
中性丢失扫描广泛地用于测定II相代谢过程变化, 如葡萄糖醛酸苷(-176Da)和硫酸盐(-80Da), 同样可以测定谷胱苷肽(GSH)加合物(-129Da)。
④多反应检测(MRM)或选择反应监测(SRM):由MS1选择一个或几个特定离子, 经碰撞碎裂之后, 由其子离子中选出一特定离子, 只有同时满足MS1和MS2选定的一对离子时, 才有信号产生。
用这种扫描方式的好处是增加了选择性, 即使2个质量相同的离子同时通过了MS1, 但仍可以依靠其子离子的不同将其分开。
这种方式非常适合于从很多复杂的体系中选择某特定质量, 经常用于微小成分的定量分析。
空间串联质谱的3种方式为子离子扫描、母离子扫描和中性丢失扫描, 而时间串联质谱只能完成子离子扫描。
目前, 这4 种扫描方式已越来越广泛地应用在药物代谢研究方面。
2 串联质谱法在药物代谢中的应用药物代谢涉及药物在生物体内吸收、分布、代谢和排泄的研究。
包括药物及其在各种复杂基质(全血、血浆、尿、胆汁及生物组织)中代谢物的分离、结构鉴定以及痕量分析测定。
2.1 药物及其代谢物的痕量分析测定药物代谢动力学参数以研究药物的生物利用度和生物等效性为主, 常用QQQ, 因其具有较高的选择性、信噪比。
生物样品中有大量的保留时间相同、相对分子质量也相同的干扰组分存在。
为了消除其干扰, 定量的最好办法是采用串联质谱的多反应监测(MRM)技术。
分析样品时, 第一级质谱选定m1 , 经第二级碰撞活化后, 第三级质谱选定m2 。
只有同时具有m1 和m2 特征质量的离子才被记录。
这样得到的色谱图就进行了3次选择:LC选择了组分的保留时间, 第一级MS 选择了m1 , 第三级MS选择了m2 , 这样得到的色谱峰可以认为被干扰的几率极小。
然后, 根据色谱峰面积, 采用内标法进行定量分析。
这是目前应用最多的一种测定方法, 如Suryawanshi等[1]利用MRM技术测定大鼠血浆中芒果苷和4种环烯醚萜苷的药动学参数;沈凯等[2]利用MRM技术定量测定人血浆中替比夫定的浓度;徐珊珊等[3]利用MRM技术同时测定人血浆中西替利嗪和伪麻黄碱的浓度, 均取得较好的测定结果。
2.2 药物代谢物的结构鉴定由于多数药物的代谢物保留了母体药物分子的骨架结构或一些亚结构, 因此, 代谢物可能进行与母体药物相似的裂解, 丢失一些相同的中性碎片或形成一些相同的特征离子, 用串联质谱分别进行中性丢失扫描、母离子扫描和子离子扫描, 即可迅速找到可能的代谢物, 并鉴定出结构。
Yost等[ 4] 总结了和用串联质谱鉴定药物代谢物的方法, 主要包括以下几个步骤:①测定母体药物的质谱。
②测定母体药物的子离子谱, 选择质子化分子离子、加合离子和主要的碎片离子进行裂解。
③选择母体药物的主要中性丢失测定生物样品的中性丢失谱, 图谱中的离子即为母体药物和可能的代谢物的分子离子。
④选择主要的子离子测定生物样品的母离子谱, 所得母离子即为各个代谢物。
⑤测定生物样品中所有可能代谢物的子离子谱, 解谱得到代谢物的结构。
⑥测定代谢物的子离子谱.选择任一新出现的中性丢失和子离子重复进行步骤③, ④。
2.2.1 QQQ在药物代谢产物鉴定中的应用药物代谢的研究中, 由于母体药物结构已知, 药物代谢途径常常可以预期, 根据体内I相和II相代谢的一般规律(见表1和表2), 张喆等[5]用高效液相-电喷雾串联四极杆质谱法首次考察了毛果芸香碱在大鼠尿中的代谢情况, 采用MRM方法推测了毛果芸香碱在大鼠体内的5种代谢产物。
表1 I相代谢过程的质量偏移[6]表2 II相代谢过程的质量偏移目前利用QQQ在药物代谢产物鉴定中的应用较少, 张爱军等[7]用QQQ推测了西维来司他药物降解产物的可能结构和裂解途径, 方法是先对药物的准分子离子峰进行子离子扫描, 再对降解产物的质谱峰进行子离子扫描, 通过母离子扫描、子离子扫描、中性丢失和调节去簇电压(DP)值等方法对离子裂解规律进行分析, 推测了降解产物结构。