初三数学反比例函数提高试卷 (含答案)
中考数学复习《反比例函数》专项测试卷(带答案)

中考数学复习《反比例函数》专项测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题1.若点()1,2A x ,()2,1B x -和()3,4C x 都在反比例函数8y x=的图像上,则1x ,2x 和3x 的大小关系是( ) A.123x x x <<B.231x x x <<C.132x x x <<D.213x x x <<2.若点()26-,在反比例函数ky x=的图象上,则下列说法正确的是( ) A.该函数的图象经过点()34--,B.该函数的图象位于第一、三象限C.当0x >时,y 的值随x 值的增大而增大D.当1x >-时,4y >3.如图,在同一平面直角坐标系中函数y ax a =+与函数ay x=的图象可能是( ) A. B. C. D.4.如图,点A 是双曲线()160y x x =-<上的一点,点B 是双曲线()60y x x=-<上的一点,AB 所在直线垂直x 轴于点C ,点M 是y 轴上一点,连接MA 、MB ,则MAB △的面积为( )A.5B.6C.10D.165.如图,点A ,B 为反比例函数()0ky x x=>的图象上的两点,且满足45AOB ∠=︒,若点A 的坐标为()3,5,则点B 的坐标是( ).A.15215,2⎛⎫ ⎪ ⎪⎝⎭B.1010,2⎛ ⎝⎭C.()8,2D.()8,36.如图,已知点A 、B 分别在反比例函数y =1x (x >0),y =-4x(x >0)的图象上,且OA⊥OB ,则OBOA的值为( )A.4B.2C.14D.127.如图,在ABC 中2AC BC == 90ACB ∠=︒ AC x ∥轴 点D 是AB 的中点 点C 、D 在(k 0,x 0)ky x=≠>的图象上 则k 的值为( )A.1-B.2-C.1D.28.已知蓄电池的电压为定值(电压三星近总度阻) 使用蓄电池时 电流(单位:A )与电阻尺(单位:Ω)是反比例函数关系 它的图象如图所示 下列说法不正确的是( )A.函数解析式为60I R=B.蓄电池的电压是C.当6ΩR =时 8A I =D.当10A I ≤时 6R ≥Ω9.如图 在平面直角坐标系中直线24y x =-+与x 轴、y 轴分别交于A 、B 两点 以AB 为边在第一象限作正方形ABCD 点D 在双曲线()0ky k x=≠上.将正方形沿x 轴负方向平移a 个单位长度后 点C 恰好落在该双曲线上 则a 的值( )A.1B.2C.3D.410.如图 直线22y x =-与x 轴 y 轴分别交于点A B 与反比例函数()0ky k x=>图像交于点C .点D 为x 轴上一点(点D 在点A 右侧) 连接BD 以BA BD 为边作ABDE E 点刚好在反比例函数图像上 设(),E m n 连接EC DC 若1()2ACED S AD AD n =+四边形 则k 的值为( )A.8B.10C.12D.1611.如图 直线y kx =与双曲线3y x -=在同一坐标系中如图所示 则不等式3x-<的解集为( )A.01x <<B.1x <-C.1x <-或01x <<D.10x -<<或1x >12.智能手机已遍及生活中的各个角落 手机拍照功能也越来越强 高档智能手机还具有调焦(调整镜头和感光芯片的距离)的功能.为了验证手机摄像头的放大率(摄像头的放大率是指成像长度与实物长度的比值 也可计算为像距与物距的比值) 小明用某透镜进行了模拟成像实验 得到如图所示的像距v 随物距u 变化的关系图像 下列说法不正确的是( )A.当物距为45.0cm 时 像距为13.0cmB.当像距为15.0cm 时 透镜的放大率为2C.物距越大 像距越小D.当透镜的放大率为1时 物距和像距均为20cm13.某商家设计了一个水箱水位自动报警仪 其电路图如图1所示 其中定值电阻110ΩR =2R 是一个压敏电阻 用绝缘薄膜包好后放在一个硬质凹形绝缘盒中放入水箱底部 受力面水平 承受水压的面积S 为0.012m 压敏电阻的阻值随所受液体压力F 的变化关系如图2所示(水深h 越深 压力F 越大) 电源电压保持6V 不变 当电路中的电流为0.3A 时 报警器(电阻不计)开始报警 水的压强随深度变化的关系图象如图3所示(参考公式:UI R=1000Pa 1kPa =).则下列说法中不正确的是( )2R F pS =A.当水箱未装水()时 压强p 为0kPaB.当报警器刚好开始报警时 水箱受到的压力F 为40NC.当报警器刚好开始报警时 水箱中水的深度h 是0.8mD.若想使水深1m 时报警 应使定值电阻1R 的阻值为 二、填空题14.一个圆柱形蓄水池的底面半径为x cm 蓄水池的侧面积为40π2cm 则这个蓄水池的高h (cm )与底面半径x (cm )之间的函数关系式为_____.15.在反比例函数12my x-=的图象上的图象在二、四象限 则m 的取值范围是_______. 16.若点()11,A y -、21,4B y ⎛⎫- ⎪⎝⎭、()31,C y 都在反比例函数21x k y +=(k 为常数)的图象上 则1y 、2y 、3y 的大小关系为_____.17.如图 点(3,1)P -是反比例函数m y x =的图象上的一点 设直线y kx =与双曲my x=的两个交点分别为P 和P 当mkx x>时 写出x 的取值范围_____.18.如图 在平面直角坐标系xOy 中正方形OABC 的边OC 、OA 分别在x 轴和y 轴上 OA =10 点D 是边AB 上靠近点A 的三等分点 将⊥OAD 沿直线OD 折叠后得到⊥OA ′D 若反比例函数y kx=(k ≠0)的图象经过A ′点 则k 的值为_____. 0m h =12Ω19.如图 在平面直角坐标系中直线12y k x =+与x 轴交于点A 与y 轴交于点B 与双曲线2(0)k y x x=>交于点C 连接OC .若52,sin 5OBC S BOC =∠=△ 则12k +的值是______.20.如图 点1A 2A 3A …在反比例函数()10y x x=>的图象上 点1B 2B 3B … n B 在y 轴上 且11212323B OA B B A B B A ∠=∠=∠=直线y x =与双曲线1y x=交于点1A 111B A OA ⊥ 2221B A B A ⊥ 3323B A B A ⊥ … 则2023B 的坐标是________.三、解答题21.如图所示 一次函数y kx b =+的图象与反比例函数my x=的图象相交于两点(1),A n (2,1)B -- 与y 轴相交于点C .(1)求反比例函数和一次函数解析式; (2)直接写出:不等式mkx b x+>解集是______; (3)依据相关数据求AOB 的面积.22.如图 菱形OABC 的边OA 在y 轴正半轴上 点B 的坐标为()48,.反比例函数11k y x=的图象经过菱形对角线AC OB ,的交点D 设直线OC 的解析式为22y k x =.(1)求反比例函数的解析式; (2)求菱形OABC 的边长;(3)请结合图象直接写出不等式120k k x x-<的解集. 23.如图▱OABC 的顶点O 与坐标原点重合 边OA 在x 轴正半轴上 60AOC ∠=︒2OC = 反比例函数()0ky x x=>的图像经过顶点C 与边AB 交于点D.(1)求反比例函数的表达式.(2)尺规作图:作OCB ∠的平分线交x 轴于点E.(保留作图痕迹 不写作法) (3)在(2)的条件下 连接DE 若DE CE ⊥ 求证:AD AE =. 24.如图 已知一次函数26y x =+与反比例函数()0ky x x=>的图象交于点()1,A m 与x 轴交于点B .(1)填空:m 的值为______ 反比例函数的解析式为______; (2)直接写出当0x >时 26kx x+<的解集; (3)点P 是线段AB 上一动点(不与A 、B 点重合) 过P 作直线PM x ∥轴交反比例函数的图象于点M 连接BM .若PMB △的面积为S 求S 的取值范围.25.如图 已知抛物线2y x bx =+与x 轴交于O (4,0)A 两点 点B 的坐标为(0,3)-. (1)求抛物线的对称轴;(2)已知点P 在抛物线的对称轴上 连接OP BP .若要使OP BP +的值最小 求出点P 的坐标;(3)将抛物线在x 轴下方的部分沿x 轴翻折 其余部分保持不变 得到一个新的图象.当直线(0)y x m m =+≠与这个新图象有两个公共点时 在反比例函数y mx=的图象中y 的值随x 怎样变化?判断并说明理由.26.如图 在平面直角坐标系中正六边形ABCDEF 的对称中心P 在反比例函数()10,0ky k x x=>>的图象上 边AB 在x 轴上 点F 在y 轴上 已知23AB =.(1)判断点E 是否在该反比例函数的图象上 请说明理由;(2)求出直线EP :()20y ax b a =+≠的解析式 并根据图象直接写出当0x >时 不等式kax b x+>的解集. 27.如图① 有一块边角料ABCDE 其中AB BC DE EA 是线段 曲线CD 可以看成反比例函数图象的一部分.测量发现:90A E ∠=∠=︒ 5AE = 1AB DE == 点C 到AB AE 所在直线的距离分别为2 4.(1)小宁把A B C D E 这5个点先描到平面直角坐标系上 记点A 的坐标为()1,0-;点B 的坐标为()1,1-.请你在图②中补全平面直角坐标系并画出图形ABCDE ; (2)求直线BC 曲线CD 的函数表达式;(3)小宁想利用这块边角料截取一个矩形MNQP 其中M N 在AE 上(点M 在点N 左侧)点P 在线段BC 上 点Q 在曲线CD 上.若矩形的面积是53则=_________.参考答案1.答案:B解析:将三点坐标分别代入函数解析式8y x=得: 182x = 解得14x =; 28-1x =解得28x =-; 384x =解得; 824-<<故选:B. 2.答案:C解析:⊥点()26-,在函数ky x=的图象上 ⊥2(6)120k =⨯-=-< ⊥函数ky x=位于第二、四象限 在每个象限内 y 的值随x 的增大增大 ⊥()341212-⨯-=≠-⊥该函数的图象不经过点()34--,把=1x -代入12y x=求得12y = ⊥当10x -<<时 12y > 综上 只有选项C 说法正确 故选:C. 3.答案:A解析:当0a >时 一次函数图像经过第一、二、三象限 反比例函数图像位于一、三象限 可知A 符合题意;32x =231x x x ∴<<当0a <时 一次函数图像经过第二、三、四象限 反比例函数图像位于二、四象限 可知B C D 不符合题意.故选:A.4.答案:A解析:如图所示 作MN BA ⊥交BA 的延长线于N则12AMB S BA MN =⋅设点A 的坐标为16a a ⎛⎫- ⎪⎝⎭, <0aAB 所在直线垂直x 轴于点CB ∴点坐标为6a a ⎛⎫- ⎪⎝⎭,16610AB a a a ⎛⎫∴=---=- ⎪⎝⎭ MN a =()11101105222ABM S AB MN a a a a ⎛⎫⎛⎫∴=⋅=⨯-⨯=⨯-⨯-= ⎪ ⎪⎝⎭⎝⎭故选:A.5.答案:A解析:将OA 绕O 点顺时针旋转90︒到OC 连接AB 、CB作AM y ⊥轴于MCN x ⊥轴于N点A 的坐标为()3,53AM ∴= 5OM =45AOB ∠=︒45BOC ∠=︒∴在AOB 和COB △中OA OC AOB COBOB OB =⎧⎪∠=∠⎨⎪=⎩(SAS)AOB COB ∴△≌△AB CB ∴=90AOM AON CON AON ∠+∠=︒=∠+∠AOM CON ∴∠=∠ 在AOM 和CON 中AOM CON AMO ONCOA OC ∠=∠⎧⎪∠=∠⎨⎪=⎩ (AAS)AOM CON ∴△≌△3CN AM ∴== 5ON OM == (5,3)C ∴-点A 为反比例函数(0)k y x x=>图象上的点 3515k ∴=⨯= 15y x ∴=设B 点的坐标为15(,)m m AB CB =22221515(3)(5)(5)(3)m m m m ∴-+-=-++解得215m =(负数舍去)15215,B ⎛∴ ⎝⎭故选A.6.答案:B解析:作AC y ⊥轴于C BD y ⊥轴于D 如图点A 、B 分别在反比例函数1(0)y x x => 4(0)y x x=->的图象上 11122OAC S ∆∴=⨯= 1|4|22OBD ∆=⨯-=OA OB ⊥90AOB ∠=︒∴90AOC BOD ∴∠+∠=︒AOC DBO ∴∠=∠Rt AOC Rt OBD ∴∆∆∽ ∴212()2AOC OBD S OA S OB ∆∆== ∴12OA OB =. ∴2OB OA=. 故答案为B. 7.答案:B解析:设(0,)A b 根据题意(2,)C b - (2,2)B b -+点D 是AB 的中点(1,1)D b ∴-+点C 、D 在(k 0,x 0)k y x=≠>的图象上 2(1)k b b ∴=-=-+解得1b =22k b ∴=-=-故选:B.8.答案:C解析:设图象过蓄电池的电压是A 、B 选项正确 不符合题意;当=6ΩR 时 (A 6010)6I ==∴C 选项错误 符合题意;当10I =时 6R =由图象知:当10A I ≤时 6R ≥Ω∴D 选项正确 不符合题意;故选:C.9.答案:B解析:作CE y ⊥轴于点E 交双曲线于点G 作DF x ⊥轴于点F在24y x =-+中令0x = 解得4y =∴B 的坐标是(0,4)令0y = 解得2x =∴A 的坐标是(2,0)kI R =(5,12)60k ∴=60I R ∴=∴60V ∴4OB ∴= 2OA =90BAD ∠=︒90BAO DAF ∴∠+∠=︒直角ABO △中90BAO OBA ∠+∠=︒DAF OBA ∴∠=∠在OAB △和FDA △中DAF OBA BOA AFD AD AD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)OAB FDA ∴≌△△同理 OAB FDA BEC ≌≌△△△ 4AF OB EC ∴=== 2DF OA BE ===∴D 的坐标是(6,2) C 的坐标是(4,6)点D 在双曲线(0)k y k x=≠上 6212k ∴=⨯=∴函数的解析式是:12y x =把6y =代入12y x=得:2x = 422a ∴=-=故选B.10.答案:C解析:直线与x 轴 y 轴分别交于点A B(1,0)A ∴ (0,2)B -作EF x ⊥轴于F 如图所示:22y x =-四边形是平行四边形在和中E 点刚好在反比例函数图像上设C 的纵坐标为hABDE AE BD ∴=//DE AB DAE ADB ∴∠=∠AEF △DBO △EAF BDO AFE DOB AE BD ∠=∠⎧⎪∠=∠⎨⎪=⎩(AAS)AEF DBO ∴≌△△2EF OB ∴==AF OD =1DF OA ∴==(,)E m n 2m AD ∴=+2n =2(2)k mn AD ∴==+122AD k ∴=-//DE BC AED CED S S ∴=△△()11122222ACD CED ACD AED ACED S S S S S AD h AD AD h ∴=+=+=⋅+⋅=+四边形△△△△()12ACED S AD AD n =+四边形122h AD k ∴==-C 的纵坐标为代入得解得反比例函数图像经过点C 解得 20k =(舍去) 12k∴=故选:C.11.答案:D解析:有题意可知 当3y =时 33x= 解得=1x - ∴直线y kx =与双曲线3y x=在第二象限交点的坐标为1,3)- 由中心对称可得 直线y kx =与双曲线3y x=在第四象限交点的坐标为3)- ∴观察图象可得 不等式3kx x<的解集为10x <<或1x >. 故选:D.12.答案:B解析:由函数图象可知:当物距为45.0cm 时 像距为13.0cm 故选项A 说法正确;由函数图象可知:当像距为15.0cm 时 物距为300cm . 放大率为15.00.530.0= 故选项B 说法错误;由函数图象可知:物距越大 像距越小 故选项C 说法正确;由题意可知:当透镜的放大率为1时 物距和像距均为20cm 故选项D 说法正确 故选:B.13.答案:B解析:A.由图3得:当0h =时 0p = 故此项说法正确;122-22y x =-12222x -=-14x k =11(,2)42C k k ∴-(0)k y k x=>11(2)42k k k ∴-=112k =B.当报警器刚好开始报警时 260.310R =+ 解得210R =Ω 由图2可求得:2800R F =80010F∴= 解得80F N = 故此项说法错误; C.当报警器刚好开始报警时 由上得80F N = 则有800.01p =⨯ 8P p k a ∴= 由图3求得10p h = 810h = 解得:0.8h = 故此项说法正确;D.当报警器刚好开始报警时:1260.3R R =+ 1220R R ∴+=Ω 当1h =时 10110kPa p =⨯= 100000.01100F N ∴=⨯= 28008100R ==Ω 120812R ∴=-=Ω 故此项说法正确. 故选:B.14.答案:20h x = 解析:根据题意 得240x h ππ⋅= ⊥20h x=. 故答案为:20h x=. 15.答案:12m > 解析:由题意得 反比例函数12m y x -=的图象在二、四象限内 则120m -< 解得12m >. 故答案为12m >. 16.答案:213y y y << 解析:反比例函数2(1k k y x+=为常数) 210k +> ∴该函数图象在第一、三象限 在每个象限内y 随x 的增大而减小点1(1,)A y -、1(4B 2)y 、3(1,)C y 都在反比例函数2(1k k y x +=为常数)的图象上 114-<- 点A 、B 在第三象限 点C 在第一象限213y y y ∴<<故答案为:213y y y <<.17.答案:-3<x <0或x >3 解析:⊥直线y =kx 与双曲线y =m x的两个交点分别为P 和P ′ P (-3 1) ⊥P ′的坐标为(3 -1)当mx >kx 时 x 的取值范围为-3<x <0或x >3故答案为:-3<x <0或x >3. 18.答案:48解析:如图所示:过A '作EF OC ⊥于F 交AB 于E⊥90OA D '∠=︒90OA F DA E ∴∠'+∠'=︒⊥90A F AOF O ∠'+∠'=︒D AOF AE ∴'=∠'∠D A FO AE '=∠∠'A OF DA E ∴''∠△△设A '(m n )OF m ∴= A F n '=.正方形OABC 的边OC 、OA 分别在x 轴和y 轴上 OA =10点D 是边AB 上靠近点A 的三等分点∴ 103DE m = 10A E n '=-.310103m n m m ==-- 解得:m =6 n =8. ∴A '(6,8) ∴ 反比例函数中k =xy (0k ≠)=48 故答案为:48.19.答案:9解析:据题意可知(0,2)B 设(,)Cx y 52,sin OBC S BOC =∠=△1222x ∴⨯= 52xOC = 解得2,25x OC ==2225OC x y =+=即2425y +=得4y = 故(2,4)C 将(2,4)C 代入直线12y k x =+ 双曲线2(0)k y x x => 得到 121,8k k == 故12189k k +=+= 故答案为:9.20.答案:(0,22023解析:联立1y xy x =⎧⎪⎨=⎪⎩解得1x =由题意可知145AOB ∠=︒111B A OA ⊥11OA B ∴△为等腰直角三角形1122OB OA ∴==过2A 作22A H OB ⊥交y 轴于H 则容易得到21A H B H = 设21A H B H x == 则()2,2A x x +()21x x ∴+=解得121x = 221x =-(舍去)2121A H B H ∴== 1212222B B B H ==2222222OB ∴=+=同理可得323OB =则2n OB n =即(0,2n B n(20230,22023B ∴故答案为:(0,22023. 21.答案:(1)2y x = 1y x =+ (2)1x >或20x -<<(3)32解析:(1)反比例函数m y x =的图象过(2,1)--∴反比例函数的解析式为:2y x = 点(1),A n 在反比例函数图象上∴12n ⨯=∴2n =∴点A 的坐标为(1,2)将点A B 坐标代入一次函数y kx b =+中得221k b k b +=⎧⎨-+=-⎩解得11k b =⎧⎨=⎩∴一次函数的解析式为:1y x =+.(2)根据图象可知 不等式0m kx b x+>>的解集是:1x >或20x -<<. 故答案为:1x >或20x -<<; (3)过点A 作AG y ⊥轴于点G 过点B 作BH y ⊥轴于点H 如下图所示:一次函数1y x =+与y 轴相交于点C∴C 点坐标为(0,1)∴1OC =A 点坐标为(1,2)∴1AG =B 点坐标为(2,1)--∴2BH =∴11123222AOB AOC BOC S S S ⨯⨯=+=+=△△△. 22.答案:(1)18y x = (2)5 (3)463x <或63x << 解析:(1)⊥菱形OABC 的对角线交于点D⊥OD DB =⊥点B 的坐标为()48,⊥点D 的坐标为()24, 又⊥反比例函数11k y x=经过点D ⊥1248k =⨯= ⊥18y x =; (2)过点B 作BE y ⊥轴于点E设OA AB a == 则8AE a =- 4BE =在Rt ABE 中222BE AE AB += 即()22248x x +-= 解得:5x =⊥菱形OABC 的边长为5;(3)⊥点B 的坐标为()48, 5BC =⊥点C 的坐标为()43,代入22y k x =得:234k = 解得:234k =⊥234y x =令1y y = 则834x x = 解得:63x =±结合图象 不等式120k k x x -<的解集为463x <或463x <<.23.答案:(1))30y x =>(2)见解析(3)见解析解析:(1)过点C 作CF OA ⊥于点F 如解图所示.在Rt COF △中2OC = 60COF ∠=︒30sin 6023CF C ∴=⋅==︒1cos60212OF OC =⋅︒=⨯=.(1,3C ∴. 把(3C 代入反比例函数()0ky x x =>中得3k =∴反比例函数的表达式为)30y x =>.(2)如解图所示 所作射线CE 即为所求.(3)证明:在OABC 中//OC AB //CB OA .60AOC ∠=︒120OCB OAB ∴∠=∠=︒. CE 平分OCB ∠60OCE BCE OEC ∴∠=∠=∠=︒.DE CE ⊥90CED ∴∠=︒.180609030AED ∴∠=︒-︒-︒=︒.1801203030ADE ∴∠=︒-︒-︒=︒.AED ADE ∴∠=∠.AD AE ∴=.24.答案:(1)8 8y x= (2)01x << (3)S 的取值范围是2504S <≤ 解析:(1)⊥一次函数26y x =+的图象经过点()1,A m ⊥268m =+=⊥点()18A ,⊥反比例函数()0k y x x =>的图象经过点()18A , ⊥188k =⨯=⊥反比例函数的解析式为8y x=; 故答案为:8 8y x =;(2)观察图象得 26k x x+<的解集为1x <<; (3)设点P 的纵坐标为n ⊥点P 在线段AB 上 点M 在8y x =的图象上 ⊥0n << 点P 的横坐标为62n -⊥PM x ∥轴⊥点M 的坐标为8n n ⎛⎫ ⎪⎝⎭, ⊥862n MP n -=. ⊥()21186125322244PMBn S MP n n n n -⎛⎫=⨯⨯=⨯-⨯=--+ ⎪⎝⎭. ⊥08n << 且104-<⊥当03n <<时 S 随n 的增大而增大 当38n ≤<时 S 随n 的增大而减小. ⊥当3n =时 △的面积最大 最大值为254 ⊥S 的取值范围是2504S <≤. 25.答案:(1)抛物线的对称轴为直线2x =(2)点P 的坐标为32,2⎛⎫- ⎪⎝⎭ (3)y 的值随x 的增大而增大解析:(1)由题意得:2440b +=4b ∴=-∴函数关系式为:24y x x =-∴对称轴为:4222b x a -=-=-=; (2)由题意得:OP PB +的值最小 实际就是在同一直线一旁有两点 在直线上求点只要取O 点关于直线2x =对称的点 过AB 的直线与直线的交点就是点P设过AB 的直线为 由在上()4,0A 2x =3y kx =-()4,0B 3y kx =-得34k =334AB y x =-P 在直线2x =上332342y ∴=⨯-=-32,2P ⎛⎫∴- ⎪⎝⎭; (3)24y x x =-在x 轴下方的部分沿x 轴翻转当直线()0y x m m =+≠有两个不相同的解0∴∆> 2340m -⨯> 得94m <又0> 904m ∴<< 在反比例函数m y x=中 904m k <=< y 随x 的增大而减小. 26.答案:(1)点E 在该反比例函数的图象上 理由见解析(2)39y x =+ 323x <<解析:(1)六边形ABCDEF 为正六边形 23AB =23AB AF ∴== 60FAO =︒cos 603OA AF ∴=⋅︒= sin603AF =⋅︒=()0,3F ∴ )3,0A 连接PF PA六边形ABCDEF 为正六边形PE PF PA PB ∴=== 60EPF FPA APB ∠=∠=∠=︒EFP ∴△ FAP △ ABP △为等边三角形23AF PF ∴==()23,3P ∴ 把()23,3P 代入1k y x =得:23=解得:63k =043k ∴=-∴反比例函数表达式为163y x=. EFP △ FAP △为等边三角形∴点E 和点A 关于PF 对称)3,6E ∴ 把3x =代入163y x =得:13663y == ∴点E 在该反比例函数的图象上; (2)把()3,6E ()23,3P 代入()20y ax b a =+≠得: 6333a b a b ⎧=+⎪⎨=+⎪⎩ 解得:39a b ⎧=-⎪⎨=⎪⎩∴直线EP 的解析式为:39y x =+()3,6E ()23,3P由图可知 当323x <<时 k b x +>. 27.答案:(1)见解析(2)直线BC 的函数表达式3522y x =曲线的函数表达式4y x= (3)72 解析:(1)根据点A 的坐标为()1,0- 点B 的坐标为()1,1- 补全x 轴和y 轴 90A E ∠︒∠== 5AE = 1AB DE == 点C 到AB AE 所在直线的距离分别为2 4 ()1,4C ∴ ()4,1D根据AB BC DE EA 是线段 曲线CD 是反比例函数图象的一部分 画出图形ABCDE如图所示 (2)设线段BC 的解析式为y kx b =+ 把()1,1B - ()1,4C 代入得 14k b k b -+=⎧⎨+=⎩解得 3252k b ⎧=⎪⎪⎨⎪=⎪⎩3522y x ∴=+设曲线CD 的解析式为'k y x =把()1,4C 代入得 '41k = '4= 4y x ∴=; (3)设(),0M m 则35,22P m m ⎛⎫+ ⎪⎝⎭ 435,352222Q m m ⎛⎫ ⎪+ ⎪ ⎪+⎝⎭3522PM m ∴=+ 43522m m =-+354352222PM PQ m m m ⎛⎫ ⎪⎛⎫⋅=+- ⎪ ⎪⎝⎭ ⎪+⎝⎭23554223m m ∴--= 2915140m m ∴+-= 23m ∴= 或73m =-(舍去) 32572322PM ∴=⨯+=. 故答案为:72.。
初三数学反比例函数的专项培优练习题(含答案)含答案

初三数学反比例函数的专项培优练习题(含答案)含答案一、反比例函数1.如图1,已知一次函数y=ax+2与x轴、y轴分别交于点A,B,反比例函数y= 经过点M.(1)若M是线段AB上的一个动点(不与点A、B重合).当a=﹣3时,设点M的横坐标为m,求k与m之间的函数关系式.(2)当一次函数y=ax+2的图象与反比例函数y= 的图象有唯一公共点M,且OM= ,求a的值.(3)当a=﹣2时,将Rt△AOB在第一象限内沿直线y=x平移个单位长度得到Rt△A′O′B′,如图2,M是Rt△A′O′B′斜边上的一个动点,求k的取值范围.【答案】(1)解:当a=﹣3时,y=﹣3x+2,当y=0时,﹣3x+2=0,x= ,∵点M的横坐标为m,且M是线段AB上的一个动点(不与点A、B重合),∴0<m<,,DANG则,﹣3x+2= ,当x=m时,﹣3m+2= ,∴k=﹣3m2+2m(0<m<)(2)解:由题意得:,ax+2= ,ax2+2x﹣k=0,∵直线y=ax+2(a≠0)与双曲线y= 有唯一公共点M时,∴△=4+4ak=0,ak=﹣1,∴k=﹣,则,解得:,∵OM= ,∴12+(﹣)2=()2,a=±(3)解:当a=﹣2时,y=﹣2x+2,∴点A的坐标为(1,0),点B的坐标为(0,2),∵将Rt△AOB在第一象限内沿直线y=x平移个单位得到Rt△A′O′B′,∴A′(2,1),B′(1,3),点M是Rt△A′O′B′斜边上一动点,当点M′与A′重合时,k=2,当点M′与B′重合时,k=3,∴k的取值范围是2≤k≤3【解析】【分析】(1)当a=﹣3时,直线解析式为y=﹣3x+2,求出A点的横坐标,由于点M的横坐标为m,且M是线段AB上的一个动点(不与点A、B重合)从而得到m的取值范围,由﹣3x+2= ,由X=m得k=﹣3m2+2m(0<m<);(2)由ax+2= 得ax2+2x﹣k=0,直线y=ax+2(a≠0)与双曲线y= 有唯一公共点M时,△=4+4ak=0,ak=﹣1,由勾股定理即可;(3)当a=﹣2时,y=﹣2x+2,从而求出A、B两点的坐标,由平移的知识知A′,B′点的坐标,从而得到k的取值范围。
反比例函数考试题(含答案)

反比例函数考试题(含答案)1. 对于反比例函数 $y = \frac{k}{x}$,已知 $y = 3$ 时,$x = 6$,求 $k$ 的值。
解答:当 $y=3$,$x=6$ 时,代入原函数得:$$3 = \frac{k}{6}$$解出 $k=18$,因此反比例函数为 $y=\frac{18}{x}$。
2. 已知反比例函数 $y=\frac{6}{x}$ 的图像和 $y=-12$ 的水平渐近线,求该反比例函数图像的方程和垂直渐近线方程。
解答:由于已知 $y=-12$ 是反比例函数的水平渐近线,因此 $y$ 趋向于 $0$ 时,$x$ 的值趋近于无穷大或负无穷大,即垂直于 $x$ 轴。
反比例函数的图像为双曲线,因此垂直渐近线分别为 $x=0$ 和$y=0$。
同时,已知 $y=\frac{6}{x}$,可得 $x=\frac{6}{y}$。
将其化简可得反比例函数的图像方程为 $xy=6$。
因此该反比例函数的图像方程为 $xy=6$,垂直渐近线方程为$x=0$ 和 $y=0$。
3. 已知反比例函数 $y=\frac{12}{x-1}$ 的图像和点 $P(5, 2)$,求 $P$ 点在反比例函数图像上的对称点 $Q$ 的坐标。
解答:首先,求出点$P$ 关于直线$x=1$ 的对称点$P'(p,q)$ 的坐标。
由于直线 $x=1$ 为反比例函数 $y=\frac{12}{x-1}$ 的渐近线,因此$P$ 点到该直线的距离为 $0$。
点 $P$ 到直线 $x=1$ 的距离公式为:$$d(P, x=1)=\frac{|\ ax+by+c\ |}{\sqrt{a^2+b^2}}$$将反比例函数化为标准形式 $y=\frac{12}{x-1}$,可得:$$d(P, x=1)=\frac{|\ x-1\ |}{\sqrt{1+0}}=5-1=4$$因此,点 $P$ 到直线 $x=1$ 的距离为 $4$。
点 $P'$ 在直线$x=1$ 上,因此其 $x$ 坐标为 $1$,根据点 $P$ 和 $P'$ 的对称性,其 $y$ 坐标应该等于 $2-4=-2$。
中考数学总复习《反比例函数》专项测试卷-附带参考答案

中考数学总复习《反比例函数》专项测试卷-附带参考答案(测试时间60分钟满分100分)学校:___________班级:___________姓名:___________考号:___________一、选择题(共8题,共40分)1.反比例函数y=−3的图象在( )xA.第一、三象限B.第二、四象限C.第一、二象限D.第三、四象限2.已知P1(x1,y1),P2(x2,y2)和P3(x3,y3)是反比例函数y=6的图象上三点,且y1<y2<x0<y3,则x1,x2和x3的大小关系是( )A.x1<x2<x3B.x3<x2<x1C.x2<x1<x3D.x2<x3<x1的图象经过点P(−2,3),则下列各点也在这个函数图象的是3.已知反比例函数y=kx( )A.(−1,−6)B.(1,6)C.(3,−2)D.(3,2)的图象上,则k的值是( )4.点P(−1,k)在反比例函数y=−3xA.1B.3C.−1D.−3(x<0)的图象上,A点坐标为(−4,2),点B是y= 5.如图,A点在反比例函数y=kxk(x<0)的图象上的任意一点,BC=OB,则△BCO面积为( )xA.4B.6C.8D.126.函数y=(m2−m)x m2−3m+1是反比例函数,则( )A.m≠0B.m≠0且m≠1C.m=2D.m=1或27.关于反比例函数y=−4的图象,下列说法正确的是( )xA.经过点(−1,−4)B.当x<0时,图象在第二象限C.无论x取何值时,y随x的增大而增大D.图象是轴对称图形,但不是中心对称图形若当x=1时y1=y2,则( )8.设函数y1=(x−2)(x−m),y2=3xA.当x>1时y1<y2B.当x<1时y1>y2C.当x<0.5时y1<y2D.当x>5时y1>y2二、填空题(共5题,共15分)9.某小区要种植一个面积为4000m2的矩形草坪,已知草坪的长y(m)随宽x(m)的变化而变化,可用函数的表达式表示为.(k<0)的图象上,且y1>y2,10.若点A(a−1,y1),B(a+1,y2)在反比例函数y=kx则a的取值范围是.(k为常数)的图象上,11.若点A(−2,y1),B(−1,y2)和C(1,y3)都在反比例函数y=k2+3x则y1,y2和y3的大小关系为.12.如图,等腰△ABC中AB=BC,BC∥x轴,A,B两点的横坐标分别为1和3,反比例函数y=3的图象经过A,B两点,则△ABC的面积为.x交于A(x1,y1),B(x2,y2)两点,则3x1y2−13.已知直线y=kx(k<0)与双曲线y=−2x8x2y1=.三、解答题(共3题,共45分)14.为了预防“甲型H1N1”,某学校对教室采用药薰消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(mg)与时间x(min)成正比例,药物燃烧后,y与x成反比例,如图所示,现测得药物8min燃毕,此时室内空气每立方米的含药量为6mg,请你根据题中提供的信息,解答下列问题:(1) 药物燃烧时,求y关于x的函数关系式?自变量x的取值范围是什么?药物燃烧后y与x的函数关系式呢?(2) 研究表明,当空气中每立方米的含药量不低于3mg且持续时间不低于10min时,才能杀灭空气中的毒,那么这次消毒是否有效?为什么?15.已知直线l经过点(−1,5),且与直线y=−x平行.(1) 求直线l的函数解析式;(2) 若直线l分别交x轴、y轴于A,B两点,求△AOB的面积.16.已知函数y=(7a−4)x7−3b+(2a+b).(1) 当a,b为何值时,此函数是一次函数?(2) 当a,b为何值时,此函数是正比例函数?(3) 当a,b为何值时,此函数是反比例函数?参考答案1. 【答案】B2. 【答案】C3. 【答案】C4. 【答案】B5. 【答案】C6. 【答案】C7. 【答案】B8. 【答案】D9. 【答案】y=4000x10. 【答案】−1<a<111. 【答案】y2<y1<y312. 【答案】2√213. 【答案】−1014. 【答案】(1) 设药物燃烧时y关于x的函数关系式为y=k1x代入(8,6)得6=8k1∴k1=34x,自变量取值范围是0≤x≤8;∴药物燃烧时y关于x的函数关系式为y=34设药物燃烧后y关于x的函数关系式为y=k2x代入(8,6)得6=k28∴k2=48∴药物燃烧后y关于x的函数关系式为:y=48(x>8).x(2) 把y=3代入y=34x,得:x=4把y=3代入y=48x,得:x=16∵16−4=12>10∴这次消毒是有效的.15. 【答案】(1) 设直线l的解析式为y=−x+b,将(−1,5)代入,可得b=4∴直线l的解析式为y=−x+4.(2) 当y=0时x=4∴A点坐标为(4,0)当x=0时y=4∴B点坐标为(0,4).∴S△AOB=12OA⋅OB=12×4×4=8.16. 【答案】(1) 由题意,得7−3b=1且7a−4≠0解得a≠47b=2.(2) 由题意,得{7−3b=1,2a+b=0,7a−4≠0,解得{a=−1,b=2.(3) 由题意,得{7−3b=−1,2a+b=0,7a−4≠0,解得{a=−43,b=83.。
中考数学提高题专题复习反比例函数练习题附答案.doc

中考数学提高题专题复习反比例函数练习题附答案一、反比例函数1.在平面直角坐标系内,双曲线:y=(x>0)分别与直线OA: y=x 和直线AB: y= ﹣x+10,交于 C, D 两点,并且OC=3BD.(1)求出双曲线的解析式;(2)连结 CD,求四边形 OCDB的面积.【答案】( 1 )解:过点 A 、 C 、 D 作x轴的垂线,垂足分别是M 、 E、 F ,∴∠ AMO=∠ CEO=∠ DFB=90 ,°∵直线 OA: y=x 和直线 AB:y=﹣ x+10,∴∠ AOB=∠ ABO=45 ,°∴△ CEO∽ △ DEB∴==3,设 D( 10﹣ m, m),其中m> 0,∴C(3m , 3m),∵点 C、 D 在双曲线上,2∴9m =m (10﹣ m),解得: m=1 或 m=0(舍去)∴C(3 ,3),∴k=9,∴双曲线 y= ( x>0)( 2)解:由( 1)可知D( 9, 1), C( 3, 3), B( 10, 0),∴ OE=3, EF=6, DF=1,BF=1,∴S 四边形OCDB=S△OCE+S 梯形CDFE+S△DFB=× 3× 3+ ×( 1+3)× 6+ ∴四边形 OCDB的面积是17 【解析】【分析】( 1)过点× 1× 1=17,A、 C、 D 作x 轴的垂线,垂足分别是M 、E、 F,由直线y=x和 y=﹣ x+10 可知∠ AOB=∠ ABO=45°,证明△ CEO∽ △ DEB,从而可知==3,然后设设D( 10﹣ m, m),其中m> 0,从而可知 C 的坐标为( 3m, 3m),利用C、D 在反比例函数图象上列出方程即可求出 m 的值.( 2)求分别求出△OCE、△ DFB△、梯形 CDFE 的面积即可求出答案.2.如图,在平面直角坐标系中,菱形ABCD的顶点 C 与原点 O 重合,点 B 在 y 轴的正半轴上,点 A 在反比例函数y=(k>0,x>0)的图象上,点 D 的坐标为(,2).(1)求 k 的值;(2)若将菱形ABCD 沿 x 轴正方向平移,当菱形的一个顶点恰好落在函数y=(k>0,x >0)的图象上时,求菱形 ABCD平移的距离.【答案】(1)解:作 DE⊥BO, DF⊥ x 轴于点 F,∵点 D 的坐标为(,2),∴DO=AD=3,∴A 点坐标为:(, 5),∴k=5;(2)解:∵将菱形 ABCD向右平移,使点 D 落在反比例函数y=(x>0)的图象上D′,∴D F=D ′ F,′ =2∴D′点的纵坐标为2,设点 D′( x, 2)∴2=,解得x=,∴FF ′ =OF﹣OF=′﹣=,∴菱形 ABCD平移的距离为,同理,将菱形ABCD向右平移,使点 B 落在反比例函数y=(x>0)的图象上,菱形 ABCD平移的距离为,综上,当菱形ABCD平移的距离为或时,菱形的一个顶点恰好落在函数图象上.【解析】【分析】( 1)根据菱形的性质和 D 的坐标即可求出 A 的坐标,代入求出即可;(2) B 和 D 可能落在反比例函数的图象上,根据平移求出即可.3.已知反比例函数y=的图象经过点A(﹣,1).(1)试确定此反比例函数的解析式;(2)点 O 是坐标原点,将线段OA 绕 O 点顺时针旋转30°得到线段 OB.判断点 B 是否在此反比例函数的图象上,并说明理由;(3)已知点P(m,m+6)也在此反比例函数的图象上(其中m< 0),过P 点作 x 轴的垂线,交x 轴于点 M .若线段PM 上存在一点Q,使得△ OQM 的面积是,设Q点的纵坐标为 n,求 n2﹣ 2n+9 的值.【答案】(1)解:由题意得1=,解得k=﹣,∴反比例函数的解析式为y=﹣(2)解:过点 A 作 x 轴的垂线交x 轴于点 C.在 Rt△ AOC中, OC=,AC=1,∴OA==2,∠ AOC=30 ,°∵将线段 OA 绕 O 点顺时针旋转30 °得到线段OB,∴∠ AOB=30 ,°OB=OA=2,∴∠ BOC=60 .°过点 B 作 x 轴的垂线交x 轴于点 D.在 Rt△ BOD 中, BD=OB?sin∠ BOD=,OD=OB=1,∴B 点坐标为(﹣ 1 ,),将 x=﹣ 1 代入 y=﹣中,得y=,∴点 B(﹣ 1,)在反比例函数y=﹣的图象上(3)解:由y=﹣得xy=﹣,∵点 P( m,m+6)在反比例函数∴m(m+6) =﹣,∴m2+2m+1=0,y=﹣的图象上,其中m< 0,∵PQ⊥ x 轴,∴ Q 点的坐标为( m, n).∵△ OQM 的面积是,∴OM?QM= ,∵m< 0,∴ mn=﹣ 1,∴m2n2 +2mn2 +n2=0,∴n 2﹣ 2 n=﹣1,∴n 2﹣ 2 n+9=8.【解析】【分析】( 1)由于反比例函数y= 的图象经过点 A(﹣, 1),运用待定系数法即可求出此反比例函数的解析式;(2)首先由点 A 的坐标,可求出OA 的长度,∠AOC 的大小,然后根据旋转的性质得出∠AOB=30 ,°OB=OA,再求出点B 的坐标,进而判断点 B 是否在此反比例函数的图象上;(3)把点 P( m,m+6)代入反比例函数的解析式,得到关于m 的一元二次方程;根据题意,可得Q 点的坐标为( m, n ),再由△OQM 的面积是,根据三角形的面积公式及式变形,把mn 的值代入,即可求出n2﹣2m< 0,得出n+9 的值.mn 的值,最后将所求的代数4.一次函数y 轴交于点y=ax+b( a≠0)的图象与反比例函数y=(k≠0)的图象相交于C,与x 轴交于点D,点 D 的坐标为(﹣ 1 , 0 ),点 AA, B 两点,与的横坐标是 1 ,tan∠ CDO=2.过点 B 作 BH⊥ y 轴交 y 轴于 H,连接 AH.(1)求一次函数和反比例函数的解析式;(2)求△ ABH 面积.【答案】(1)解:∵点 D 的坐标为(﹣ 1, 0), tan∠ CDO=2,∴C O=2,即 C( 0, 2),把 C(0, 2), D(﹣ 1, 0)代入 y=ax+b 可得,,解得,∴一次函数解析式为y=2x+2,∵点 A 的横坐标是1,∴当 x=1 时, y=4,即 A( 1,4),把A( 1, 4)代入反比例函数 y= ,可得 k=4,∴反比例函数解析式为 y=(2)解:解方程组,可得或,∴B(﹣ 2,﹣ 2),又∵ A( 1, 4), BH⊥y 轴,∴△ ABH 面积 =× (2×4+2)=6.【解析】【分析】( 1)先由 tan∠ CDO=2 可求出 C 坐标,再把 D 点坐标代入直线解析式,可求出一次函数解析式,再由直线解析式求出 A 坐标,代入双曲线解析式,可求出双曲线解析式;( 2)△ ABH 面积可以 BH 为底,高 =y A-y B=4-(-2)=6.5.如图,点P(+1,﹣1)在双曲线y=(x>0)上.(1)求 k 的值;(2)若正方形ABCD 的顶点C, D 在双曲线y= ( x> 0)上,顶点A, B 分别在x 轴和y 轴的正半轴上,求点 C 的坐标.【答案】(1)解:点将 x= , y= P(,代入解析式可得:)在双曲线上,k=2;(2)解:过点 D 作 DE⊥ OA 于点 E,过点 C 作 CF⊥ OB 于点 F,∵四边形 ABCD是正方形,∴AB=AD=BC,∠CBA=90 ,°∴∠ FBC+∠OBA=90 ,°∵∠ CFB=∠BOA=90 ,°∴∠ FCB+∠FBC=90 ,°∴∠ FBC=∠ OAB,在△ CFB和△ AOB 中,,∴△ CFB≌ △ AOB( AAS),同理可得:△ BOA≌ △ AED≌ △ CFB,∴C F=OB=AE=b,BF=OA=DE=a,设 A( a,0), B( 0, b),则D( a+b, a) C( b, a+b),可得: b( a+b)=2, a(a+b) =2,解得: a=b=1.所以点 C 的坐标为:(1, 2).【解析】【分析】( 1)由待定系数法把 P 坐标代入解析式即可;( 2) C、 D 均在双曲线上,它们的坐标就适合解析式,设出 C 坐标,再由正方形的性质可得△CFB≌ △ AOB△ BOA≌△ AED≌ △CFB,代入解析式得 b ( a+b) =2, a( a+b) =2,即可求出 C 坐标 .6.对于某一函数给出如下定义:若存在实数p,当其自变量的值为p 时,其函数值等于p, 则称 p 为这个函数的不变值.在函数存在不变值时,该函数的最大不变值与最小不变值之差q 称为这个函数的不变长度 .特别地 ,当函数只有一个不变值时 ,其不变长度 q 为零 .例如:下图中的函数有 0,1 两个不变值 ,其不变长度 q 等于 1.(1)分别判断函数 y=x-1,y=x-1,y=x2有没有不变值?如果有,直接写出其不变长度;(2)函数 y=2x2-bx.①若其不变长度为零,求 b 的值;②若 1≤ b≤求3,其不变长度q 的取值范围;(3)记函数 y=x2-2x(x ≥ m)的图象为 G1,将 G1沿 x=m 翻折后得到的函数图象记为G2,函数 G 的图象由 G1和 G2 两部分组成,若其不变长度q 满足 0≤ q≤则3, m 的取值范围为________.【答案】(1)解:函数y=x-1 没有不变值;∵函数有 -1 和 1 两个不变值,∴其不变长度为2;∵函数有 0 和 1 两个不变值,∴其不变长度为1;(2)解:①函数y=2x2-bx的不变长度为0,方程 2x2-bx=x 有两个相等的实数根,∴△ =( b+1)2=0,b=-1,② ∵2x2-bx=x,∴,1≤ b≤3,1≤≤2,函数 y=2x2-bx 的不变长度的取值范围为1≤ q≤ 2.(3) 1≤m≤3或 m<-【解析】【解答】解( 3)依题可得:函数G 的图像关于x=m 对称,∴函数 G: y=,当x2-2x=x 时,即 x( x-3)=0,∴x3=0, x4=3,当( 2m-x)2-2( 2m-x)=x 时,即x2+( 1-4m ) x+( 4m2-4m ) =0,∴△=( 1-4m )2-4 ×( 4m2-4m ) =1+8m,当△ =1+8m0 时,即 m-,此方程无解,∴q=x4 -x3=3-0=3;当△ =1+8m0 时,即 m-,此方程有解,∴x5=,x6=,①当-m0 时,∵x3=0, x4=3,∴x6 0,∴x4-x6 3(不符合题意,舍去),② ∵当 x5=x4时,∴m=1 ,当x6=x3时,∴m=3 ,当0 m 1 时,x3=0(舍去), x4=3,此时 0 x54, x 60,x∴q=x4 -x6 3(舍去);当 1 m 3 时,x3=0(舍去), x4=3,此时 0 x5 4 60,x , x∴q=x4 -x63(舍去);当m 3 时,x3=0(舍去), x4=3(舍去),此时 x53, x60,∴q=x5 -x6 3(舍去);综上所述: m 的取值范围为:1m 3 或 m < -,【分析】( 1)根据题目定义即可得出函数y=x-1 没有不变值;再分别求出函数、函数的不变值,从而求出其不变长度 .(2)①由已知条件得方程 2x2-bx=x 有两个相等的实数根,即根的判别式△=( b+1)2=0,从而求出 b=-1;②由题意得 2x2-bx=x,求出方程的根,再根据1≤ b≤3,即可求出函数 y=2x2-bx 的不变长度的取值范围 .(3)依题可得:函数 G 的图像关于 x=m 对称,分情况讨论写出函数G 的解析式,根据定义和一元二次方程求出值,再分情况讨论即可得出答案.7.在平面直角坐标系xOy 中,对于双曲线y=(m>0)和双曲线y=(n>0),如果m=2n ,则称双曲线y=(m>0)和双曲线y=(n>0)为“倍半双曲线”,双曲线y=(m> 0)是双曲线 y= ( n> 0)的“倍双曲线”,双曲线 y= ( n> 0)是双曲线 y= ( m>0)的“半双曲线”,( 1)请你写出双曲线y= 的“倍双曲线”是________;双曲线y= 的“半双曲线”是________;(2)如图 1,在平面直角坐标系xOy 中,已知点 A 是双曲线y=在第一象限内任意一点,过点 A 与 y 轴平行的直线交双曲线y=的“半双曲线”于点B,求△AOB的面积;(3)如图2,已知点M 是双曲线y=(k>0)在第一象限内任意一点,过点M 与 y 轴平行的直线交双曲线的“半双曲线”于点y=的“半双曲线”于点 N,过点 M 与 x 轴平行的直线交双曲线P,若△ MNP 的面积记为S△MNP,且 1≤S△MNP≤2,求 k 的取值范围.y=【答案】(1) y= ;y=(2)解:如图1,∵双曲线 y=的“半双曲线”是y=,∴△ AOD 的面积为2,△ BOD 的面积为 1,∴△ AOB 的面积为 1(3)解:解法一:如图2,依题意可知双曲线的“半双曲线”为,设点 M 的横坐标为m,则点 M 坐标为( m,),点N坐标为(m,),∴CM=,CN=.∴MN=﹣=.同理 PM=m﹣=.∴S△PMN= MN?PM=∵1 ≤S△PMN≤2,∴1 ≤ ≤2.∴4≤ k ≤8,解法二:如图 3,依题意可知双曲线的“半双曲线”为,设点∴点M 的横坐标为 m,则点 N为 MC 的中点,同理点M 坐标为( m,P 为 MD 的中点.),点N 坐标为(m,),连接OM ,∵,∴△ PMN∽ △OCM.∴∵S△OCM=k,.∴S△PMN=.∵1 ≤S△PMN≤2,∴1≤ ≤2.∴4≤ k ≤8.【解析】【解答】解:(1)由“倍双曲线”的定义∴双曲线 y=,的“倍双曲线”是y=;双曲线 y=的“半双曲线”是y=.故答案为y=,y=;【分析】( 1)直接利用用双曲线上的点设出M “倍双曲线”的定义即可;( 2)利用双曲线的性质即可;( 3)先利的横坐标,进而表示出 M ,N 的坐标;方法一、用三角形的面积公式建立不等式即可得出结论;方法二、利用相似三角形的性质得出△PMN 的面积,进而建立不等式即可得出结论.8.已知一次函数 y1=x+m 的图象与反比例函数y2= 的图象交于 A、 B 两点,已知当 x> 1 时, y1>y2;当 0< x<1 时, y1<y2.(1)求一次函数的函数表达式;( 2)已知反比例函数在第一象限的图象上有一点 C 到 x 轴的距离为 2,求△ ABC 的面积.【答案】(1)解:∵当 x> 1 时, y1>y2;当 0< x< 1 时, y1< y2 ,∴点 A 的横坐标为1,代入反比例函数解析式,=y,解得 y=6,∴点 A 的坐标为( 1, 6),又∵ 点 A 在一次函数图象上,∴1+m=6 ,解得 m=5,∴一次函数的解析式为y1=x+5(2)解:∵第一象限内点 C 到 x 轴的距离为2,∴点 C 的纵坐标为2,∴2= ,解得 x=3,∴点 C 的坐标为( 3, 2),过点 C 作 CD∥ x 轴交直线AB 于 D,则点 D 的纵坐标为 2 ,∴x+5=2,解得 x=﹣3 ,∴点 D 的坐标为(﹣ 3, 2),∴C D=3﹣(﹣ 3) =3+3=6,点 A 到 CD 的距离为 6﹣ 2=4,联立,解得(舍去),,∴点 B 的坐标为(﹣ 6,﹣ 1),∴点 B 到 CD 的距离为2﹣(﹣ 1) =2+1=3,S△ABC=S△ACD+S△BCD=× 6× 4+× 6× 3=12+9=21.【解析】【分析】( 1)首先根据 x> 1 时, y1>y2, 0< x< 1 时, y1< y2 确定点 A 的横坐标,然后代入反比例函数解析式求出点 A 的纵坐标,从而得到点 A 的坐标,再利用待定系数法求直线解析式解答;(2)根据点 C到 x 轴的距离判断出点 C 的纵坐标,代入反比例函数解析式求出横坐标,从而得到点 C 的坐标,过点 C 作 CD∥ x 轴交直线 AB 于 D,求出点 D 的坐标,然后得到CD 的长度,再联立一次函数与双曲线解析式求出点 B 的坐标,然后△ABC 的面积 =△ ACD的面积 +△BCD的面积,列式进行计算即可得解.9.如图 1,抛物线与轴交于、两点,与轴交于点,顶点为点.(1)求这条抛物线的解析式及直线的解析式;( 2)段上一动点(点不与点、重合),过点向轴引垂线,垂足为,设的长为,四边形的面积为.求与之间的函数关系式及自变量的取值范围;( 3)在线段上是否存在点,使为等腰三角形?若存在,请直接写出点的坐标;若不存在,请说明理由.【答案】( 1)解:∵抛物线与轴交于、两点,∴,解得:,∴二次函数的解析式为,∵,∴设直线的解析式为,则有,解得:,∴直线的解析式为(2)解:∵轴,,∴点的坐标为,∴,,,∵为线段上一动点(点不与点、重合),∴的取值范围是.( 3)解:线段上存在点,,使为等腰三角形;,,,① 当时,,解得,(舍去),此时,② 当时,,解得,(舍去),此时,③ 当解得时,,此时.( 1 ),;(2),的取值范围是;( 3)【解析】【分析】( 1)将 A、B或俩点代入抛物线解析式即可求出或M 的坐标,再设直线的解析式为可得点的坐标为,代入 M 的值计算即可 .( 2)由已知,再根据轴,即可求得,t 的值 .(3)存在,根据等腰三角形的性质,分情况进行解答即可.10.如图,已知一次函数y= ﹣x+4 的图象是直线l,设直线l 分别与y 轴、 x 轴交于点A、 B.(1)求线段AB 的长度;(2)设点M 在射线AB 上,将点M 绕点心, NA 的长为半径作⊙ N.A 按逆时针方向旋转90°到点 N,以点N 为圆①当⊙ N 与 x 轴相切时,求点M 的坐标;②在① 的条件下,设直线AN 与 x 轴交于点C,与⊙ N 的另一个交点为D,连接MD 交 x 轴于点 E,直线 m 过点 N 分别与 y 轴、直线 l 交于点 P、 Q,当△ APQ 与△ CDE相似时,求点P 的坐标 .【答案】( 1)解:当x=0 时, y=4,∴A(0, 4),∴O A=4,当y=0 时, - x+4=0,x=3,∴B( 3,0),∴O B=3,由勾股定理得: AB=5(2)解:①如图 1,过 N 作 NH⊥ y 轴于 H,过 M 作 ME⊥ y 轴于 E,tan∠ OAB=,∴设 EM=3x, AE=4x,则 AM=5x ,∴M ( 3x, -4x+4),由旋转得: AM=AN ,∠ MAN=90°,∴∠ EAM+∠ HAN=90 ,°∵∠ EAM+∠ AME=90 ,°∴∠ HAN=∠ AME,∵∠ AHN=∠ AEM=90 ,°∴△ AHN≌ △ MEA,∴AH=EM=3x,∵⊙ N 与 x 轴相切,设切点为G,连接NG,则NG⊥x 轴,∴NG=OH,则 5x=3x+4,2x=4,x=2,∴M ( 6,-4);②如图 2,由①知 N( 8, 10),∵AN=DN, A( 0, 4),∴D( 16, 16),设直线 DM : y=kx+b,把 D( 16,16)和 M( 6, -4)代入得:,解得:,∴直线 DM 的解析式为:y=2x-16,∵直线 DM 交 x 轴于 E,∴当 y=0 时, 2x-16=0,x=8,∴E( 8, 0),由① 知:⊙ N 与 x 轴相切,切点为G,且 G( 8,0),∴E 与切点 G 重合,∵∠ QAP=∠ OAB=∠ DCE,∴△ APQ 与△ CDE相似时,顶点 C必与顶点 A 对应,分两种情况:i)当△DCE∽ △ QAP 时,如图 2,∠ AQP=∠ NDE,∵∠ QNA=∠ DNF,∴∠ NFD=∠ QAN=90 °,∵AO∥NE,∴△ ACO∽ △NCE,∴,∴,∴CO=,连接 BN,∴AB=BE=5,∵∠ BAN=∠ BEN=90 ,°∴∠ ANB=∠ ENB,∵EN=ND,∴∠ NDE=∠ NED,∵∠ CNE=∠ NDE+∠ NED,∴∠ ANB=∠ NDE,∴BN∥ DE,Rt△ ABN 中, BN= ,sin∠ANB=∠ NDE=,∴,∴NF=2,∴DF=4,∵∠ QNA=∠ DNF,∴tan ∠ QNA=tan∠ DNF=,∴,∴A Q=20,∵tan ∠ QAH=tan∠ OAB=,设QH=3x, AH=4x,则AQ=5x,∴5x=20,x=4,∴Q H=3x=12, AH=16,∴Q( -12,20),同理易得:直线NQ 的解析式: y=- x+14,∴P( 0, 14);ii)当△ DCE∽ △PAQ 时,如图3,∴∠ APN=∠ CDE,∵∠ ANB=∠ CDE,∵AP∥NG,∴∠ APN=∠ PNE,∴∠ APN=∠ PNE=∠ ANB,∴B 与 Q 重合,∴A N=AP=10,∴OP=AP-OA=10-4=6,∴P( 0, -6);综上所述,△ APQ 与△ CDE相似时,点P 的坐标的坐标(0,14)或( 0,-6)【解析】【分析】( 1)由一次函数解析式容易求得A、 B 的坐标,利用勾股定理可求得AB的长度;( 2)①根据同角的三角函数得:tan∠ OAB=,设EM=3x,AE=4x,则AM=5x ,得 M ( 3x, -4x+4),证明△AHN≌ △ MEA,则 AH=EM=3x,根据 NG=OH,列式可得 x 的值,计算 M 的坐标即可;②如图 2,先计算 E 与 G 重合,易得∠ QAP=∠ OAB=∠DCE,所以△APQ 与△CDE相似时,顶点 C 必与顶点 A 对应,可分两种情况进行讨论:i)当△ DCE∽ △QAP 时,证明△ ACO∽ △ NCE,列比例式可得CO=,根据三角函数得:tan∠ QNA=tan∠ DNF=,AQ=20,则tan ∠QAH=tan∠ OAB=,设QH=3x ,AH=4x,则 AQ=5x,求出 x 的值,得 P( 0,14);ii)当△ DCE∽ △PAQ 时,如图3,先证明 B 与 Q 重合,由AN=AP 可得 P( 0,-6) .11.已知抛物线的顶点坐标为,经过点.(1)求抛物线的解析式;( 2)如图 1 ,直线交抛物线于,两点,若,求的值;(3)如图2,将抛物线向下平移个单位长度得到抛物线,抛物线的顶点为,交轴的负半轴于点,点在抛物线上 .①求点的坐标(用含的式子表示);②若,求,的值 .【答案】( 1)解:已知抛物线的顶点坐标为,∴设抛物线的解析式为,把代入得: 6=16a-2,解得:,∴抛物线的解析式为(2)解:设直线交轴点,则点的坐标,∴.∵,∴.∴.由得,∴,,∴,∴,∵,∴.(3)解:①点依题意得抛物线在抛物线的解析式为上,.∴,∴顶点的坐标为,令,即. ∴,(舍去),∴点的坐标为.② 作轴于点,∵E( 2-a, 0), F(a, 2a-2),∴,∴又,∴,,∵F H//y 轴,∴∠ FPO=∠ PFH=22.5 ,°∴∠ FPO=∠ EFP,∴P D=FD,设交轴于点,过 D 作 DG⊥ FH 于G,则DG=OH,∵∠ EFH=45 ,°∴,∵∠ FEH=45 ,°a>2,∴OD=OE=a-2,∴PD=a-2-=,∵H O=a,∴,∴,(舍去),∴.【解析】【分析】( 1)观察函数图像可知抛物线关于y 轴对称,可得到点 A 时抛物线的顶点坐标,因此设函数解析式为y=ax2-2,再将点 B 的坐标代入求出 a 的值,即可得到抛物线 C 的解析式。
中考数学总复习《反比例函数》专项测试卷-附参考答案

中考数学总复习《反比例函数》专项测试卷-附参考答案一、单选题(共12题;共24分)1.如图,直线l和双曲线y=k x(k>0)交于A,B两点,P是线段AB上的点(不与A,B重合),过点A,B,P分别向x轴作垂线,垂足分别是C,D,E,连接OA,OB,OP,设△AOC面积是S1,△BOD面积是S2,△POE面积是S3,则().A.S1<S2<S3B.S1>S2>S3C.S1=S2>S3D.S1=S2<S32.已知正比例函数y=xk中,y的值随x的值的增大而增大,那么它和反比例函数y=kx在同一平面直角坐标系内的大致图像可能是()A.B.C.D.3.若点A(﹣1,y1),B(1,y2),C(3,y3)在反比例函数y=﹣5x的图象上,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y14.已知点A(-1,m),B(1,m),C(2,m+1)在同一个函数图象上,这个函数图象可能是() A.B.C.D.5.反比例函数y= a+4x的图象如图所示,P、Q为该图象上关于原点对称的两点,分别过点P、Q作y轴的垂线,垂足分别为A、B.若四边形AQBP的面积大于12,则关于x的方程(a﹣1)x2﹣x+ 14 =0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.不能确定6.如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数y=k 2+2k+1x的图象上。
若点A的坐标为(-2,-2),则k的值为()A.1B.-3C.4D.1或-37.如图,已知P(m,0),Q(0,n)(m>0,n>0),反比例函数y=mx的图象与线段PQ交于C,D两点,若S△POC=S△COD=S△DOQ,则n=()A.92B.4C.3D.328.已知正比例函数y=2x与反比例函数y=2x的图象相交于A,B两点,若A点的坐标为(1,2),则B点的坐标为()A.(1,﹣2)B.(﹣1,2)C.(﹣1,﹣2)D.(2,1)9.如图,点A是反比例函数y=6x的图象上一点,过点A作AB⊥x轴,垂足为点B,线段AB交反比例函数y=2x的图象于点C,则△OAC的面积是()A.2B.3C.4D.510.A(x1,y1),B(x2,y2)是反比例函数y=6x的图象上的两点,若2<x1<x2,则下列结论正确的是()A.3<y1<y2B.3<y2<y1C.y1<y2<3D.y2<y1<311.在同一直角坐标系中,反比例函数图象与二次函数图象的交点的个数至少有() A.0B.1C.2D.312.如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是().A.两条直角边成正比例B.两条直角边成反比例C.一条直角边与斜边成正比例D.一条直角边与斜边成反比例二、填空题(共6题;共7分)13.如图,点B是反比例函数y=k x在在第一象限内的图象上的点,若矩形OABC的面积为2,则k=.14.如图,在平面直角坐标系中,点A(−2,3),点B与点A关于直线x=1对称,过点B作反比例函数y=mx(x>0)的图像.(1)m=;(2)若对于直线y=kx−5k+4,总有y随x的增大而增大,设直线y=kx−5k+4与双曲线y=mx(x>0)交点的横坐标为t,则t的取值范围是.15.如图,在平面直角坐标系中,等腰直角三角形ABC的直角顶点在x轴上,顶点B在y轴上,顶点C在函数y=8x(x>0)的图象上,且BC△x轴.将△ABC沿y轴正方向平移,使点A的对应点A′落在此函数的图象上,则平移的距离为.16.已知一个矩形的面积为2,两条边的长度分别为x、y,则y与x的函数关系式为.17.设函数y=x−3与y=2x的图象的两个交点的横坐标为a、b,则1a+1b=.18.如图,已知动点A在函数y=4x(x>0)的图象上,AB△x轴于点B,AC△y轴于点C,延长CA至点D,使AD=AB,延长BA至点E,使AE=AC.直线DE分别交x,y轴分别于点P,Q.当QE:DP=4:9时,则图中阴影部分的面积等于.三、综合题(共6题;共63分)19.如图,已知点A(1,√3)在反比例函数y= k x(x>0)的图象上,连接OA,将线段OA绕点O沿顺时针方向旋转30°,得到线段OB.(1)求反比例函数的解析式;(2)填空:①点B的坐标是;②判断点B是否在反比例函数的图象上?答;③设直线AB的解析式为y=ax+b,则不等式ax+b﹣k x<0的解集是.20.已知反比例函数y= k x与一次函数y=x+2的图象交于点A(﹣3,m)(1)求反比例函数的解析式;(2)如果点M的横、纵坐标都是不大于3的正整数,求点M在反比例函数图象上的概率.21.病人按规定的剂量服用某种药物,测得服药后2小时,则每毫升血液中的含药量达到最大值为4毫克,已知服药后,2小时前每毫升血液中的含药量y(毫克)与时间x(小时)成正比例,2小时后y与x成反比例(如图所示).根据以上信息解答下列问题.(1)求当0≤x≤2时,则y与x的函数关系式;(2)求当x>2时,则y与x的函数关系式;(3)若每毫升血液中的含药量不低于2毫克时治疗有效,则服药一次,治疗疾病的有效时间是多长?22.如图,一次函数y=kx+b(k≠0)与反比例函数y=mx(m≠0)的图象在第一象限内交于A(1,6),B(3,n)两点.请解答下列问题:(1)求这两个函数的表达式;(2)根据图象直接写出kx+b﹣mx>0的x的取值范围.23.如图,一次函数y=ax+b的图象与x轴交于点A(4,0),与y轴交于点B,与反比例函数y=kx(x>0)的图象交于点C、D.若tan∠BAO=2,BC=3AC.(1)求一次函数和反比例函数的表达式;(2)求△OCD的面积.24.在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字0,1,2;乙袋中的小球上分别标有数字﹣1,﹣2,0.现从甲袋中任意摸出一个小球,记其标有的数字为x,再从乙袋中任意摸出一个小球,记其标有的数字为y,以此确定点M的坐标(x,y).(1)请你用画树状图或列表的方法,写出点M所有可能的坐标;(2)求点M(x,y)在函数y=﹣2x的图象上的概率.参考答案1.【答案】D 2.【答案】B 3.【答案】C 4.【答案】D 5.【答案】A 6.【答案】D 7.【答案】A 8.【答案】C 9.【答案】A 10.【答案】D 11.【答案】B 12.【答案】B 13.【答案】2 14.【答案】(1)12(2)3<t <515.【答案】4 16.【答案】y=2x17.【答案】-1.5 18.【答案】13319.【答案】(1)解:∵点A (1, √3 )在反比例函数y= k x(x >0)的图象上∴√3 = k 1,解得k= √3∴反比例函数的解析式为y= √3x(x >0)(2)(1, √3 );点B 在反比例函数的图象上;0<x <1或x > √320.【答案】(1)解:∵反比例函数y= k x与一次函数y=x+2的图象交于点A (﹣3,m )∴﹣3+2=m=﹣1∴点A 的坐标为(﹣3,﹣1) ∴k=﹣3×(﹣1)=3∴反比例函数的解析式为y= 3x(2)解:∵点M 的横、纵坐标都是不大于3的正整数∴点M 的坐标可能为:(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(3,3)∵在反比例函数的图象上的有(1,3)和(3,1)两个点 ∴点M 在反比例函数图象上的概率为 2921.【答案】(1)解:根据图象,正比例函数图象经过点(2,4)设函数解析式为y=kx 则2k=4 解得k=2所以函数关系为y=2x (0≤x≤2)(2)解:根据图象,反比例函数图象经过点(2,4) 设函数解析式为y= k x则 k 2 =4解得k=8所以,函数关系为y= 8x (x >2)(3)解:当y=2时,则2x=2,解得x=18x=2,解得x=4 4﹣1=3小时∴服药一次,治疗疾病的有效时间是3小时22.【答案】(1)解:∵反比例函数y =mx (k≠0)的图象与一次函数y =kx+b 的图象在第一象限交于A(1,6),B(3,n)两点∴将A(1,6)代入反比例函数表达式中 m=1×6=6∴反比例函数表达式为:y=6x把B(3,n)代入得 n=2 ∴B(3,2)将A 、B 代入y =kx+b 中得{k +b =63k +b =2∴{k =−2b =8∴反比例函数和一次函数的表达式分别为y =6x,y =﹣2x+8(2)解:由图象可得:当kx+b ﹣mx >0时,则1<x <3或x <0. 23.【答案】(1)解:在Rt △AOB 中∵A(4,0)∴OA =4,OB =8∴B(0,8)∵A ,B 两点在直线y =ax +b 上∴{b =84a +b =0 ∴{a =−2b =8∴直线AB 的解析式为y =−2x +8 过点C 作CE ⊥OA 于点E∵BC =3AC ∴AB =4AC ∴CE//OB ∴CE OB =AC AB =14∴CE =2 ∴C(3,2)∴k =3×2=6∴反比例函数的解析式为y =6x(2)解:由{y =−2x +8y =6x,解得{x =1y =6或{x =2y =3 ∴D(1,6)过点D 作DF ⊥y 轴于点F∴S △OCD =S △AOB −S △BOD −S △COA =12⋅OA ⋅OB −12⋅OB ⋅DF −12⋅OA ⋅CE=12×4×8−12×8×1−12×4×2=824.【答案】(1)解:树状图如下图:则点M所有可能的坐标为:(0,﹣1),(0,﹣2),(0,0),(1,﹣1),(1,﹣2),(1,0),(2,﹣1),(2,﹣2),(2,0)(2)解:∵点M(x,y)在函数y=﹣2x的图象上的有:(1,﹣2),(2,﹣1)∴点M(x,y)在函数y=﹣2x的图象上的概率为:29。
九上反比例函数提高题及常考题型和压轴题含解析

反比例函数常考题型与解析一.选择题〔共14小题〕1.假设双曲线y=过两点〔﹣1,y1〕,〔﹣3,y2〕,则y1与y2的大小关系为〔〕A.y1>y2B.y1<y2C.y1=y2D.y1与y2大小无法确定2.二次函数y=﹣〔*﹣a〕2﹣b的图象如下图,则反比例函数y=与一次函数y=a*+b的图象可能是〔〕A.B.C.D.3.当k>0时,反比例函数y=和一次函数y=k*+2的图象大致是〔〕A.B.C.D.4.假设点A〔*1,1〕、B〔*2,2〕、C〔*3,﹣3〕在双曲线y=﹣上,则〔〕A.*1>*2>*3B.*1>*3>*2C.*3>*2>*1D.*3>*1>*25.如下图,两个反比例函数y=和y=在第一象限的图象依次是C1和C2,设点P在C1上,PC⊥*轴于点C,交C2于点A,PD⊥y轴于点D,交C2于点B,则四边形PAOB的面积为〔〕A.k1+k2B.k1﹣k2C.k1•k2D.k1•k2﹣k26.如图,点A是反比例函数y=〔>0〕的图象上任意一点,AB∥*轴交反比例函数y=﹣的图象于点B,以AB为边作平行四边形ABCD,其中C,D在*轴上,则平行四边形ABCD的面积为〔〕A.2 B.3 C.4 D.57.如图,平行四边形ABCD的顶点C在y轴正半轴上,CD平行于*轴,直线AC交*轴于点E,BC⊥AC,连接BE,反比例函数〔*>0〕的图象经过点D.S△BCE=2,则k的值是〔〕A.2 B.﹣2 C.3 D.48.如图,矩形OABC的两边OA、OC在坐标轴上,且OC=2OA,M、N分别为OA、OC的中点,BM与AN交于点E,假设四边形EMON的面积为2,则经过点B的双曲线的解析式为〔〕A.y=﹣B.y=﹣C.y=﹣D.y=﹣9.点A〔﹣2,1〕,B〔1,4〕,假设反比例函数y=与线段AB有公共点时,k的取值围是〔〕A.﹣2≤k≤4 B.k≤﹣2或k≥4C.﹣2≤k<0或k≥4 D.﹣2≤k<0或0<k≤410.如图,平面直角坐标系中,点A是*轴负半轴上一个定点,点P是函数y=〔*<0〕上一个动点,PB⊥y轴于点B,当点P的横坐标逐渐增大时,四边形OAPB的面积将会〔〕A.先增后减B.先减后增C.逐渐减小D.逐渐增大11.反比例函数y=,当1<*<3时,y的最小整数值是〔〕A.3 B.4 C.5 D.612.以下函数中,满足y的值随*的值增大而增大的是〔〕A.y=﹣2* B.y=3*﹣1 C.y=D.y=*213.如图,在反比例函数y=﹣的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第一象限有一点C,满足AC=BC,当点A运动时,点C 始终在函数y=的图象上运动.假设tan∠CAB=2,则k的值为〔〕A.2 B.4 C.6 D.814.如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△﹣S△BAD为〔〕OACA.36 B.12 C.6 D.3二.填空题〔共11小题〕15.如图,等腰直角三角形OAB的一条直角边在y轴上,点P是边AB上的一个动点,过点P的反比例函数y=的图象交斜边OB于点Q,〔1〕当Q为OB中点时,AP:PB=〔2〕假设P为AB的三等分点,当△AOQ的面积为时,k的值为.16.在函数〔k>0的常数〕的图象上有三个点〔﹣2,y1〕,〔﹣1,y2〕,〔,y3〕,函数值y1,y2,y3的大小为.17.如图,四边形ABCD与EFGH均为正方形,点B、F在函数y=〔*>0〕的图象上,点G、C在函数y=﹣〔*<0〕的图象上,点A、D在*轴上,点H、E在线段BC上,则点G的纵坐标.18.P1〔*1,y1〕,P2〔*2,y2〕两点都在反比例函数的图象上,且*1<*2<0,则y l y2〔填">〞或"<〞〕.19.如图,△AOB与反比例函数交于C、D,△AOB的面积为6,假设AC:CB=1:3,则反比例函数的表达式为.20.函数y=中,假设*>1,则y的取值围为,假设*<3,则y的取值围为.21.如图,点A为反比例函数y=﹣图象上一点,过A作AB⊥*轴于点B,连接OA,则△ABO的面积为.22.如图,点A为函数y=〔*>0〕图象上一点,连结OA,交函数y=〔*>0〕的图象于点B,点C是*轴上一点,且AO=AC,则△ABC的面积为.23.反比例函数y=〔k≠0〕的图象经过〔3,﹣1〕,则当1<y<3时,自变量*的取值围是.24.双曲线y=在每个象限,函数值y随*的增大而增大,则m的取值围是.25.如图,点A、C在反比例函数y=的图象上,点B,D在反比例函数y=的图象上,a>b>0,AB∥CD∥*轴,AB,CD在*轴的两侧,AB=,CD=,AB与CD间的距离为6,则a﹣b的值是.三.解答题〔共15小题〕26.如图,在平面直角坐标系中,一次函数y=k*+b与反比例函数y=〔m≠0〕的图象交于点A〔3,1〕,且过点B〔0,﹣2〕.〔1〕求反比例函数和一次函数的表达式;〔2〕如果点P是*轴上一点,且△ABP的面积是3,求点P的坐标.27.如图,一次函数y1=﹣*+a与*轴、y轴分别交于点D、C两点和反比例函数交于A、B两点,且点A的坐标是〔1,3〕点B的坐标是〔3,m〕〔1〕求a,k,m的值;〔2〕求C、D两点的坐标,并求△AOB的面积.28.如图,一次函数y=﹣*+4的图象与反比例y=〔k为常数,且k≠0〕的图象交于A〔1,a〕,B两点.〔1〕求反比例函数的表达式及点B的坐标;〔2〕在*轴上找一点P,使PA+PB的值最小,求PA+PB的最小值.29.如图,直线y1=k*+b与双曲线y2=交于A、B两点,它们的横坐标分别为1和5.〔1〕当m=5时,求直线AB的解析式及△AOB的面积;〔2〕当y1>y2时,直接写出*的取值围.30.如图,反比例函数y=的图象与一次函数y=k*+b的图象交于A,B两点,点A的坐标为〔2,6〕,点B的坐标为〔n,1〕.〔1〕求反比例函数与一次函数的表达式;〔2〕点E为y轴上一个动点,假设S△AEB=10,求点E的坐标.31.如图,一次函数y1=﹣*+2的图象与反比例函数y2=的图象相交于A,B 两点,与*轴相交于点C.tan∠BOC=.〔1〕求反比例函数的解析式;〔2〕当y1<y2时,求*的取值围.32.如图,直角三角板ABC放在平面直角坐标系中,直角边AB垂直*轴,垂足为Q,∠ACB=60°,点A,C,P均在反比例函数y=的图象上,分别作PF⊥*轴于F,AD⊥y轴于D,延长DA,FP交于点E,且点P为EF的中点.〔1〕求点B的坐标;〔2〕求四边形AOPE的面积.33.如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点〔F不与A,B重合〕,过点F的反比例函数y=〔k>0〕的图象与BC边交于点E.〔1〕当F为AB的中点时,求该函数的解析式;〔2〕当k为何值时,△EFA的面积最大,最大面积是多少?34.如图,在平面直角坐标系中,OA⊥OB,AB⊥*轴于点C,点A〔,1〕在反比例函数y=的图象上.〔1〕求反比例函数y=的表达式;〔2〕在*轴的负半轴上存在一点P,使得S△AOP=S△AOB,求点P的坐标;〔3〕假设将△BOA绕点B按逆时针方向旋转60°得到△BDE.直接写出点E 的坐标,并判断点E是否在该反比例函数的图象上,说明理由.35.如图,在平面直角坐标系中,菱形OBCD的边OB在*轴上,反比例函数y=〔*>0〕的图象经过菱形对角线的交点A,且与边BC交于点F,点A的坐标为〔4,2〕.〔1〕求反比例函数的表达式;〔2〕求点F的坐标.36.如图,在平面直角坐标系中,直线AB与*轴交于点B,与y轴交于点A,与反比例函数y=的图象在第二象限交于点C,CE⊥*轴,垂足为点E,tan∠ABO=,OB=4,OE=2.〔1〕求反比例函数的解析式;〔2〕假设点D是反比例函数图象在第四象限上的点,过点D作DF⊥y轴,垂足为点F,连接OD、BF.如果S△BAF=4S△DFO,求点D的坐标.37.如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,点C的坐标为〔0,3〕,点A在*轴的负半轴上,点D、M分别在边AB、OA上,且AD=2DB,AM=2MO,一次函数y=k*+b的图象过点D和M,反比例函数y=的图象经过点D,与BC的交点为N.〔1〕求反比例函数和一次函数的表达式;〔2〕假设点P在直线DM上,且使△OPM的面积与四边形OMNC的面积相等,求点P的坐标.38.如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直与*轴,垂足为点B,反比例函数y=〔*>0〕的图象经过AO的中点C,且与AB相交于点D,OB=4,AD=3,〔1〕求反比例函数y=的解析式;〔2〕求cos∠OAB的值;〔3〕求经过C、D两点的一次函数解析式.39.如图,直线y=a*+b与反比例函数y=〔*>0〕的图象交于A〔1,4〕,B 〔4,n〕两点,与*轴、y轴分别交于C、D两点.〔1〕m=,n=;假设M〔*1,y1〕,N〔*2,y2〕是反比例函数图象上两点,且0<*1<*2,则y1y2〔填"<〞或"=〞或">〞〕;〔2〕假设线段CD上的点P到*轴、y轴的距离相等,求点P的坐标.40.如图,P1、P2是反比例函数y=〔k>0〕在第一象限图象上的两点,点A1的坐标为〔4,0〕.假设△P1OA1与△P2A1A2均为等腰直角三角形,其中点P1、P2为直角顶点.〔1〕求反比例函数的解析式.〔2〕①求P2的坐标.②根据图象直接写出在第一象限当*满足什么条件时,经过点P1、P2的一次函数的函数值大于反比例函数y=的函数值.2017年03月20日初中数学3的初中数学组卷参考答案与试题解析一.选择题〔共14小题〕1.〔2017秋•市校级月考〕假设双曲线y=过两点〔﹣1,y1〕,〔﹣3,y2〕,则y1与y2的大小关系为〔〕A.y1>y2B.y1<y2C.y1=y2D.y1与y2大小无法确定【分析】根据反比例函数图象上点的坐标图特征得到﹣1•y1=2,﹣3•y2=2,然后计算出y1和y2比拟大小.【解答】解:∵双曲线y=过两点〔﹣1,y1〕,〔﹣3,y2〕,∴﹣1•y1=2,﹣3•y2=2,∴y1=﹣2,y2=﹣,∴y1<y2.应选B.【点评】此题考察了反比例函数图象上点的坐标特征:反比例函数y=〔k为常数,k≠0〕的图象是双曲线,图象上的点〔*,y〕的横纵坐标的积是定值k,即*y=k.2.〔2016•威海〕二次函数y=﹣〔*﹣a〕2﹣b的图象如下图,则反比例函数y=与一次函数y=a*+b的图象可能是〔〕A.B.C.D.【分析】观察二次函数图象,找出a>0,b>0,再结合反比例〔一次〕函数图象与系数的关系,即可得出结论.【解答】解:观察二次函数图象,发现:抛物线的顶点坐标在第四象限,即a>0,﹣b<0,∴a>0,b>0.∵反比例函数y=中ab>0,∴反比例函数图象在第一、三象限;∵一次函数y=a*+b,a>0,b>0,∴一次函数y=a*+b的图象过第一、二、三象限.应选B.【点评】此题考察了反比例函数的图象、一次函数的图象以及二次函数的图象,解题的关键是根据二次函数的图象找出a>0,b>0.此题属于根底题,难度不大,解决该题型题目时,熟记各函数图象的性质是解题的关键.3.〔2016•〕当k>0时,反比例函数y=和一次函数y=k*+2的图象大致是〔〕A.B.C.D.【分析】根据k>0,判断出反比例函数y=经过一三象限,一次函数y=k*+2经过一二三象限,结合选项所给图象判断即可.【解答】解:∵k>0,∴反比例函数y=经过一三象限,一次函数y=k*+2经过一二三象限.应选C.【点评】此题考察了反比例函数与一次函数图象的知识,解答此题的关键在于通过k>0判断出函数所经过的象限.4.〔2017•南岗区一模〕假设点A〔*1,1〕、B〔*2,2〕、C〔*3,﹣3〕在双曲线y=﹣上,则〔〕A.*1>*2>*3B.*1>*3>*2C.*3>*2>*1D.*3>*1>*2【分析】把点的坐标分别代入函数解析式,可求得*1、*2、*3的值,可求得答案.【解答】解:∵点A〔*1,1〕、B〔*2,2〕、C〔*3,﹣3〕在双曲线y=﹣上,∴1=﹣,2=﹣,﹣3=﹣,解得点*1=﹣1,*2=﹣,*3=,∴*3>*2>*1,应选C.【点评】此题主要考察函数图象上的点与函数的关系,掌握函数图象上的点的坐标满足函数解析式是解题的关键.5.〔2017•市校级模拟〕如下图,两个反比例函数y=和y=在第一象限的图象依次是C1和C2,设点P在C1上,PC⊥*轴于点C,交C2于点A,PD ⊥y轴于点D,交C2于点B,则四边形PAOB的面积为〔〕A.k1+k2B.k1﹣k2C.k1•k2D.k1•k2﹣k2【分析】根据反比例函数系数k的几何意义得到S矩形PCOD=k1,S△AOC=S△=k2,然后利用四边形PAOB的面积=S矩形PCOD﹣S△AOC﹣S△BOD进展计算.BOD【解答】解:∵PC⊥*轴,PD⊥y轴,∴S矩形PCOD=k1,S△AOC=S△BOD=×k2,∴四边形PAOB的面积=S矩形PCOD﹣S△AOC﹣S△BOD=k1﹣k2﹣k2=k1﹣k2.应选B.【点评】此题考察了反比例函数系数k的几何意义:在反比例函数y=图象中任取一点,过这一个点向*轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.6.〔2017•肥城市三模〕如图,点A是反比例函数y=〔>0〕的图象上任意一点,AB∥*轴交反比例函数y=﹣的图象于点B,以AB为边作平行四边形ABCD,其中C,D在*轴上,则平行四边形ABCD的面积为〔〕A.2 B.3 C.4 D.5【分析】设A的纵坐标是b,则B的纵坐标也是b,即可求得A、B的横坐标,则AB的长度即可求得,然后利用平行四边形的面积公式即可求解.【解答】解:设A的纵坐标是b,则B的纵坐标也是b.把y=b代入y=得,b=,则*=,即A的横坐标是,同理可得:B的横坐标是:﹣.则AB=﹣〔﹣〕=.则S□ABCD=×b=5.应选D.【点评】此题考察了是反比例函数与平行四边形的综合题,理解A、B的纵坐标是同一个值,表示出AB的长度是关键.7.〔2017•模拟〕如图,平行四边形ABCD的顶点C在y轴正半轴上,CD平行于*轴,直线AC交*轴于点E,BC⊥AC,连接BE,反比例函数〔*>0〕的图象经过点D.S△BCE=2,则k的值是〔〕A.2 B.﹣2 C.3 D.4【分析】连接ED、OD,由平行四边形的性质可得出BC=AD、AD⊥AC,根据同底等高的三角形面积相等即可得出S△BCE=S△DCE,同理可得出S△OCD=S△DCE,再利用反比例函数系数k的几何意义即可求出结论.【解答】解:连接ED、OD,如下图.∵四边形ABCD为平行四边形,∴BC=AD,BC∥AD.∵BC⊥AC,∴AD⊥AC.∵△BCE和△DCE有一样的底CE,相等的高BC=AD,∴S△BCE=S△DCE.∵CD平行于*轴,∴△OCD与△ECD有相等的高,∴S△OCD=S△DCE=S△BCE=2=|k|,∴k=±4.∵反比例函数在第一象限有图象,∴k=4.应选D.【点评】此题考察了反比例函数系数k的几何意义、平行四边形的性质以及平行线的性质,利用同底等高的三角形面积相等找出S△OCD=S△DCE=S△BCE是解题的关键.8.〔2017•兴化市校级一模〕如图,矩形OABC的两边OA、OC在坐标轴上,且OC=2OA,M、N分别为OA、OC的中点,BM与AN交于点E,假设四边形EMON的面积为2,则经过点B的双曲线的解析式为〔〕A.y=﹣B.y=﹣C.y=﹣D.y=﹣【分析】过M作MG∥ON,交AN于G,过E作EF⊥AB于F,由题意可知:AM=OM=a,ON=NC=2a,AB=OC=4a,BC=AO=2a,再根据三角形相似以及三角形面积之间的关系求出B点坐标,即双曲线解析式求出.【解答】解:过M作MG∥ON,交AN于G,过E作EF⊥AB于F,设EF=h,OM=a,由题意可知:AM=OM=a,ON=NC=2a,AB=OC=4a,BC=AO=2a△AON中,MG∥ON,AM=OM,∴MG=ON=a,∵MG∥AB∴==,∴BE=4EM,∵EF⊥AB,∴EF∥AM,∴==.∴FE=AM,即h=a,∵S△ABM=4a×a÷2=2a2,S△AON=2a×2a÷2=2a2,∴S△ABM=S△AON,∴S△AEB=S四边形EMON=2,S△AEB=AB×EF÷2=4a×h÷2=2,ah=1,又有h=a,a=〔长度为正数〕∴OA=,OC=2,因此B的坐标为〔﹣2,〕,经过B的双曲线的解析式就是y=﹣.【点评】此题主要考察反比例函数的综合题的知识,解答此题的关键是辅助线的作法和相似三角形的性质的应用,此题难度中等.9.〔2017•微山县模拟〕点A〔﹣2,1〕,B〔1,4〕,假设反比例函数y=与线段AB有公共点时,k的取值围是〔〕A.﹣2≤k≤4 B.k≤﹣2或k≥4C.﹣2≤k<0或k≥4 D.﹣2≤k<0或0<k≤4【分析】当k>0时,将*=1代入反比例函数的解析式的y=k,当k≤4时,反比例函数y=与线段AB有公共点;当k<0时,将*=﹣2代入反比例函数的解析式得:y=,当时,反比例函数图象与线段AB有公共点.【解答】解:①当k>0时,如以下图:将*=1代入反比例函数的解析式得y=k,∵y随*的增大而减小,∴当k≤4时,反比例函数y=与线段AB有公共点.∴当0<k≤4时,反比例函数y=与线段AB有公共点.②当k<0时,如以下图所示:将*=﹣2代入反比例函数得解析式得:y=﹣,∵反比例函数得图象随着*得增大而增大,∴当﹣≤1时,反比例函数y=与线段AB有公共点.解得:k≥﹣2,∴﹣2≤k<0.综上所述,当﹣2≤k<0或0<k≤4时,反比例函数y=与线段AB有公共点.应选;D.【点评】此题主要考察的是反比例函数的图象的性质,利用数形结合是解答此题的关键.10.〔2017春•萧山区校级月考〕如图,平面直角坐标系中,点A是*轴负半轴上一个定点,点P是函数y=〔*<0〕上一个动点,PB⊥y轴于点B,当点P 的横坐标逐渐增大时,四边形OAPB的面积将会〔〕A.先增后减B.先减后增C.逐渐减小D.逐渐增大【分析】过点P作PC⊥*轴于点C,根据k的几何意义可知矩形PBOC的面积为6,然后只需要讨论△APC的面积大小即可.【解答】解:过点P作PC⊥*轴于点C,∵点P在y=﹣〔*<0〕∴矩形PBOC的面积为6设A的坐标为〔a,0〕,P坐标〔*,〕〔*<0〕,△APC的面积为S,当a<*<0时,∴AC=*﹣a,∴PC=﹣∴△APC的面积为S=〔*﹣a〕•=﹣3〔1﹣〕∵a<0,∴﹣a>0,∴﹣在a<*<0上随着*的增大而减小,∴1﹣在a<*<0上随着*的增大而减小,∴﹣3〔1﹣〕在a<*<0上随着*的增大而增大,∴S=S△APC+6∴S在a<*<0上随着*的增大而增大,当*≤a时,∴AC=a﹣*,∴PC=﹣∴△APC的面积为S=〔a﹣*〕•=﹣3〔﹣1〕∵a<0,∴在*<a随着*的增大而增大,∴﹣1在*<a上随着*的增大而增大,∴﹣3〔﹣1〕在*<a上随着*的增大而减小,∴S=6﹣S△APC∴S在*<a上随着*的增大而增大,∴当P的横坐标增大时,S的值是逐渐增大,应选〔D〕【点评】此题考察反比例函数的图象性质,解题的关键是将点P的位置分为两种情况进展讨论,然后根据反比例函数的变化趋势求出△APC的面积变化趋势.此题综合程度较高.11.〔2016•龙东地区〕反比例函数y=,当1<*<3时,y的最小整数值是〔〕A.3 B.4 C.5 D.6【分析】根据反比例函数系数k>0,结合反比例函数的性质即可得知该反比例函数在*>0中单调递减,再结合*的取值围,可得出y的取值围,取其的最小整数,此题得解.【解答】解:在反比例函数y=中k=6>0,∴该反比例函数在*>0,y随*的增大而减小,当*=3时,y==2;当*=1时,y==6.∴当1<*<3时,2<y<6.∴y的最小整数值是3.应选A.【点评】此题考察了反比例函数的性质,解题的关键是找出反比例函数y=在1<*<3中y的取值围.此题属于根底题,难度不大,解决该题型题目时,根据反比例函数的系数结合反比例函数的性质得出该反比例函数的单调性是关键.12.〔2016•〕以下函数中,满足y的值随*的值增大而增大的是〔〕A.y=﹣2* B.y=3*﹣1 C.y=D.y=*2【分析】根据一次函数、反比例函数、二次函数的性质考虑4个选项的单调性,由此即可得出结论.【解答】解:A、在y=﹣2*中,k=﹣2<0,∴y的值随*的值增大而减小;B、在y=3*﹣1中,k=3>0,∴y的值随*的值增大而增大;C、在y=中,k=1>0,∴y的值随*的值增大而减小;D、二次函数y=*2,当*<0时,y的值随*的值增大而减小;当*>0时,y的值随*的值增大而增大.应选B.【点评】此题考察了一次函数的性质、反比例函数的性质以及二次函数的性质,解题的关键是根据函数的性质考虑其单调性.此题属于根底题,难度不大,解决该题型题目时,熟悉各类函数的性质及其图象是解题的关键.13.〔2016•〕如图,在反比例函数y=﹣的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第一象限有一点C,满足AC=BC,当点A运动时,点C始终在函数y=的图象上运动.假设tan∠CAB=2,则k的值为〔〕A.2 B.4 C.6 D.8【分析】连接OC,过点A作AE⊥y轴于点E,过点B作BF⊥*轴于点F,通过角的计算找出∠AOE=∠COF,结合"∠AEO=90°,∠CFO=90°〞可得出△AOE∽△COF,根据相似三角形的性质得出,再由tan∠CAB==2,可得出CF•OF=8,由此即可得出结论.【解答】解:连接OC,过点A作AE⊥y轴于点E,过点C作CF⊥*轴于点F,如下图.由直线AB与反比例函数y=的对称性可知A、B点关于O点对称,∴AO=BO.又∵AC=BC,∴CO⊥AB.∵∠AOE+∠EOC=90°,∠EOC+∠COF=90°,∴∠AOE=∠COF,又∵∠AEO=90°,∠CFO=90°,∴△AOE∽△COF,∴.∵tan∠CAB==2,∴CF=2AE,OF=2OE.又∵AE•OE=|﹣2|=2,CF•OF=|k|,∴k=±8.∵点C在第一象限,∴k=8.应选D.【点评】此题考察了反比例函数图象上点的坐标特征、反比例函数的性质以及相似三角形的判定及性质,解题的关键是求出CF•OF=8.此题属于根底题,难度不大,解决该题型题目时,巧妙的利用了相似三角形的性质找出对应边的比例,再结合反比例函数图象上点的坐标特征找出结论.14.〔2016•〕如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,则△OAC与△BAD 的面积之差S△OAC﹣S△BAD为〔〕A.36 B.12 C.6 D.3【分析】设△OAC和△BAD的直角边长分别为a、b,结合等腰直角三角形的性质及图象可得出点B的坐标,根据三角形的面积公式结合反比例函数系数k 的几何意义以及点B的坐标即可得出结论.【解答】解:设△OAC和△BAD的直角边长分别为a、b,则点B的坐标为〔a+b,a﹣b〕.∵点B在反比例函数y=的第一象限图象上,∴〔a+b〕×〔a﹣b〕=a2﹣b2=6.∴S△OAC﹣S△BAD=a2﹣b2=〔a2﹣b2〕=×6=3.应选D.【点评】此题考察了反比例函数系数k的几何意义、等腰三角形的性质以及面积公式,解题的关键是找出a2﹣b2的值.此题属于根底题,难度不大,解决该题型题目时,设出等腰直角三角形的直角边,用其表示出反比例函数上点的坐标是关键.二.填空题〔共11小题〕15.〔2017•微山县模拟〕如图,等腰直角三角形OAB的一条直角边在y轴上,点P是边AB上的一个动点,过点P的反比例函数y=的图象交斜边OB于点Q,〔1〕当Q为OB中点时,AP:PB=〔2〕假设P为AB的三等分点,当△AOQ的面积为时,k的值为2或2.【分析】〔1〕设Q〔m,〕,根据线段中点的性质找出点B、A的坐标,再结合反比例函数图象上点的坐标特征可找出点P的坐标,由此即可得出结论;〔2〕设P〔n,〕〔n>0〕,根据三等分点的定义找出点B的坐标〔两种情况〕,由此即可得出直线OB的解析式,联立直线OB和反比例函数解析式得出点Q 的坐标,再根据三角形的面积公式找出关于k的一元一次方程,解方程即可得出结论.【解答】解:〔1〕设Q〔m,〕,∵Q为OB中点,∴B〔2m,〕,A〔0,〕,∴P〔,〕,∴AP:PB=:〔2m﹣〕=.故答案为:.〔2〕设P〔n,〕〔n>0〕.P为AB的三等分点分两种情况:①AP:PB=,∴B〔3n,〕,A〔0,〕,∴直线OB的解析式为y=*=*,联立直线OB与反比例函数解析式,得:,解得:,或〔舍去〕.∵S△AOQ=AO•*Q=××n=,解得:k=2;②AP:PB=2,∴B〔n,〕,A〔0,〕,∴直线OB的解析式为y=*=*,联立直线OB与反比例函数解析式,得:,解得:,或〔舍去〕.∵S△AOQ=AO•*Q=××n=,解得:k=2.综上可知:k的值为2或2.故答案为:2或2.【点评】此题考察了等腰直角三角形的性质、反比例函数图象上点的坐标特征以及三角形的面积公式,解题的关键是:〔1〕求出点P的坐标;〔2〕分两种情况考虑.此题属于中档题,难度不小,在解决第二问时,需要联立直线与反比例函数的解析式找出交点坐标,再结合三角形的面积公式找出关于k的一元一次方程,解方程即可得出结论.16.〔2017•茂县一模〕在函数〔k>0的常数〕的图象上有三个点〔﹣2,y1〕,〔﹣1,y2〕,〔,y3〕,函数值y1,y2,y3的大小为y3>y1>y2.【分析】先根据函数y=〔k>0的常数〕判断出函数图象所在的象限,再根据三点坐标判断出各点所在的象限,根据函数图象的特点进展解答即可.【解答】解:∵函数y=〔k>0的常数〕,∴此函数的图象在一、三象限,在每一象限y随*的增大而减小,∵﹣2<0,﹣1<0,>0,∴〔﹣2,y1〕,〔﹣1,y2〕在第三象限,〔,y3〕在第一象限,∵﹣2<﹣1,∴0>y1>y2,y3>0,故答案为:y3>y1>y2.【点评】此题考察的是反比例函数的图象上点的坐标特点,熟知反比例函数图象在每一象限的增减性是解答此题的关键.17.〔2017•微山县模拟〕如图,四边形ABCD与EFGH均为正方形,点B、F在函数y=〔*>0〕的图象上,点G、C在函数y=﹣〔*<0〕的图象上,点A、D在*轴上,点H、E在线段BC上,则点G的纵坐标+1 .【分析】设线段AB的长度为a,线段EF的长度为b〔a>0,b>0〕,利用反比例函数图象上点的坐标特征找出点B、C、F、G的坐标,再根据正方形的性质找出线段相等,从而分别找出关于a和关于b的一元二次方程,解方程即可得出a、b的值,从而得出结论.【解答】解:设线段AB的长度为a,线段EF的长度为b〔a>0,b>0〕,令y=〔*>0〕中y=a,则*=,即点B的坐标为〔,a〕;令y=﹣〔*<0〕中y=a,则*=﹣,即点C的坐标为〔﹣,a〕.∵四边形ABCD为正方形,∴﹣〔﹣〕=a,解得:a=2,或a=﹣2〔舍去〕.令y=〔*>0〕中y=2+b,则*=,即点F的坐标为〔,2+b〕;令y=﹣〔*<0〕中y=2+b,则*=﹣,即点G的坐标为〔﹣,2+b〕.∵四边形EFGH为正方形,∴+〔﹣〕=b,即b2+2b﹣4=0,解得:b=﹣1,或b=﹣﹣1〔舍去〕.∴a+b=2+﹣1=+1.故答案为:+1.【点评】此题考察了反比例函数图象上点的坐标特征以及正方形的性质,解题的关键是求出a、b值.此题属于根底题,难度不大,解决该题型题目时,根据反比例函数图象上点的坐标特征找出点的坐标,再结合正方形的性质分别找出关于正方形边长的一元二次方程是关键.18.〔2017•一模〕P1〔*1,y1〕,P2〔*2,y2〕两点都在反比例函数的图象上,且*1<*2<0,则y l<y2〔填">〞或"<〞〕.【分析】根据反比例函数的性质,可得答案.【解答】解:由题意,得比例函数的图象上,且*1<*2<0,则y l<y2,故答案为:<.【点评】此题考察了反比例函数图象上点的坐标特征,利用方比例函数的性质是解题关键.19.〔2017•新城区校级模拟〕如图,△AOB与反比例函数交于C、D,△AOB的面积为6,假设AC:CB=1:3,则反比例函数的表达式为y=.【分析】根据题意S△AOC=,进而根据反比例函数系数k的几何意义可得k的值,可得反比例函数的关系式.【解答】解:连接OC,∵△AOB的面积为6,假设AC:CB=1:3,∴△AOC的面积=6×=,∵S△AOC=AC•OA=*y=,即|k|=,∴k=±3,又∵反比例函数的图象在第一象限,∴y=,故答案为y=.【点评】此题考察了待定系数法求反比例函数的解析式,反比例函数系数k的几何意义,根据题意求得△AOC的面积是解题的关键.20.〔2017秋•市校级月考〕函数y=中,假设*>1,则y的取值围为0<y <6 ,假设*<3,则y的取值围为y<0或y>2 .【分析】根据反比例函数的增减性确定y的取值围即可.【解答】解:∵y=中k=6>0,∴在每一象限y随着*的增大而减小,当*=1时y=6,当*=3时y=2,∴当*>1,则y的取值围为0<y<6,当*<3时y的取值围为y<0或y>2 故答案为:0<y<6;y<0或y>2.【点评】此题考察了反比例函数的性质,解题的关键是弄清反比例函数的增减性,难度不大.21.〔2017春•启东市月考〕如图,点A为反比例函数y=﹣图象上一点,过A作AB⊥*轴于点B,连接OA,则△ABO的面积为 2 .【分析】根据过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|.即可求解.【解答】解:△ABO的面积是:×|﹣4|=2.故答案是:2.【点评】此题主要考察了反比例函数y=中k的几何意义,即过双曲线上任意一点引*轴、y轴垂线,所得三角形面积为|k|,是经常考察的一个知识点;这里表达了数形结合的思想,做此类题一定要正确理解k的几何意义.22.〔2016•〕如图,点A为函数y=〔*>0〕图象上一点,连结OA,交函数y=〔*>0〕的图象于点B,点C是*轴上一点,且AO=AC,则△ABC的面积为 6 .【分析】根据题意可以分别设出点A、点B的坐标,根据点O、A、B在同一条直线上可以得到A、B的坐标之间的关系,由AO=AC可知点C的横坐标是点A 的横坐标的2倍,从而可以得到△ABC的面积.【解答】解:设点A的坐标为〔a,〕,点B的坐标为〔b,〕,∵点C是*轴上一点,且AO=AC,∴点C的坐标是〔2a,0〕,设过点O〔0,0〕,A〔a,〕的直线的解析式为:y=k*,∴,解得,k=,又∵点B〔b,〕在y=上,∴,解得,或〔舍去〕,∴S△ABC=S△AOC﹣S△OBC==,故答案为:6.【点评】此题考察反比例函数的图象、三角形的面积、等腰三角形的性质,解题的关键是明确题意,找出所求问题需要的条件.23.〔2016•潍坊〕反比例函数y=〔k≠0〕的图象经过〔3,﹣1〕,则当1<y<3时,自变量*的取值围是﹣3<*<﹣1 .【分析】根据反比例函数过点〔3,﹣1〕结合反比例函数图象上点的坐标特征可求出k值,根据k值可得出反比例函数在每个象限的函数图象都单增,分别代入y=1、y=3求出*值,即可得出结论.【解答】解:∵反比例函数y=〔k≠0〕的图象经过〔3,﹣1〕,∴k=3×〔﹣1〕=﹣3,∴反比例函数的解析式为y=.∵反比例函数y=中k=﹣3,∴该反比例函数的图象经过第二、四象限,且在每个象限均单增.当y=1时,*==﹣3;当y=3时,*==﹣1.∴1<y<3时,自变量*的取值围是﹣3<*<﹣1.故答案为:﹣3<*<﹣1.【点评】此题考察了反比例函数的性质以及反比例函数图象上点的坐标特征,解题的关键是求出k值.此题属于根底题,难度不大,解决该题型题目时,由点的坐标结合反比例函数图象上点的坐标特征求出k值,再根据反比例函数的性质找出去增减性是关键.24.〔2016•〕双曲线y=在每个象限,函数值y随*的增大而增大,则m的取值围是m<1 .【分析】根据反比例函数的单调性结合反比例函数的性质,可得出关于m的一元一次不等式,解不等式即可得出结论.【解答】解:∵双曲线y=在每个象限,函数值y随*的增大而增大,∴m﹣1<0,解得:m<1.故答案为:m<1.【点评】此题考察了反比例函数的性质以及解一元一次不等式,解题的关键是找出关于m的一元一次不等式.此题属于根底题,难度不大,解决该题型题目时,根据反比例函数的单调性结合反比例函数的性质找出反比例系数k的取值围是关键.25.〔2016•滨州〕如图,点A、C在反比例函数y=的图象上,点B,D在反比例函数y=的图象上,a>b>0,AB∥CD∥*轴,AB,CD在*轴的两侧,AB=,CD=,AB与CD间的距离为6,则a﹣b的值是 3 .【分析】设点A、B的纵坐标为y1,点C、D的纵坐标为y2,分别表示出来A、B、C、D四点的坐标,根据线段AB、CD的长度结合AB与CD间的距离,即可得出y1、y2的值,再由点A、B的横坐标结合AB=即可求出a﹣b的值.【解答】解:设点A、B的纵坐标为y1,点C、D的纵坐标为y2,则点A〔,y1〕,点B〔,y1〕,点C〔,y2〕,点D〔,y2〕.∵AB=,CD=,。
中考数学总复习《反比例函数综合解答题》专项提升练习(附答案)

中考数学总复习《反比例函数综合解答题》专项提升练习(附答案)学校:___________班级:___________姓名:___________考号:___________1.如图,在Rt △ABC 中AC =8,BC =4,AC ⊥x 轴,垂足为C ,AB 边与y 轴交于点D ,反比例函数y =kx (x >0),的图象经过点A .(1)若BD AB=14,求直线AB 和反比例函数的表达式;(2)若k =8,将AB 边沿AC 边所在直线翻折,交反比例函数的图象于点E ,交x 轴于点F ,求点E 的坐标. 2.如图,点A 在第一象限,AC ⊥x 轴,垂足为C ,OA =2√5,tanA =12反比例函数y =kx的图象经过OA 的中点B ,与AC 交于点D .(1)求点C 坐标; (2)求k 值;(3)求△OBD 的面积.3.如图,矩形OABC 的顶点A ,C 分别在x 轴和y 轴上,点B 的坐标为(2,3),双曲线y =kx (x>0)的图象经过BC 上的点D 与AB 交于点E ,连接DE ,若E 是AB 的中点. (1)求点D 的坐标;(2)点F是OC边上一点,若△FBC和△DEB相似,求点F的坐标.(x>0)的图象与矩形OABC相交于D、E两点,点A、4.如图,在平面直角坐标系xOy中反比例函数y=kxC分别在x轴和y轴的正半轴上,点B的坐标为(8,6).连接DE.(1)连接OE,若△EOA的面积为8,则k=______;(2)连接AD,当k为何值时,△AED的面积最大,最大面积是多少?(3)连接AC,当k为何值时,以DE为直径的圆与AC相切(x>0)上一动点5.如图已知直线y=x−2与x轴交于A点与y轴交于B点P(m,n)为双曲线y=−2x过P点分别作x轴y轴的垂线垂足分别为C D射线PC交直线AB于点E射线PD交直线AB于点F.(1)当DF=PC时求m的值;(2)连接OE OF求证:∠EOF的度数为45°;(x>0)上有一点Q(不与点P重合)连接PQ有PQ∥AB将线段PQ沿直线AB翻折得(3)在双曲线y=−2x到线段P′Q′.若线段P′Q′与坐标轴没有交点求此时n的取值范围.(x>0)上一点分别连接MA MB.6.直线l:y=−2x+2m(m>0)与x y轴分别交于A.B两点点M是双曲线y=4x(1)如图当点A(2√30)时恰好AB=AM △MAB=90° 试求M的坐标;3(2)如图当m=3时直线l与双曲线交于C.D两点分别连接OC OD 试求△OCD面积;(3)如图在双曲线上是否存在点M 使得以AB为直角边的△MAB与△AOB相似?如果存在请直接写出点M 的坐标;如果不存在请说明理由.(k>0)的一点点D的纵坐标为6.7.在平面直角坐标系中点D是反比例函数y=kx(k>0)的图象交于A C (1)当一次函数y=ax+3(a>0)的图象与x轴交于点B(−6,0)与反比例函数y=kx两点点P(1,0)是x轴上一定点已知点A的纵坐标为4.求一次函数和反比例函数的解析式;(2)在(1)的条件下在线段AB上找点Q使得△PAQ的面积为7时求点Q的坐标;(3)如图2 在第一象限内在反比例函数上是否存在不同于点D的一点F满足∠ODF=90°且tan∠DOF=1若存在求出点D的坐标.若不存在请说明理由.4(k>0)的图象分别交矩形ABOC的两边8.如图1 平面直角坐标系xOy中A(4 3)反比例函数y=kxAC AB于E F两点(E F不与A重合)沿着EF将矩形ABOC折叠使A D两点重合.(1)AE=_______(用含有k的代数式表示);(2)如图2 当点D恰好落在矩形ABOC的对角线BC上时求CE的长度;(3)若折叠后△ABD是等腰三角形求此时点D的坐标.9.如图在平面直角坐标系xOy中△ABO的边AB垂直于x轴垂足为点B反比例函数的图象经过AO的中点C交AB于点D.若点D的坐标为(−4,n)且AD=3.(1)求反比例函数y=k的解析式;x(2)求经过C D两点的直线所对应的函数解析式;(3)设点E是线段CD上的动点(不与点C D重合)过点E且平行于y轴的直线l与反比例函数的图象交于点F求△OEF面积的最大值.(k≠0)的图象相交于点A和点B(4,1)点M是y 10.如图直线y=mx+4(m≠0)的图象与双曲线y=kx轴上的一个动点.(1)求出点A的坐标.(2)连接AM,BM若△ABM的面积为3求此时点M的坐标.(3)点N为平面内的点是否存在以点A,B,M,N为顶点的四边形为菱形?若存在请直接写出相应的点N的坐标若不存在请说明理由.11.如图已知一次函数y=−x+4与反比例函数的图像相交于点C和点A(−2,a)(1)求反比例函数的表达式及点C的坐标.(2)根据图像回答在什么范围时一次函数的值大于反比例函数的值?(3)求△AOC的面积.的图像交于A B两点与x轴交于点C与y轴12.如图一次函数y=ax+b的图像与反比例函数y=kx交于点D.已知点A(2,1)点B(m,−4).(1)求反比例函数与一次函数的解析式;(2)点M是反比例函数图像上一点当△MAO与△AOD的面积相等时请直接写出点M的横坐标;(3)将射线AC绕点A旋转α度后与双曲线交于另一点Q若tanα=1请求出点Q的坐标.3(k>0)的图象经过点A(1,2)连接AO并延长交双曲线于点C以AC为对角线作13.如图反比例函数y=kx正方形ABCD AB与x轴交于点M AD与y轴交于点N连接OB以AB为直径画弧OA与线段OA围成的阴影面积为S1△OMB的面积为S2.(1)求k的值;(2)求OA的长度及线段OM的长度;(3)求S1+S2的值.14.如图在平面直角坐标系中四边形ABCD为正方形已知点A、D的坐标分别为(0,−6)、(3,−7)点B、C在第四象限内.(1)点B的坐标为;(2)将正方形ABCD以每秒2个单位的速度沿y轴向上平移所得四边形记为正方形A′B′C′D′.若t秒后点B D的对应点B′D′正好落在某反比例函数在第一象限内的图像上请求出此时t值以及这个反比例函数的表达式;(3)在(2)的情况下是否存在x轴上的点P和反比例函数图像上的点Q使得以P Q B′D′四个点为顶点的四边形是平行四边形?若存在请直接写出符合题意的点Q的坐标;若不存在请说明理由.15.如图1 已知正比例函数和反比例函数的图象都经过点A(−1,−2)且点B(−2,−1)为反比例图象上的一点连接AB点M为坐标平面上一动点MN⊥x轴于点N.(1)写出正比例函数和反比例函数的解析式;(2)当点M在直线AO上运动时是否存在点M使得△OMN与△OAB的面积相等?若存在求出点M的坐标;若不存在请说明理由;(3)如图2 当点M在反比例函数图象位于第一象限的一支上运动时求以OB、OM为邻边的平行四边形BOMC周长的最小值并求此时点M的坐标.(x>0,k>0)图象与正比例函数图象y=ax(a>0)交于第16.如图在平面直角坐标系中反比例函数y=kx一象限内的点A(n,n)点B(2n,n−2)也在这个反比例函数图象上过点B作y轴的平行线交x轴与点C交直线y=ax(a>0)与点D.(1)求这两个函数的解析式及点D的坐标;(2)求:△AOB的面积;(3)过反比例函数图象上一点P作PE⊥直线y=ax(a>0)于点E过点E作EF⊥x轴于点F过点P作PG⊥EF于点G记△EOF的面积为S1,△PEG的面积为S2求S1−S2的值.与直线y=x相交于点A(2,a)B(b,−2)两点.17.如图1 在平面直角坐标系xOy中双曲线y=kx(1)求双曲线的函数表达式;(2)在双曲线上是否存在一点P使得△PAB的面积为6?若存在求出点P的坐标若不存在请说明理由;(3)点E是y轴正半轴上的一点直线AE与双曲线交于另一点C直线BE与双曲线交于另一点D直线CD与y轴交于点F求证:OE=EF.18.如图1 在平面直角坐标系xOy 中直线y =kx +52与双曲线y =12x交于A B 两点 直线AB 分别交x 轴 y轴于C D 两点 且S △COD =254.(1)求一次函数的解析式;(2)如图2 E 的坐标为(6,0) 将线段DO 沿y 轴向上(或向下)平移得线段D ′O ′ 在移动过程中是否存在某个位置使AD ′+EO ′的值最小?若存在 求出AD ′+EO ′的最小值及此时点O ′的坐标;若不存在 请说明理由; (3)如图3 在(2)的条件下 将直线OA 沿x 轴平移 平移过程中在第一象限交y =12x的图象于点M (M 可与A 重合) 交x 轴于点N .在平移过程中是否存在某个位置使以M N E 和平面内某一点P 为顶点的四边形为菱形且以MN 为菱形的边?若存在 请直接写出P 的坐标;若不存在 请说明理由.19.平面直角坐标系xOy 中横坐标为a 的点A 在反比例函数y 1△kx (x >0)的图象上 点A′与点A 关于点O 对称 一次函数y 2=mx+n 的图象经过点A′. (1)设a=2 点B (4 2)在函数y 1 y 2的图象上. ①分别求函数y 1 y 2的表达式;②直接写出使y 1>y 2>0成立的x 的范围;(2)如图① 设函数y 1 y 2的图象相交于点B 点B 的横坐标为3a △AA'B 的面积为16 求k 的值; (3)设m=12 如图② 过点A 作AD△x 轴 与函数y 2的图象相交于点D 以AD 为一边向右侧作正方形ADEF 试说明函数y 2的图象与线段EF 的交点P 一定在函数y 1的图象上.20.已知直线y=−x+2k+6(k>0)与双曲线y=m(x>0)交于点M N且点N的横坐标为k. .x(1)如图1 当k=1时.①求m的值及线段MN的长;②在y轴上是否是否存在点Q使∠MQN=90° 若存在请求出点Q的坐标;若不存在请说明理由.(2)如图2 以MN为直径作△P当△P与y轴相切时求k值.参考答案:1.解:解:(1)Rt △ABC 中AC =8 BC =4 AC ⊥x 轴 垂足为C∴AC ∥OD BD AB =BO BC =14 ∴BO 4=14∴BO =1 ∴OC =3 ∴A (3,8)设直线AB 为y =ax +b∴{3a +b =8−a +b =0解得{a =2b =2∴直线AB 为y =2x +2∵反比例函数y =kx (x >0)的图像经过A∴k =3×8=24∴反比例函数的表达式为y =24x;(2)作EH ⊥x 轴于H 由题意可知CF =BC =4 ∴设A (a,8)∴OC =1 ∴OF =5设点E 的坐标为(x,8x )∴OH =x∴FH =5−x∵EH//AC∴EH AC =HF FC 即8x 8=5−x 4解得x 1=1∴点E 的坐标为(4,2).2.(1)解:△AC ⊥x 轴△AC =2OC△OA =2√5由勾股定理得:(2√5)2=OC 2+(2OC )2△OC =2,AC =4△A (2,4),C (2,0)(2)△B 是OA 的中点△B (1,2)△k =1×2=2;(3)当x =2时△D (2,1)△AD =4−1=3△S △OBD =S △OAD −S △ABD=12×3×2−12×3×1 =1.5.3.解:(1)先求出点E 的坐标,求出反比例函数解析式,再求出CD =1,即可得出点D 的坐标,(2) △FBC 和△DEB 相似可以分两种情况进行求解, ①当△FBC △△DEB 时,可得BD BE =BC CF ,求出CF,得出F 点的坐标,利用待定系数法可求出BF 的直线解析式,②当△FBC △△EDB 时,可得BD BE =CFBC ,求出C,F ,OF ,得出F 点坐标,利用待定系数法求出直线BF 的解析式.(1)△四边形OABC为矩形E为AB的中点点B的坐标为(2 3) △点E的坐标为.△点E在反比例函数上△k=3 △反比例函数的解析式为y=.△四边形OABC为矩形△点D与点B的纵坐标相同将y=3代入y=可得x=1 △点D的坐标为(1 3)(2)由(1)可得BC=2 CD=1 △BD=BC-CD=1.△E为AB的中点△BE=.若△FBC△△DEB 则=即=△CF=△OF=CO-CF=3-=△点F的坐标为;若△FBC△△EDB 则=即=△FC=3.△CO=3 △点F与点O重合△点F的坐标为(0 0).综上所述点F的坐标为或(0 0).4.解:(1)连接OE如下图.△E点在反比例函数的图像上且横坐标为8△E点纵坐标为k8即AE=8S△EOA=12×k8×8=8△k=16(2)连接AD如下图.△D在反比例函数图像上△D点的的横坐标为k6.BD=8−k 6S△AED=12×AE×BD=12×k8×(8−k6)=−196k2+12k即S△AED=−196k2+12k=−196(k−24)2+24296=−196(k−24)2+6△当k=24时△AED的面积最大最大面积是6.(3)如下图连接AC以DE为直径的圆与AC相切时设圆心为O切点为N自点D作AC的垂线垂足为M.为计算方便设反比例函数系数k=48b(0<b<1)则E点坐标为(8,6b)D点坐标为(8b,6).△BD=8−8b BE=6−6b.由勾股定理得:DE=√BD2+DE2=√[8(1−b)]2+[6(1−b)]2=10(1−b)∴OD=12DE=5(1−b)△BD BE =8−8b6−6b=43△BD BE =BCBA△DE∥AC.由O为圆心N为⊙O与AC切点可知ON⊥AC.又△DM⊥AC,ON⊥AC,OD=ON△四边形ODMN为正方形.△OD=DM由tan∠DCM=DMCD =ABAC△DM=ABAC ×CD=610×8b=245b.由OD=5(1−b)OD=DM得5(1−b)=245b.△b=2549.△k=48b=48×2549=120049.△当k=120049时以DE为直径的圆与AC相切5.(1)2(2)见详解(3)−2<n<−1【分析】(1)由题意易得四边形ODPC是矩形∠OBA=∠OAB=45°则有BD=DF=PC=−n然后可得OB=−2n=2进而问题可求解;(2)由题意可得E(m,m−2)m=−2n然后可得EP=PF=m−n−2,DF=DB=2+n进而可得OF2=FA⋅FE则有△AOF∽△OEF最后问题可求证;(3)假设线段PQ沿直线AB翻折得到线段P′Q′线段P′Q′恰好与坐标轴有交点然后根据轴对称的性质及等腰直角三角形的性质可进行求解.【详解】(1)解:令y=0时则有x−2=0即x=2△A(2,0)即OA=2令x=0时则有y=−2△B(0,−2)即OB=2△OA=OB=2△∠OBA=∠OAB=45°由题意知:PC⊥x轴PD⊥y轴△四边形ODPC是矩形△DBF是等腰直角三角形△点P(m,n)△OD=PC=−n,DB=DF=PC=−n△OB=−2n=2△n=−1△m=−2−1=2;(2)证明:由题意得:E(m,m−2)△EP=m−n−2由(1)可知四边形ODPC是矩形△DBF是等腰直角三角形△BD=DF=2+n,OD=PC=−n△F(n+2,n)△∠DFB=∠EFP=45°,∠EPD=90°△EF=√2EP=√2m−√2n−2√2△A(2,0)△OF2=n2+(2+n)2=2n2+4n+4△AF⋅FE=−√2n⋅(√2m−√2n−2√2)=−2mn+2n2+4=−2⋅(−2n)n+2n2+4n=2n2+4n+4△OF2=FA⋅FE即OFEF =FAOF△∠OFA=∠EFO△△AOF∽△OEF△∠EOF=∠OAF=45°;(3)解:假设线段PQ沿直线AB翻折得到线段P′Q′线段P′Q′恰好与坐标轴有交点如图所示:连接QQ′,PP′,PA,QB由轴对称的性质可知∠OAB=∠PAB=45°,∠OBA=∠QBA=45°△∠P′AP=∠QBQ′=90°△点P的横坐标为2 点Q的纵坐标为−2△把点P的横坐标代入反比例函数解析式得n=−1△若线段P′Q′与坐标轴没有交点则n的取值范围为−2<n<−1.【点睛】本题主要考查反比例函数与几何的综合相似三角形的性质与判定矩形的判定等腰直角三角形的性质与判定及轴对称的性质熟练掌握各个性质及判定是解题的关键.6.(1)(2√323√3);(2)3;(3)(4 1)(2 2)(√1025√10)(25√10√10).【分析】(1)把A的坐标代入直线的解析式即可求得m的值然后证明△OAB△△EMA 求得ME和AE的长则M 的坐标即可求解;(2)解一次函数与反比例函数的解析式组成的方程组 即可求得C 和D 的坐标 作DF△y 轴于点F CG△y 轴 根据S △OCD =S 梯形CDFG +S △OCG -S △ODF 求解;(3)分类讨论:以△BAM 和△ABM 为直角两种情况.①当△BAM=△BOA=90°时 作MH△x 轴于点H 先求得AM 的长 再根据相似三角形的性质求得AH 和MH 的长 进而求得M 的坐标 代入反比例函数关系式求出m 即可 ②当△ABM=90°时 过点M 作MH△y 轴于点H 同理可求出M 坐标. 【详解】(1)把A(2√33 0)代入y=−2x+2m 得:−4√33+2m=0 解得:m=2√33. 则直线的解析式是:y=−2x+4√33 令x=0,解得y=4√33则B 的坐标是(0,4√33). 如图所示 作ME△x 轴于点E.△△BAM=90°△△BAO+△MAE=90°又△直角△AEM 中,△AME+△MAE=90°△△BAO=△AME.在△OAB 和△EMA 中{∠AOB=∠AEM ∠BAO=∠AME AB=AM△△OAB△△EMA(AAS)△ME=OA=2√33,AE=OB=4√33. △OE=OA+AE=2√3则M 的坐标是(2√3 23√3);(2)当m=3时 一次函数的解析式是y=−2x+6.解不等式组{y =−2x +6y =4x得{x =1y =4 或{x =2y =2则D 的坐标是(1,4),C 的坐标是(2,2).如图 作DF△y 轴于点F CG△y 轴,则F 和G 的坐标分别是(0,4) (0,2).则S △OCG =S △ODF =12×4=2 S 梯形CDFG =12×(1+2)×(4−2)=3 则S △OCD =S 梯形CDFG +S △OCG −S △ODF =3;(3)如图 作MH△x 轴于点H.则△AOB △ABM △AMH 都是两直角边的比是1:2的直角三角形.①当△BAM=△BOA=90°时 OA=m OB=2m 得: AM=12AB=√52m MH=12OA=m 2;从而得到点M 的坐标为(2m, m 2). 代入双曲线解析式为:42m =m 2解得:m=2,则点M 的坐标为(4,1);同理当△BAM=△OBA 时,可求得点M 的坐标为(√10 2√105).②当△ABM=90°时过点M作MH△y轴于点H则△AOB △ABM △BMH都是直角边的比是1:2的直角三角形;当△AMB=△OAB时OB=m OA=2m得:AH=2OB=2m MH=2OA=4m从而点M的坐标为(4m,4m)代入双曲线的解析式得:4m×4m=4解得:m=12,点M的坐标为(2,2);同理,当△AMB=△OBA时,点M的坐标为(2√105,√10).综上所述满足条件的点M的坐标是:(4 1)(2 2)(√1025√10)(25√10√10).【点睛】本题考查反比例函数与几何的综合题熟练掌握反比例函数的性质全等三角形的判定以及相似三角形的性质是解决本题的关键注意分类讨论思想的运用.7.(1)一次函数的表达式为y=12x+3反比例函数的解析式为y=8x(2)Q(−2,2)(3)存在满足题意的点D的横坐标为(3+3√654,6)或(−3+3√654,6)【分析】(1)将点B坐标代入直线AC的解析式中求出a进而得出一次函数解析式进而求出点A坐标最后将点A坐标代入反比例函数解析式中即可求出反比例函数解析式;(2)设点Q(m,12m+3)利用△PAQ的面积为7 建立方程求解即可得出答案;(3)根据题意分两种情况①当点F在D下方时过点D作DE⊥y轴于点E这点F作FN⊥ED于点N②当点F在点D上方时过点D作DG⊥x轴于点G过点F作FM⊥DG于点M分别求解即可.【详解】(1)△点B(−6,0)在直线y=ax+3上.△−6a+3=0△a=12△一次函数的解析式为y=12x+3;△点A在直线y=12x+3上且点A的纵坐标为4△12x+3=4△x=2△A(2,4).△点A在双曲线y=kx上△k=2×4=8.△反比例函数的解析式为y=8x;(2)由(1)知直线AC的解析式为y=12x+3设点Q(m,12m+3)如图1△P(1,0),B(−6,0)△BP=7△△PAQ的面积为7△1 2BP⋅(y A−y P)=12×7×(412m−3)=7△m=−2△Q(−2,2);(3)需要分两种情况:①当点F在D下方时.如图过点D作DE⊥y轴于点E这点F作FN⊥ED于点N △∠OED=∠DNF=90°△∠ODF =90°△∠ODE +∠DOE =∠ODE +∠FDN =90°△∠DOE =∠FDN△△ODE ∽△DFN .△OD:DF =OE:DN =DE:FN△tan∠DOF =14△DF:OD =1:4△OD:DF =OB:DN =DB:FN =4△OE =6 △DN =32设点D 的横坐标为n 则BD =n△FN =14n △D(n,6),F (n +32,6−14n)△6n =(n +32)(6−14n)解得n =−3±3√654(负值舍去). 即此时点D 的坐标为:(−3−3√654,6).②当点F 在点D 上方时 如图 过点D 作DG ⊥x 轴于点G过点F 作FM ⊥DG 于点M△∠OGD =∠DMF =90°△∠ODF =90°△∠ODG +∠DOG =∠ODG +∠FDM =90°△∠DOG =∠FDM△△ODG ∽△DFM△OD:DF =OG:DM =DG:FM△tan∠DOF =14△DF:OD =1:4△OD:DF =OG:DM =DG:FM =4△DG =6.△FM =32设点D 的横坐标为t 则OG =t△DM =14t△D(t,6),F (t −32,6+14t).△6t =(t −32)(6+14t). 解得t =3±3√654(负值舍去). 即此时点D 的横坐标为:(3+3√654,6). 综上 满足题意的点D 的横坐标为:(3+3√654,6)或(−3+3√654,6). 【点睛】本题是反比例函数综合题 主要考查了待定系数法 三角形的面积公式 相似三角形的性质 正确理解题意是解题的关键.8.(1)4−k3(2)CE =2(3)D 点坐标为(238,32)或(115,35)【分析】(1)根据点A 的坐标可得点E 的纵坐标为3 则E (k 3,3) 可得CE =k 3 从而得AE 的长; (2)求出AE AF =AC AB =43 证明△AEF △△ACB 推出EF ∥BC 再利用平行线的性质和等腰三角形的判定和性质证明AE =EC =2即可;(3)连接AD 交EF 于M 过D 点作DN △AB 于N 由折叠的性质得AD △EF 分三种情况讨论:①当BD =AD 时 ②当AB =AD =3时 ③当AB =BD 时 分别计算DN 和BN 的长确定点D 的坐标即可解答.【详解】(1)解:△四边形ABOC 是矩形 且A (4 3)△AC =4 OC =3△点E 在反比例函数y =k x 上 点E 的纵坐标为3△E(k3,3)△CE=k3△AE=4−k3;故答案为:4−k3;(2)解:△A(4 3)△AC=4 AB=3△AC AB =43△点F在y=kx上△F(4,k4)△AE AF =4−k33−k4=43△AE AF =ACAB=43又△△A=△A△△AEF△△ACB△△AEF=△ACB△EF∥BC△△FED=△CDE△△AEF△△DEF△△AEF=△DEF AE=DE△△FED=△CDE=△AEF=△ACB△CE=DE=AE=12AC=2;(3)连接AD交EF于M过D点作DN△AB于N 由折叠的性质得AD△EF①当BD=AD时如图3△△AND=90°△AN=BN=12AB=32△DAN+△ADN=90°△△DAN+△AFM=90°△△ADN=△AFM△tan∠ADN=tan∠AFM=AEAF =43△AN DN =43△AN=32△DN=98△4−98=238△D(238,32 );②当AB=AD=3时如图4在Rt△ADN中△AN DN =43△AN AD =45△AN=45AD=45×3=125△BN=3−AN=3−125=35△DN=34AN=34×125=95△4−95=115△D(115,35 );③当AB=BD时△△AEF△△DEF△DF=AF△DF+BF=AF+BF即DF+BF=AB△DF+BF=BD此时D F B三点共线且F点与B点重合不符合题意舍去△AB≠BD综上所述所求D点坐标为(238,32)或(115,35).【点睛】本题属于反比例函数综合题考查了反比例函数的性质相似三角形的判定和性质翻折的性质矩形的性质解直角三角形等知识等腰三角形的性质解题的关键是正确寻找相似三角形解决问题学会用分类讨论的思想思考问题属于中考压轴题.9.(1)反比例函数解析式为y=−4x(2)直线CD的解析式为y=12x+3(3)最大值为14【分析】本题是反比例函数综合题 主要考查了待定系数法 线段的中点坐标公式:(1)先确定点A 的坐标 进而求得点C 的坐标 将点C D 坐标代入反比例函数中即可得出结论;(2)由n =1 求出点C D 坐标 利用待定系数法即可得出结论;(3)设出点E 坐标 进而表示出点F 坐标 即可建立面积与m 函数关系式 即可得出结论;建立S △OEF 与m 的函数关系式是解题的关键.【详解】(1)解:△AD =3△A (−4,n +3)△点C 是OA 的中点△C (−2,n+32)△点C D 在双曲线y =kx 上△{k =−2×n+32k =−4n△{k =−4n =1 △反比例函数解析式为y =−4x ; (2)解:由(1)知 反比例函数解析式为y =−4x△n =1△C (−2,2)设直线CD 的解析式为y =ax +b△{−2a +b =2−4a +b =1△{a =12b =3△直线CD 的解析式为y =12x +3; (3)解:如图 由(2)知 直线CD 的解析式为y =12x +3设点E (m,12m +3) 由(2)知 C (−2,2)△−4<m <−2△EF ∥y 轴交反比例函数的图像y =−4x 于F△F (m,−4m )△EF =12m +3+4m△S △OEF =12(12m +3+4m )×(−m )=−12(12m 2+3m +4)=−14(m +3)2+14△−4<m <−2△m =−3时 S △OEF 最大 最大值为14. 10.(1)(43,3);(2)(0,74)或(0,254); (3)存在 (83,1+2√213)或(83,1−2√213)或(163,509).【分析】(1)利用代数系数法求出一次函数和反比例函数解析式 联立函数式 解方程组即可求解;(2)分M 在AB 下方和M 在AB 上方两种情况解答即可求解;(3)设M (a,0) 以A 、B 、M 、N 四点为顶点的四边形是菱形时 分AB 为边和对角线三种情况讨论 根据勾股定理和菱形的性质可计算点M 的坐标.【详解】(1)解:△点B (4,1)△4m +4=1△m =−34△直线的关系式为:y =−34x +4 反比例函数的关系式为:y =4x联立得{y =−34x +4y =4x 解得x =43或4△点A 的坐标为(43,3);(2)解:① M 在AB 下方时 过B 作BC ⊥y 轴于C 过A 作AD ⊥BC 于D设M (0,m )△点A 的坐标为(43,3)∵S △ABM =S 梯形AMCD +S △ABD −S △BCM =3△12×43(m −1+3−1)+12×(4−43)×(3−1)−12×4(m −1)=3解得m =74 △点M 的坐标为(0,74); ② M 在AB 上方时设M (0,m ) 直线AB 交y 轴于N△点A 的坐标为(43,3)△S △ABM =S △MBN +S △AMN =3△12×4(m −4)−12×43(m −4)=3解得m =254△点M 的坐标为(0,254); 综上 点M 的坐标为(0,74)或(0,254);(3)解:设M (a,0)△点A 的坐标为(43,3)△AB 2=(4−43)2+(3−1)2=1009AM 2=(43)2+(m −3)2=169+(m −3)2 BM 2=42+(m −1)2=16+(m −1)2①以AB 为边 AM =AB 时169+(m −3)2=1009 解得m =3+2√213或m =3−2√213 △点M 的坐标为(0,3+2√213)或(0,3−2√213) △点A 的坐标为(43,3)△点N 的坐标为(83,1+2√213)或(83,1−2√213); ②以AB 为边 BM =AB 时16+(m−1)2=1009无解△此种情况不存在;③以AB为对角线时AM=BM如图169+(m−3)2=16+(m−1)2解得m=−149△点M的坐标为(0,−149)△点A的坐标为(43,3)△点N的坐标为(163,509);综上所述点N的坐标为(83,1+2√213)或(83,1−2√213)或(163,509).【点睛】本题考查了菱形的性质反比例函数与一次函数的交点问题三角形面积公式待定系数法求函数的解析式运用分类讨论的思想解答是解题的关键.11.(1)反比例函数的表达式为y=−12x点C的坐标为(6,−2)(2)x<−2或0<x<6(3)16【分析】本题考查一次函数与反比例函数的交点问题注意数形结合思想的应用是解题的关键.(1)把A(−2,a)代入一次函数可求得a的值再代入反比例函数解析式可求得k的值联立两函数解析式可求得C点的坐标;(2)当一次函数图象在反比例函数图象的上方时满足条件根据图象可得出x的范围;(3)求出一次函数与x轴的交点坐标根据S△AOC=S△AOB+S△BOC利用三角形的面积公式即可求出△AOC的面积.【详解】(1)解:将A(−2,a)代入一次函数y =−x +4得:a =−(−2)+4=6 ∴ A(−2,6)设反比例函数的表达式为y =kx (k ≠0)将A(−2,6)代入y =k x (k ≠0) 得k =−2×6=−12 ∴反比例函数的表达式为y =−12x 联立{y =−12x y =−x +4解得{x =−2y =6 或{x =6y =−2∴点C 的坐标为(6,−2);(2)解:根据图象可知当x <−2或0<x <6时 一次函数图象在反比例函数图象的上方 ∴当x <−2或0<x <6时 一次函数的值大于反比例函数的值;(3)解:令y =−x +4=0 得x =4∴点B 的坐标为(4,0)∴ OB =4∴ S △AOC =S △AOB +S △BOC=12OB ⋅|y A |+12OB ⋅|y C | =12×4×6+12×4×2 =16.12.(1)反比例解析式为y =2x 一次函数的解析式为y =2x −3 (2)x =3±√13或−3±√13(3)(−17,−14)或(−1,−2)【分析】(1)由待定系数法即可求解;(2)当点M 在AO 下方时 过点D 作DM∥OA 交反比例函数图象于M 得到直线DM 为y =12x −3 即可求解;当点M 在AO 上方时 同理可解;(3)当射线AC 逆时针旋转时 用解直角三角形的方法求出ND =√5m =10 即可求解;当射线AC 顺时针旋转时同理可解.【详解】(1)解:把A(2,1)代入y=kx得k=2则反比例解析式为y=2x;把点B(m,−4)代入y=2x得△−4=2m解得:m=−12△B(−12,−4)把A与B坐标代入一次函数解析式得{2a+b=1−12a+b=−4解得{a=2b=−3△一次函数的解析式为y=2x−3;(2)解:在y=2x−3中令y=0解得:x=−3则D的坐标是(−3,0).即OD=3.则S△AOD=12×3×2=3.设直线OA的解析式为y=kx△点A(2,1)△k=12△直线OA为y=12x过点D作DM∥OA交反比例函数图象于M△直线DM为y=12x−3解{y =12x −3y =2x得:x =3±√13 即点M 的横坐标为:x =3±√13;在AO 上方取点N 使ON =OD 过点N 作直线n∥OA 则直线n 和抛物线的交点也为点M (M ′) 同理可得 点M ′的横坐标为x =−3±√13;综上 点M 的横坐标为:x =3±√13或x =−3±√13; (3)解:当射线AC 逆时针旋转时 如下图: 由点A D 的坐标得设直线AQ 交y 轴于点N 过点N 作NH ⊥AB 于点H 则tan∠NAH =tanα由直线AD 的表达式知 tan∠OCD =2 则tan∠ODC =12在△ADN 中设HN =m 则DH =2m 则ND =√5m 则tanα=HN AH=2√5+2m=13解得:m =2√5 则ND =√5m =10 则点N(0,−13)由点A N 的坐标得 直线AN (AQ )的表达式为:y =7x −13 联立y =7x −13和反比例函数表达式得:7x −13=2x解得:x=−17或2(舍去)则点Q(−17,−14);当射线AC顺时针旋转时同理可得:AQ的表达式为:y=x−1联立y=x−1和反比例函数表达式得:x−1=2x解得:x=−1或2(舍去)则点Q(−1,−2)综上点Q的坐标为:(−17,−14)或(−1,−2).【点睛】本题考查的是反比例函数综合运用涉及到解直角三角形图象的旋转平行线的性质等分类求解是本题解题的关键.13.(1)k=2;(2)OA的长度为√104πOM=53;(3)S1+S2=58π−512.【分析】(1)利用待定系数法即可求解;(2)设AO所在圆的圆心为O1连接OO1利用正方形性质求出OA的半径r=√102即可求出OA的长度过点B作BE⊥x轴于E过点A作AF⊥y轴于F证明△BOE≌△AOF求出B(2,−1)设直线AB的解析式为y=ax+b求出直线AB的解析式即可求解;(3)利用S1+S2=14πr2+S△O1OB−S△AOM解答即可求解.【详解】(1)解:△A(1,2)在反比例函数y=kx的图象上△k=1×2=2;(2)△四边形ABCD为正方形且AC为对角线△OA=√12+22=√5AB=√10∠AOB=90°如图设AO所在圆的圆心为O1连接OO1△OA=OB△OO1⊥AB△∠AO1O=∠BO1O=90°△AB 为直径 △OA 的半径r =√102△OA 的长度为14×2π×r =√104π 过点B 作BE ⊥x 轴于E 过点A 作AF ⊥y 轴于F 则∠OEB =∠OFA =90° △∠AOF +∠AOM =90° △∠BOE =∠AOF 在△BOE 和△AOF 中{∠OEB =∠OFA =90°∠BOE =∠AOF BO =AO△△BOE ≌△AOF (AAS ) △BE =AF =1 △B (2,−1)设直线AB 的解析式为y =ax +b 把A (1,2) B (2,−1)代入得{2=a +b −1=2a +b解得{a =−3b =5直线AB 的解析式为y =−3x +5 当y =0时 △M (53,0)△OM =53;(3)解:△S 1+S 2=14πr 2+S △O 1OB −S △AOM△S1+S2=14π×(√102)2+12×√102×√102−12×53×2=58π−512.【点睛】本题考查了反比例函数的几何综合应用正方形的性质勾股定理全等三角形的判定和性质待定系数法求函数解析式一次函数与x轴的交点求不规则图形面积求出点B的坐标是解题的关键.14.(1)(1,−3)(2)此时t的值为92;反比例函数解析式为y=6x;(3)存在满足要求点Q的坐标为(34,8)或(32,4)或(−32,−4)【分析】(1)过点D作DE⊥x轴于点E过点B作BF⊥x轴于点F由正方形的性质结合同角的余角相等即可证出△ABE≌△DAF从而得出DE=AF AE=BF再结合点A D的坐标即可求出点B的坐标;(2)设反比例函数为y=kx根据平行的性质找出点B′D′的坐标再结合反比例函数图象上点的坐标特征即可得出关于k t的二元一次方程组解方程组解得出结论;(3)先求出点B′D′的坐标再分三种情况利用平行四边形的对角线互相平分建立方程求解即可得出结论.【详解】(1)如图过点B作BE⊥y轴垂足为点E过点D作DF⊥y轴垂足为点F则∠AEB=DFA= 90°∵点A的坐标为(0,6)D的坐标为(3,−7)∴DF=3∵四边形ABCD是正方形∴AB=AD∴∠DAF+∠BAE=∠DAF+∠ADF=90°∴∠BAE=∠ADF∴△ABE≌△DAF∴DF=AE=3∴OE=OA−AE=3所以点B的坐标为(1,−3);(2)由题意得正方形ABCD沿y轴向上平移了2t个单位长度.∵点B的坐标为(1,−3)D的坐标为(3,−7)∴B′和D′的坐标分别为B′(1,−3+2t)设点B′D′落在反比例函数y=kx(k≠0)的图像上则k=1×(−3+2t)=3×(−7+2t)解得t=92所以解得k=6即这个反比例函数的表达式为y=6x;(3)存在x轴上的点P和反比例函数图像上的点Q使得以P Q B′D′四点为定点的四边形是平行四边形.设P(n,0)由(2)知B′和D′点的坐标分别为B′(1,6)当B′D′为平行四边形的边时则PQ△B′D′∴点Q的坐标为(n+2,4)或(n−2,−4)把Q(n+2,4)代入y=6x 中得4(n+2)=6解得n=−12∴点Q的坐标为(32,4)把Q(n−2,−4)代入y=6x 中得4(n−2)=−6解得n=12∴点Q的坐标为(−32,−4);当B′D′为平行四边形的对角线时则B′D′的中点坐标为(2,4)∴PQ的中点坐标为(2,4)∴Q点的坐标为(−4−n,8)把Q点坐标带入y=6x 中得8(−n−4)=6解得n=−194∴点Q的坐标为(34,8)综上所述满足要求的点Q的坐标为(34,8)或(32,4)或(−32,−4)【点睛】本题考查了是反比例函数与正方形结合的综合题主要考查了反比例函数的图象与性质待定系数法全等三角形的性质与判定平行四边形的性质解题的关键是证明全等三角形和分情况讨论.15.(1)y=2x(2)存在(√62,√6)或(−√62,−√6).(3)(√2,√2)【分析】本题考查反比例函数与一次函数的综合应用正确的求出函数解析式利用数形结合的思想进行求解是解题的关键.(1)待定系数法求函数解析式即可;(2)分割法求出△OAB的面积设点M为(m,2m)利用面积公式列式计算即可;(3)根据OM最小时平行四边形的周长最小进行求解即可.【详解】(1)解:设正比例函数的解析式为y=kx反比例函数的解析式为y=mx△正比例函数和反比例函数的图象都经过点A(−1,−2)△−k=−2,m=−1×(−2)=2△k=2△正比例函数的解析式为y=2x反比例函数的解析式为y=2x.(2)△A(−1,−2)△S△OAB=2×2−12×1×2×21×1×1=32设点M为(m,2m)则:12|m|×|2m|=32△m=±√62所以点M的坐标为(√62,√6)或(−√62,−√6).(3)△B(−2,−1)△OB=√12+22=√5△当OM最短时平行四边形的周长最小设点M为(x,y)则:xy=2△OM=√x2+y2≥√2xy=2△平行四边形BOMC的周长最小是2(√5+2)=2√5+4此时点M的坐标为(√2,√2).16.(1)y=16x(2)12(3)8【分析】本题考查了反比例函数与一次函数的综合题目涉及求函数解析式两函数交点问题等腰直角三角形的判定和性质熟练掌握知识点是解题的关键.(x>0,k>0)求出n的值进而得出A点坐标(1)将点A(n,n)点B(2n,n−2)代入反比例函数y=kx利用待定系数法即可求函数解析式再根据过点B作y轴的平行线可得点B D的横坐标相同代入正比例函数解析式求解即可;(2)过点B作BN⊥x轴于点N过点A作AM⊥BN轴于点M根据S△AOB=S梯形AONM−S△ONB−S△ABM求解即可;(3)设E(t,t)则OF=EF=t进而证明△OEF是等腰直角三角形△PEG是等腰直角三角形设EG= PG=k则P(t+k,t−k)将其代入反比例函数解析式可得t2−k2=16进而求解即可.(x>0,k>0)图象上【详解】(1)△点A(n,n)点B(2n,n−2)反比例函数y=kx△k=n2=2n(n−2)解得n=4或0(舍去)△A(4,4),B(8,2),k=16△反比例函数解析式为y=16x将A(4,4)代入y=ax(a>0)得a=1△正比例函数解析式为y=x△过点B作y轴的平行线△点B D的横坐标相同当x=8时△D(8,8);(2)过点B作BN⊥x轴于点N过点A作AM⊥BN轴于点M。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x O y
x
O
y
x O y
x O y
A B C D
初三数学反比例函数测试题
(时间100分钟,满分120分)
一、 选择题(每小题5分,共50分)
1、若点(1,1-x )、)2,(2-x 、)1,(3x 都在反比例函数x
y 2
=
的图象上,则321,,x x x 的大小关系是( ) A .231x x x << B .312x x x << C .321x x x << D .132x x x << 2、若反比例函数k
y x
=
的图象经过点(3)m m ,,其中0m ≠,则此反比例函数的图象在( ) A .第一、二象限;B .第一、三象限 ;C .第二、四象限; D .第三、四象限 3、在直角坐标系中,点A 是x 轴正半轴上的一个定点,点B 是双曲线3
y x
=
(0x >) 上的一个动点,当点B 的横坐标逐渐增大时,OAB △的面积将会( ) A .逐渐增大 B .不变 C .逐渐减小 D .先增大后减小 4、 函数y kx =-与y k x
=
(
k ≠0)的图象的交点个数是( ) A. 0 B. 1 C. 2 D. 不确定 5、函数6y x =-与函数40y
x x
的图象交于A 、B 两点,设点A 的坐标为()11,x y ,则边长分别为1x 、
1y 的矩形面积和周长分别为( )
A. 4,12
B. 4,6
C. 8,12
D. 8,6
6、已知1y +2y =y,其中1y 与
1
x
成反比例,且比例系数为1k ,而2y 与2x 成正比例,且比例系数为2k ,若x=-1时,y=0,则1k ,2k 的关系是( )
A.12k k + =0
B.12k k =1
C.12k k - =0
D.12k k =-1 7、正比例函数kx y 2=与反比例函数x
k y 1
-=在同一坐标系中的图象不可能...是( )
8、如图,直线y=mx 与双曲线k
y x
=交与A 、B 两点,过点A 作AM ⊥x 轴,垂足为M ,连接BM ,若S △ABM=2,则k 的值是 ( )
A 、2
B 、m-2
C 、m
D 、4
9、如图,点A 在双曲线6
y x
=
上,且OA =4,过A 作AC ⊥x 轴,垂足为C ,OA
的垂直平分线交OC 于B ,则△ABC 的周长为( )
A.47
B.5
C.27
D.22
10、如图,反比例函数x
k
=
y (k >0)与一次函数b x 21y +=的图象相交于两点A (1x ,1y ),B (2x ,2y ),线
段AB 交y 轴与C ,当|1x -2x |=2且AC = 2BC 时,k 、b 的值分别为( ) A.k =
21
,b =2 B.k =94,b =1 C.k =13,b =13 D.k =9
4,b =13
二、 填空题(每小题5分,共20分)
11、已知),(),,(2211y x B y x A 都在反比例函数x
y 6
=
的图象上。
若321-=x x ,则21y y 的值为 。
12、在平面直角坐标系xoy 中,直线y x =向上平移1个单位长度得到直线l .直线l 与反比例函数 k y x
=的图象的一个交点为(2)A a ,,则k 的值等于 .
13、如图所示,点
1
A、
2
A、
3
A在x轴上,且
3
2
2
1
1
A
A
A
A
OA=
=,分别过点
1
A、
2
A、
3
A作y轴的平行线,与分比例函数)0
(
8
>
=x
x
y的图像分别交于点
1
B、
2
B、
3
B,分别过点
1
B、
2
B、
3
B作x轴的平行线,分别与y轴交于点1C、2C、3C,连接1
OB、
2
OB、
3
OB,那么图中阴影部分的面积之和为.
(第13题图)(第14题图)
14、已知, A、B、C、D、E是反比例函数
16
y
x
=(x>0)图象上五个整数点(横、纵坐标均为整数),分别以这些点向横轴或纵轴作垂线段,由垂线段所在的正方形边长为半径作四分之一圆周的两条弧,组成如图5所示的五个橄榄形(阴影部分),则这五个橄榄形的面积总和是(用含π的代数式表示)
三、解答题(共50分)
x
m
y=的图象交15、(8分)如图,一次函数b
kx
y+
=的图象与反比例数
于A(-3,1)、B(2,n)两点.
(1)求上述反比例函数和一次函数的解析式;
(2)求△AOB的面积.
(3)根据图象写出使一次函数的值小于反比例函数
的值的x的取值范围.
16、(8分)近年来,我国煤矿安全事故频频发生,其中危害最大的是瓦斯,其主要成分是CO.在一次矿难
事件的调查中发现:从零时起,井内空气中CO 的浓度达到4 mg/L ,此后浓度呈直线型增加,在第7小时达到最高值46 mg/L ,发生爆炸;爆炸后,空气中的CO 浓度成反比例下降.如图11,根据题中相关信息回答下列问题:
(1)求爆炸前后..空气中CO 浓度y 与时间x 的函数关系式,并写出相应的自变量取值范围; (2)当空气中的CO 浓度达到34 mg/L 时,井下3 km 的矿工接到自动报警信号,这时他们至少要以多少km/h 的速度撤离才能在爆炸前逃生?
(3)矿工只有在空气中的CO 浓度降到4 mg/L 及以下时,才能回到矿井开展生产自救,求矿工至少在爆炸后多少小时才能下井?
17、(10分)如图,在直角坐标系中,△OBA ∽△DOC ,
边OA 、OC 都在x 轴的正半轴上,点B 的坐标为(6,8),∠BAO = ∠OCD =90°,OD =5.反比例函数(0)k
y x x
=>的图象经过点D , 交AB 边于点E . (1)求k 的值. (2)求BE 的长.
图11
参考答案
一、 选择题
1—5 CBCAA 6—10 CDACD 二、填空题
11、-12 12、2 13、
9
49 14、5,101n n +
三、解答题
15、解:(1)依题意有:m =1×(-3)= -3
∴反比例函数的表达式是: x
y 3-= 又∵B(2, n) ∴ n= ∴⎩
⎨⎧=+--=+1
3232b k b k 解之得:⎩⎨⎧-=-=2121k b
一次函数的表达式是:
(2)由(1)知 , ∴当y=0时, ∴1-=x ∴C (-1,0) ∴OC =1 又∵A(-3, 1) B(2, ) ∴S △A OB =S △AOC +S △BOC =
16、【答案】.解:(1)因为爆炸前浓度呈直线型增加,
所以可设y 与x 的函数关系式为1y k x b =+ 由图象知1y k x b =+过点(0,4)与(7,46)
∴14746b k b =⎧⎨+=⎩. 解得16
4k b =⎧⎨=⎩
,
∴64y x =+,此时自变量x 的取值范围是0≤x ≤7. (不取x =0不扣分,x =7可放在第二段函数中) 因为爆炸后浓度成反比例下降,
2
121--=x y 2
3
-
2121--=x y 02
121=--x 23
-
45231211121=⨯⨯+⨯⨯
所以可设y 与x 的函数关系式为2
k y x
=. 由图象知2
k y x
=过点(7,46), ∴
2
467
k =. ∴2322k =, ∴322y x
=,此时自变量x 的取值范围是x >7.
(2)当y =34时,由64y x =+得,6x +4=34,x =5 . ∴撤离的最长时间为7-5=2(小时). ∴撤离的最小速度为3÷2=1.5(km/h). (3)当y =4时,由322
y x
=
得, x =80.5,80.5-7=73.5(小时).
∴矿工至少在爆炸后73.5小时能才下井.
17、答案:(1)∵△OBA ∽△DOC ,∴OC BA
DC OA
=
. ∵B (6,8),∠BAO =90︒,∴
84
63
OC DC ==. 在Rt △COD 中,OD =5,∴OC =4,DC =3. ∴D (4,3). ∵点D 在函数k y x
=的图象上,∴34
k =
. ∴12k =.
(2)∵E 是12
(0)y x x =
>图象与AB 的交点,∴AE =
126
=2. ∴BE =8-2=6.。