(新课程)高中数学《3.2简单的三角恒等变换》导学案 新人教A版必修4
高中数学 3.2《简单的三角恒等变换》导学案 新人教A版必修4

【学习目标】会用已学公式进行三角函数式的化简、求值和证明;会推导半角公式,积化和差、和差化积公式(公式不要求记忆),进一步提高运用转化、换元、方程等数学思想解决问题的能力。
【重点难点】学习重点:以已有公式为依据,以推导半角公式,积化和差、和差化积公式作为基本训练,学习三角变换的内容、思路和方法,体会三角变换的特点,提高推理、运算能力。
学习难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力。
【学法指导】Sα、2Cα、2Tα,先让学生默写三个倍角公式,注意等号两边角的关系,特别注复习倍角公式2意Cα。
既然能用单角,表示倍角,那么能否用倍角表示单角呢?回顾复习两角和与差的正弦、余2弦和正切公式及二倍角公式,预习简单的三角恒等变换。
【知识链接】:1、回顾复习以下公式并填空:Cos(α+β)= Cos(α-β)=sin(α+β)= sin(α-β)=tan(α+β)= tan(α-β)=sin2α= tan2α=cos2α=2、阅看课本P139---141例1、2、3。
三、提出疑惑:疑惑点疑惑内容【学习过程】:探究一:半角公式的推导(例1)请同学们阅看例1,思考以下问题,并进行小组讨论。
1、2α与α有什么关系?α与α/2有什么关系?进一步体会二倍角公式和半角公式的应用。
2、半角公式中的符号如何确定?3、二倍角公式和半角公式有什么联系?4、代数变换与三角变换有什么不同?探究二:半角公式的推导(例2)请同学们阅看例2,思考以下问题,并进行小组讨论。
1、两角和与差的正弦、余弦公式两边有什么特点?它们与例2在结构形式上有什么联系?2、在例2证明过程中,如果不用(1)的结果,如何证明(2)?3、在例2证明过程中,体现了什么数学思想方法?探究三:三角函数式的变换(例3),请同学们阅看例1,思考以下问题,并进行小组讨论。
1、例3的过程中应用了哪些公式?2、如何将形如y=asinx+bcosx 的函数转化为形如y=Asin(ωx+φ)的函数?并求y=asinx+bcosx 的周期,最大值和最小值.【学习反思】sin α/2= cos α/2= tan α/2=sin αcos β= cos αsin β=cos αcos β= sin αsin β=sin θ+sin φ= sin θ-sin φ=cos θ+cos φ= cos θ-cos φ=【基础达标】:课本p143 习题3.2 A 组1、(3)(7)2、(1)B 组2【拓展提升】一、选择题:1.已知cos (α+β)cos (α-β)=31,则cos 2α-sin 2β的值为( ) A .-32 B .-31 C .31 D .32 2.在△ABC 中,若sin A sin B =cos 22C ,则△ABC 是( )A .等边三角形B .等腰三角形C .不等边三角形D .直角三角形3.sin α+sin β=33(cos β-cos α),且α∈(0,π),β∈(0,π),则α-β等于( ) A .-3π2 B .-3π C .3π D .3π2二、填空题4.sin20°cos70°+sin10°sin50°=_________.5.已知α-β=3π2,且cos α+cos β=31,则cos (α+β)等于_________.三、解答题6.已知f (x )=-21+2sin 225sin x x,x ∈(0,π).(1)将f (x )表示成cos x 的多项式;(2)求f (x )的最小值.。
人教版高中数学高一A版必修4导学案 3.2简单的三角恒等变换(一)

课堂导学三点剖析1.综合运用所学公式进行化简.求值和证明【例1】已知cos (α+β)=51,cos (α-β)=53,求tanαtanβ的值. 思路分析:要求tanαtanβ,需求sinαsinβ与cosαcosβ,两个整体式子的值,而cos (α+β)与cos (α-β)展开式中正好含有cosαcosβ与sinαsinβ,因此,可构造关于sinαsinβ,cosαcosβ的方程组来求解.解:由条件得:⎪⎪⎩⎪⎪⎨⎧=+=-)2.(53sin sin cos cos )1(,51sin sin cos cos βαβαβαβα ①+②得,2cosαcosβ=54,∴cosαcosβ=52. ②-①得,2sinαsinβ=52,∴sinαsinβ=51. ∴tanαtanβ=215251sin cos sin sin ==βαβα. 温馨提示要抓住公式之间的内在联系,在充分理解的基础上加强记忆,并能做到灵活运用公式本题就是利用方程的思想,构造一个关于sinαsinβ与cosαcosβ的方程组,通过解方程获解.2.辅助角公式的应用【例2】 将下列各式化简为Asin (ωx+φ)的形式:(1)cosx-sinx ;(2)3sinx+3cosx ;(3)asinx+bcosx (ab≠0).思路分析:本题主要考查两角和(差)的正余弦公式的恒等变形.解:(1)cosx-sinx=-(sinx-cosx ) =-2(22sinx-22cosx ) =-2(sinxcos4π-cosxsin 4π) =-2sin (x-4π). 本题化简结果不唯一,也可这样变换: cosx-sinx=2(22cosx-22sinx )=2(sinxcos 43π+cosxsin 43π)=2sin (x+43π).(2)3sinx+3cosx=23(23sinx+21cosx ) =23(sinxcos6π+cosxsin 6π) =23sin (x+6π). (3)asinx+bcosx =)cos sin (222222x b a b x b a ab a ++++ =22b a +(sinxcosφ+cosxsinφ) =22b a +sin (x+φ).其中cosφ=22b a a+,sinφ=22b a b +.3.半角公式的应用及符号选择【例3】 已知cosθ=-53,且180°<θ<270°,求tan 2θ的值. 思路分析:本题有以下两种思路:(1)cosθ=-53→tan 2θ=±θθcos 1cos 1+-→tan 2θ的值; (2)cosθ=-53→tan 2θ=θθsin cos 1-(或tan 2θ=θθcos 1sin +)→tan 2θ的值. 对于(1)的思考要注意符号的选择.解法1:因为180°<θ<270°,所以90°<2θ<135°,即2θ是第二象限的角,所以tan 2θ<0, ∴tan 2θ=.2)53(1)53(1cos 1cos 1-=-+---=+--θθ 解法2:因为180°<θ<270°,即θ是第三象限角,∴sinθ=542591cos 12-=--=--θ. ∴tan 2θ=54)53(1sin cos 1---=-θθ=-2,或tan 2θ=)53(154cos 1sin -+-=+θθ=-2. 各个击破类题演练1已知sin (α+β)=21,sin (α-β)=31,求βαtan tan 的值. 解:由已知可得:sinαcosβ+cosαsinβ=21① sinαcosβ-cosαsinβ=31② ①+②得sinαcosβ=125, ①-②得cosαcosβ=121. ∴βαtan tan =5. 变式提升1求值:tan (6π-θ)+tan (6π+θ)+3tan (6π-θ)·tan (6π+θ). 解:原式=tan [(6π-θ)+(6π+θ)]·[1-tan (6π-θ)·tan (6π+θ)]+3tan (6π-θ)·tan (6π+θ) =tan 3π·[1-tan (6π-θ)·tan (6π+θ)]+3tan (6π-θ)·tan (6π+θ) =3-3·tan (6π-θ)·tan (6π+θ)+3tan (6π-θ)tan (6π+θ)=3. 类题演练2将3sinx-4cosx 化为Asin (ωx+φ)的形式.解:3sinx-4cosx=5(53sinx-54cosx ) 令cosφ=53,φ为第一象限角,则sinφ=54, ∴3sinx-4cosx=5(sinxcosφ-cosxsinφ)=5sin (x-φ).变式提升2(1)求函数y=sin 4x+23sinxcosx-cos 4x 的最小正周期和最小值 ;并写出该函数在[0,π]上的单调递增区间.解:y=sin 4x+23sinxcosx-cos 4x(sin 2x+cos 2x )(sin 2x-cos 2x )+3sin2x =3sin2x-cos2x=2sin (2x-6π). 故该函数的最小正周期是π;最小值是-2. 单增区间是[0,3π],[π65,π]. (2)当y=2cosx-3sinx 取得最大值时,tanx 的值是( ) A.23 B.-23 C.13 D.4 解析:y=2cosx-3sinx=13sin (x+φ)最大值为13,又sin 2x+cos 2x=1, 解得sinx=133-,cosx=132, ∴tanx=xx cos sin =-23. 答案:B类题演练3已知sinφ·cosφ=16960,且4π<φ<2π,求sinφ,cosφ的值. 解:∵sinφcosφ=16960,∴sin2φ=169120, 又∵4π<φ<2π,2π<2φ<π,cos2φ<0, ∴cos2φ=169119169717)169120(12sin 122-=⨯-=--=--ϕsinφ>0,cosφ>0. ∴sinφ=13122169119122cos 1=+=-ϕ, cosφ=1352169119122cos 1=-=+ϕ. 变式提升3设5π<θ<6π,cos 2θ=a ,那么sin 4θ等于( ) A.21a +- B.21a -- C.21a +- D.-21a -解析:由5π<θ<6π,则52π<2θ<3π,45π<4θ<23π,则sin 4θ=2122cos 1a --=--θ. 答案:B。
人教a版必修4学案:3.2简单的三角恒等变换(含答案)

3.2 简单的三角恒等变换自主学习知识梳理1.半角公式(1)S α2:sin α2=__________;(2)C α2:cos α2=________; (3)T α2:tan α2=________________=________________=__________(有理形式). 2.辅助角公式:a sin x +b cos x =a 2+b 2sin(x +φ),cos φ=__________,sin φ=______________其中φ称为辅助角,它的终边所在象限由________决定.自主探究1.试用cos α表示sin 2α2、cos 2α2、tan 2α2.2.证明:tan α2=sin α1+cos α=1-cos αsin α.对点讲练知识点一 半角公式的应用例1 已知sin θ=45,且5π2<θ<3π,求cos θ2和tan θ2的值.回顾归纳 在运用半角公式时,要注意根号前符号的选取,不能确定时,根号前应保持正、负两个符号.变式训练1 已知α为钝角,β为锐角,且sin α=45,sin β=1213,求cos α-β2.知识点二 利用辅助角公式研究函数性质例2 已知函数f (x )=3sin ⎝⎛⎭⎫2x -π6+2sin 2⎝⎛⎭⎫x -π12 (x ∈R ). (1)求函数f (x )的最小正周期;(2)求使函数f (x )取得最大值的x 的集合.回顾归纳 研究形如f (x )=a sin 2ωx +b sin ωx cos ωx +c cos 2ωx 的性质时,先化成f (x )=A sin(ω′x +φ)+B 的形式后,再解答.这是一个基本题型,许多题目化简后都化归为该题型.变式训练2 已知函数f (x )=sin(x +π6)+sin ⎝⎛⎭⎫x -π6+cos x +a (a ∈R ). (1)求函数y =f (x )的单调增区间;(2)若函数f (x )在⎣⎡⎦⎤-π2,π2上的最大值与最小值的和为3,求实数a 的值.知识点三 三角函数在实际问题中的应用例3 如图所示,已知OPQ 是半径为1,圆心角为π3的扇形,C 是扇形弧上的动点,ABCD 是扇形的内接矩形.记∠COP =α,求当角α取何值时,矩形ABCD 的面积最大?并求出这个最大面积.回顾归纳 利用三角函数知识解决实际问题,关键是目标函数的构建,自变量常常选取一个恰当的角度,要注意结合实际问题确定自变量的范围.变式训练3 某工人要从一块圆心角为45°的扇形木板中割出一块一边在半径上的内接长方形桌面,若扇形的半径长为1 m ,求割出的长方形桌面的最大面积(如图所示).1.学习三角恒等变换,不要只顾死记硬背公式,而忽视对思想方法的理解,要立足于在推导过程中记忆和运用公式.2.形如f (x )=a sin x +b cos x ,运用辅助角公式熟练化为一个角的一个三角函数的形式,即f (x )=a 2+b 2sin(x +φ) (φ由sin φ=b a 2+b 2,cos φ=a a 2+b2确定)进而研究函数f (x )性质. 如f (x )=sin x ±cos x =2sin ⎝⎛⎭⎫x ±π4, f (x )=sin x ±3cos x =2sin ⎝⎛⎭⎫x ±π3等.课时作业一、选择题1.已知180°<α<360°,则cos α2的值等于( ) A .-1-cos α2 B. 1-cos α2C .-1+cos α2 D. 1+cos α22.如果|cos θ|=15,5π2<θ<3π,那么sin θ2的值为( ) A .-105 B.105C .-155 D.1553.设a =12cos 6°-32sin 6°,b =2sin 13°cos 13°,c =1-cos 50°2,则有( ) A .a >b >c B .a <b <cC .a <c <bD .b <c <a4.函数f (x )=sin x -3cos x (x ∈[-π,0])的单调递增区间是( )A.⎣⎡⎦⎤-π,-5π6B.⎣⎡⎦⎤-5π6,-π6 C.⎣⎡⎦⎤-π3,0 D.⎣⎡⎦⎤-π6,0 5.函数f (x )=cos x (sin x +cos x )的最小正周期为( )A .2πB .π C.π2 D.π4二、填空题6.函数y =cos x +cos ⎝⎛⎭⎫x +π3的最大值是________. 7.若3sin x -3cos x =23sin(x +φ),φ∈(-π,π),则φ的值是________.8.已知函数f (x )=a sin[(1-a )x ]+cos[(1-a )x ]的最大值为2,则f (x )的最小正周期为________.三、解答题9.已知向量a =(sin(π2+x ),3cos x ),b =(sin x ,cos x ),f (x )=a ·b . (1)求f (x )的最小正周期和单调增区间;(2)如果三角形ABC 中,满足f (A )=32,求角A 的值.10.已知函数f (x )=2a sin 2x -23a sin x cos x +b (a >0)的定义域为⎣⎡⎦⎤0,π2,值域为[-5,4],求常数a ,b 的值.§3.2 简单的三角恒等变换答案知识梳理1.(1)±1-cos α2 (2)± 1+cos α2 (3)± 1-cos α1+cos α sin α1+cos α 1-cos αsin α 2.a a 2+b 2 b a 2+b 2点(a ,b ) 自主探究1.解 ∵cos α=cos 2α2-sin 2α2=1-2sin 2α2∴2sin 2α2=1-cos α,sin 2α2=1-cos α2. ① ∵cos α=2cos 2α2-1,∴cos 2α2=1+cos α2② 由①②得:tan 2α2=1-cos α1+cos α. 2.证明 ∵sin α1+cos α=2sin α2cos α22cos 2α2=tan α2. ∴tan α2=sin α1+cos α,同理可证:tan α2=1-cos αsin α. ∴tan α2=sin α1+cos α=1-cos αsin α. 对点讲练例1 解 ∵sin θ=45,5π2<θ<3π. ∴cos θ=-1-sin 2θ=-35. 又5π4<θ2<3π2. ∴cos θ2=-1+cos θ2=-1-352=-55. tan θ2=1-cos θ1+cos θ=1-⎝⎛⎭⎫-351+⎝⎛⎭⎫-35=2.变式训练1 解 ∵α为钝角,β为锐角,sin α=45,sin β=1213. ∴cos α=-35,cos β=513. cos(α-β)=cos αcos β+sin αsin β=-35×513+45×1213=3365. 又∵π2<α<π,0<β<π2, ∴0<α-β<π.0<α-β2<π2. ∴cos α-β2=1+cos (α-β)2=1+33652=76565. 例2 解 (1)∵f (x )=3sin ⎝⎛⎭⎫2x -π6 +2sin 2⎝⎛⎭⎫x -π12 =3sin2⎝⎛⎭⎫x -π12+1-cos2⎝⎛⎭⎫x -π12 =2⎣⎡⎦⎤32sin2⎝⎛⎭⎫x -π12-12cos2⎝⎛⎭⎫x -π12+1 =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π12-π6+1 =2sin ⎝⎛⎭⎫2x -π3+1,∴T =2π2=π. (2)当f (x )取得最大值时,sin ⎝⎛⎭⎫2x -π3=1, 有2x -π3=2k π+π2, 即x =k π+5π12(k ∈Z ), ∴所求x 的集合为{x |x =k π+5π12,k ∈Z }. 变式训练2 解 (1)f (x )=sin ⎝⎛⎭⎫x +π6+ sin ⎝⎛⎭⎫x -π6+cos x +a =3sin x +cos x +a =2sin ⎝⎛⎭⎫x +π6+a , 解不等式2k π-π2≤x +π6≤2k π+π2(k ∈Z ), 得y =f (x )的单调增区间是 ⎣⎡⎦⎤2k π-2π3,2k π+π3(k ∈Z ). (2)当x ∈⎣⎡⎦⎤-π2,π2时,-π3≤x +π6≤2π3,sin ⎝⎛⎭⎫x +π6∈⎣⎡⎦⎤-32,1, ∴f (x )的值域是[-3+a,2+a ].故(-3+a )+(2+a )=3,即a =3-1.例3 解 在直角三角形OBC 中,OB =cos α,BC =sin α. 在直角三角形OAD 中,DA OA=tan 60°= 3.∴OA =33DA =33BC =33sin α, ∴AB =OB -OA =cos α-33sin α 设矩形ABCD 的面积为S ,则S =AB ·BC =⎝⎛⎭⎫cos α-33sin αsin α =sin αcos α-33sin 2α =12sin 2α-36(1-cos 2α) =12sin 2α+36cos 2α-36=13⎝⎛⎭⎫32sin 2α+12cos 2α-36 =13sin ⎝⎛⎭⎫2α+π6-36. 由于0<α<π3,所以π6<2α+π6<5π6, 所以当2α+π6=π2, 即α=π6时,S 最大=13-36=36. 因此,当α=π6时,矩形ABCD 的面积最大,最大面积为36. 变式训练3 解如图所示,连OC , 设∠COB =θ,则0<θ<π4,OC =1. ∵AB =OB -OA =cos θ-AD=cos θ-sin θ,∴S 矩形ABCD =AB ·BC=(cos θ-sin θ)·sin θ=-sin 2θ+sin θcos θ =-12(1-cos 2θ)+12sin 2θ =12(sin 2θ+cos 2θ)-12=22cos ⎝⎛⎭⎫2θ-π4-12 ∴当2θ-π4=0,即θ=π8时,S max =2-12(m 2), ∴割出的长方形桌面的最大面积为2-12(m 2). 课时作业1.C 2.C3.C [由题可得a =sin 24°,b =sin 26°,c =sin 25°,所以a <c <b .]4.D [f (x )=2sin ⎝⎛⎭⎫x -π3,f (x )的单调递增区间为 ⎣⎡⎦⎤2k π-π6,2k π+56π (k ∈Z ), 令k =0得增区间为⎣⎡⎦⎤-π6,5π6.] 5.B [f (x )=sin x cos x +cos 2x =12sin 2x +1+cos 2x 2=12sin 2x +12cos 2x +12=22sin ⎝⎛⎭⎫2x +π4+12.∴T =π.] 6. 3解析 (1)y =cos x +cos ⎝⎛⎭⎫x +π3 =cos x +cos x cos π3-sin x sin π3=32cos x -32sin x =3⎝⎛⎭⎫32cos x -12sin x =3cos ⎝⎛⎭⎫x +π6. 当cos ⎝⎛⎭⎫x +π6=1时,y 有最大值 3. 7.-π6解析 3sin x -3cos x =23⎝⎛⎭⎫32sin x -12cos x =23sin ⎝⎛⎭⎫x -π6.∴φ=-π6. 8.π解析 由a +1=2,∴a =3,∴f (x )=-3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +5π6,∴T =π. 9.解 (1)由题意知,f (x )=sin x cos x +32+32cos 2x =sin(2x +π3)+32 2k π-π2≤2x +π3≤2k π+π2,k ∈Z , 即k π-5π12≤x ≤k π+π12,k ∈Z 最小正周期为π,单调增区间为[k π-5π12,k π+π12],k ∈Z . (2)由(1)知,f (x )=sin ⎝⎛⎭⎫2x +π3+32. ∵f (A )=32,∴sin(2A +π3)=0, 又∵A ∈(0,π),∴π3<2A +π3<7π3,∴2A +π3=π或2π, ∴A =π3或5π6. 10.解 f (x )=2a sin 2x -23a sin x cos x +b=2a ·1-cos 2x 2-3a sin 2x +b =-(3a sin 2x +a cos 2x )+a +b=-2a sin ⎝⎛⎭⎫2x +π6+a +b ∵0≤x ≤π2,∴π6≤2x +π6≤76π. ∴-12≤sin ⎝⎛⎭⎫2x +π6≤1. ∵a >0,∴f (x )max =2a +b =4,f (x )min =b -a =-5. 由⎩⎪⎨⎪⎧ 2a +b =4b -a =-5,得⎩⎪⎨⎪⎧a =3b =-2.。
2020-2021学年数学人教A版必修4学案:3.2 简单的三角恒等变换

3.2 简单的三角恒等变换[目标] 1.记住三角恒等变换常用公式. 2.能够利用三角函数公式进行简单的三角函数式的化简、求值和证明.[重点] 三角恒等变换常用公式. [难点] 三角恒等变换的化简与求值.知识点一 降幂公式与半角公式[填一填][答一答]1.半角公式中“±”号如何选取? 提示:符号由α2所在象限决定.2.已知sin θ=45,且5π2<θ<3π,则sin θ2=-255,cos θ2=-55,tan θ2=2.解析:∵sin θ=45,5π2<θ<3π, ∴cos θ=-1-sin 2θ=-35, ∵5π4<θ2<3π2, ∴sin θ2=-1-cos θ2=-1+352=-255. cos θ2=-1+cos θ2=-1-352=-55.tan θ2=sin θ2cos θ2=2(或tan θ2=sin θ1+cos θ=451-35=2).知识点二 常见的三角恒等变换[填一填]1.a sin α+b cos α =a 2+b 2(sin α·a a 2+b 2+cos α·ba 2+b2) =a 2+b 2sin(α+φ).(其中令cos φ=a a 2+b 2,sin φ=ba 2+b2)2.sin 2α=1-cos2α2,cos 2α=1+cos2α2,sin αcos α=12sin2α.[答一答]3.如何确定上述辅助角公式中的φ值?提示:可以由sin φ和cos φ的符号来确定φ所在的象限,由sin φ或cos φ的值确定角φ的大小.4.填空:(1)sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π4. (2)3sin α±cos α=2sin ⎝ ⎛⎭⎪⎫α±π6. (3)sin α±3cos α=2sin ⎝ ⎛⎭⎪⎫α±π3.类型一 半角公式的应用[例1] (1)设5π<θ<6π,cos θ2=a ,则sin θ4等于( ) A.1+a 2 B .1-a 2 C .-1+a 2D .-1-a 2(2)若sin(π-α)=-53且α∈⎝ ⎛⎭⎪⎫π,3π2,则sin ⎝ ⎛⎭⎪⎫π2+α2=________.[解析] (1)由题知,5π<θ<6π,cos θ2=a ,则54π<θ4<32π,则sin θ4=-1-cos θ22=-1-a2.故选D.(2)∵sin(π-α)=-53,α∈⎝ ⎛⎭⎪⎫π,32π, ∴sin α=-53,cos α=-23,又∵α2∈⎝ ⎛⎭⎪⎫π2,34π,∴sin ⎝ ⎛⎭⎪⎫π2+α2=cos α2=-1+cos α2=-66.[★★答案★★](1)D(2)-66已知θ的某个三角函数值,求θ2的三角函数值的步骤是:(1)利用同角三角函数基本关系式求得θ的其他三角函数值;(2)代入半角公式计算即可.[变式训练1]已知α∈(-π2,0),cosα=45,则tanα2=(D) A.3B.-3C.13D.-13解析:因为α∈(-π2,0),且cosα=45,所以α2∈(-π4,0),tanα2=-1-cosα1+cosα=-1-451+45=-13,故选D.类型二三角恒等式的化简与证明[例2]已知π<α<3π2,化简:1+sinα1+cosα-1-cosα+1-sinα1+cosα+1-cosα.[解]原式=⎝⎛⎭⎪⎫sinα2+cosα222⎪⎪⎪⎪⎪⎪cosα2-2⎪⎪⎪⎪⎪⎪sinα2+⎝⎛⎭⎪⎫sinα2-cosα222⎪⎪⎪⎪⎪⎪cosα2+2⎪⎪⎪⎪⎪⎪sinα2,∵π<α<3π2,∴π2<α2<3π4. ∴cos α2<0,sin α2>0.∴原式=⎝ ⎛⎭⎪⎫sin α2+cos α22-2⎝ ⎛⎭⎪⎫sin α2+cos α2+⎝ ⎛⎭⎪⎫sin α2-cos α222⎝ ⎛⎭⎪⎫sin α2-cos α2 =-sin α2+cos α22+sin α2-cos α22=-2cos α2.三角恒等变换是指依据三角函数的有关公式、定理,对三角函数式进行某种变形的过程,凡三角问题几乎都要通过三角恒等变换来解决.具体步骤如下:(1)发现差异——观察角、名、形三方面的差异;(2)寻找联系——根据式子的结构特征,找出差异间的联系; (3)合理转化——选取恰当的公式,进行恒等变形,促使差异转化. [变式训练2] 化简sin4α4sin 2⎝ ⎛⎭⎪⎫π4+αtan ⎝ ⎛⎭⎪⎫π4-α得( A )A .sin2αB .cos2αC .sin αD .cos α解析:∵4sin 2⎝⎛⎭⎪⎫π4+αtan ⎝ ⎛⎭⎪⎫π4-α=4cos 2⎝⎛⎭⎪⎫π4-αtan ⎝ ⎛⎭⎪⎫π4-α=4cos ⎝ ⎛⎭⎪⎫π4-αsin ⎝ ⎛⎭⎪⎫π4-α =2sin ⎝ ⎛⎭⎪⎫π2-2α=2cos2α,∴原式=sin4α4sin 2⎝⎛⎭⎪⎫π4+αtan ⎝⎛⎭⎪⎫π4-α=sin4α2cos2α=2sin2αcos2α2cos2α=sin2α. 类型三 三角恒等变换的应用命题视角1:三角恒等变换与三角函数性质的结合[例3] 函数f (x )=sin 2x +sin x cos x +1的最小正周期是________,单调递减区间是________.[解析] 由题意知,f (x )=12sin2x +12(1-cos2x )+1=22sin ⎝ ⎛⎭⎪⎫2x -π4+32,所以最小正周期T =π.令π2+2k π≤2x -π4≤3π2+2k π(k ∈Z ),得k π+3π8≤x ≤k π+7π8(k ∈Z ),故单调递减区间为⎣⎢⎡⎦⎥⎤3π8+k π,7π8+k π(k ∈Z ).[★★答案★★] π [3π8+k π,7π8+k π](k ∈Z )讨论三角函数的性质一般要把三角函数化为y =A sin (ωx +φ),y =A cos (ωx +φ),y =A tan (ωx +φ)的形式才能进行讨论.[变式训练3] 已知函数f (x )=sin x -cos ⎝ ⎛⎭⎪⎫x -π6,则函数的值域为[-1,1],对称轴方程为x =56π+k π(k ∈Z ).解析:f (x )=sin x -cos ⎝ ⎛⎭⎪⎫x -π6=sin x -32cos x -12sin x=12sin x -32cos x =sin ⎝ ⎛⎭⎪⎫x -π3则函数f (x )的值域是[-1,1].令x -π3=π2+k π,k ∈Z ,得x =56π+k π,k ∈Z . 所以函数f (x )的对称轴方程为x =56π+k π(k ∈Z). 命题视角2:三角恒等变换与平面向量的结合[例4] 在平面直角坐标系xOy 中,点A (cos θ,2sin θ),B (sin θ,0),其中θ∈R .(1)当θ=2π3时,求向量AB →的坐标; (2)当θ∈⎣⎢⎡⎦⎥⎤0,π2时,求|AB →|的最大值.[解] (1)由题意得AB →=(sin θ-cos θ,-2sin θ),当θ=2π3时,sin θ-cos θ=sin 2π3-cos 2π3=1+32,-2sin θ=-2sin 2π3=-62,所以AB →=⎝ ⎛⎭⎪⎫1+32,-62. (2)因为AB →=(sin θ-cos θ,-2sin θ), 所以|AB →|2=(sin θ-cos θ)2+(-2sin θ)2 =1-sin2θ+2sin 2θ=1-sin2θ+1-cos2θ =2-2sin ⎝ ⎛⎭⎪⎫2θ+π4.因为0≤θ≤π2,所以π4≤2θ+π4≤5π4. 所以当2θ+π4=5π4时,|AB →|2取到最大值, |AB →|2=2-2×⎝⎛⎭⎪⎫-22=3,即当θ=π2时,|AB →|取到最大值 3.三角恒等变换与平面向量的坐标运算相结合是常见的题型,这种题型往往体现了三角恒等变换的工具性.[变式训练4] 已知A ,B ,C 是△ABC 三内角,向量m =(-1,3),n =(cos A ,sin A ),且m·n =1,则角A =( D )A.π2B.π6C.π4D.π3 解析:∵m·n =1,∴(-1,3)·(cos A ,sin A )=1,即3sin A -cos A =1,∴2⎝⎛⎭⎪⎫sin A ·32-cos A ·12=1,∴sin ⎝ ⎛⎭⎪⎫A -π6=12.∵0<A <π,∴-π6<A -π6<5π6, ∴A -π6=π6,∴A =π3.命题视角3:三角恒等变换的实际应用[例5] 有一块以O 为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD 开辟为绿地,使其一边AD 落在半圆的直径上,另外两点B ,C 落在半圆的圆周上,已知半圆的半径长为a ,如何选择关于点O 对称的点A ,D 的位置,可以使矩形ABCD 的面积最大?[分析] 在△AOB 中利用∠AOB 表示OA ,AB 的长→ 表示矩形面积:2OA ·AB →得到面积与角间的函数关系→ 通过求函数的最值得到面积的最值 [解]画图如图所示,设∠AOB =θ(θ∈(0,π2)),则AB =a sin θ,OA =a cos θ. 设矩形ABCD 的面积为S ,则S =2OA ·AB ,即S =2a cos θ·a sin θ=a 2·2sin θcos θ=a 2sin2θ.∵θ∈(0,π2),∴2θ∈(0,π),当2θ=π2,即θ=π4时,S max =a 2,此时,A ,D 距离O 点都为22a .解决实际问题应首先设定主变量角α以及相关的常量与变量,建立含有角α的三角函数关系式,再利用三角函数的变换、性质等进行求解.求三角函数最值的问题,一般需利用三角函数的有界性来解决.[变式训练5] 某工人要从一块圆心角为45°的扇形木板中割出一块一边在半径上的内接长方形桌面,若扇形的半径长为1 m ,求割出的长方形桌面的最大面积(如图).解:如图,连接OC ,设∠COB =θ,则0°<θ<45°,OC =1.∵AB =OB -OA =cos θ-AD =cos θ-sin θ, ∴S 矩形ABCD =AB ·BC =(cos θ-sin θ)·sin θ=-sin 2θ+sin θcos θ=-12(1-cos2θ)+12sin2θ =12(sin2θ+cos2θ)-12=22cos ⎝ ⎛⎭⎪⎫2θ-π4-12.当2θ-π4=0,即θ=π8时,S max =2-12(m 2).∴割出的长方形桌面的最大面积为2-12m 2.1.已知cos α=-15,π2<α<π,则sin α2等于( D ) A .-105 B.105 C .-155 D .155 解析:∵π2<α<π,∴π4<α2<π2, ∵cos α=-15,∴sin α2=1-cos α2=155.2.下列各式中,值为12的是( B ) A .sin15°cos15°B .cos 2π6-sin 2π6C.tan30°1-tan 230° D .1+cos60°2解析:A 中,原式=12sin30°=14; B 中,原式=cos π3=12;C 中,原式=12×2tan30°1-tan 230°=12tan60°=32; D 中,原式=cos30°=32,故选B.3.函数y =12sin2x +sin 2x ,x ∈R 的值域是( C )A.⎣⎢⎡⎦⎥⎤-12,32 B .⎣⎢⎡⎦⎥⎤-32,12 C.⎣⎢⎡⎦⎥⎤-22+12,22+12 D .⎣⎢⎡⎦⎥⎤-22-12,22-12 解析:y =12sin2x +sin 2x =12sin2x -12cos2x +12=22sin ⎝ ⎛⎭⎪⎫2x -π4+12.故函数值域为⎣⎢⎡⎦⎥⎤-22+12,22+12. 4.若α∈(0,π),且cos α+sin α=-13,则cos2α=179.解析:∵(cos α+sin α)2=19,∴sin αcos α=-49, 而sin α>0,∴cos α<0.∴cos α-sin α=-(cos α+sin α)2-4sin αcos α=-173. ∴cos2α=cos 2α-sin 2α=(cos α+sin α)(cos α-sin α)=-13×⎝⎛⎭⎪⎫-173=179. 5.证明:sin α+11+sin α+cos α=12tan α2+12.证明:∵左边=2tanα21+tan2α2+11+2tanα21+tan2α2+1-tan2α21+tan2α2=tan2α2+2tanα2+11+tan2α2+2tanα2+1-tan2α2=⎝⎛⎭⎪⎫tanα2+122tanα2+2=12⎝⎛⎭⎪⎫tanα2+1=12tanα2+12=右边.∴等式成立.——本课须掌握的三大问题1.学习三角恒等变换,千万不要只顾死记硬背公式,而忽视对思想方法的理解,要学会借助前面几个有限的公式来推导后继公式,立足于在公式推导过程中记忆公式和运用公式.2.辅助角公式a sin x+b cos x=a2+b2sin(x+φ),其中φ满足:①φ与点(a,b)同象限;②tanφ=ba(或sinφ=ba2+b2,cosφ=aa2+b2).3.研究形如f(x)=a sin x+b cos x的函数性质,都要运用辅助角公式化为一个整体角的正弦函数或余弦函数的形式.因此辅助角公式是三角函数中应用较为广泛的一个重要公式,也是高考常考的考点之一.对一些特殊的系数a,b应熟练掌握.感谢您的下载!快乐分享,知识无限!由Ruize收集整理!感谢您的下载!快乐分享,知识无限!由Ruize收集整理!。
精选人教A版高中数学必修4第三章三角恒等变换3.2简单的三角恒等变换导学案

3.2 简单的三角恒等变换学习目标.1.能用二倍角公式导出半角公式,体会其中的三角恒等变换的基本思想方法.2.了解三角恒等变换的特点、变换技巧,掌握三角恒等变换的基本思想方法.3.能利用三角恒等变换对三角函数式化简、求值以及三角恒等式的证明和一些简单的应用.知识点一.半角公式思考1.我们知道倍角公式中,“倍角是相对的”,那么对余弦的二倍角公式,若用2α替换α,结果怎样?答案.结果是cos α=2cos2α2-1=1-2sin 2α2=cos 2α2-sin 2α2. 思考2.根据上述结果,试用sin α,cos α表示sin α2,cos α2,tan α2.答案.∵cos2α2=1+cos α2,∴cos α2=± 1+cos α2, 同理sin α2=±1-cos α2,∴tan α2=sinα2cosα2=±1-cos α1+cos α.思考3.利用tan α=sin αcos α和倍角公式又能得到tan α2与sin α,cos α怎样的关系?答案. tan α2=sin α2cos α2=sin α2·2cosα2cos α2·2cosα2=sin α1+cos α,tan α2=sin α2cos α2=sin α2·2sinα2cos α2·2sinα2=1-cos αsin α.梳理知识点二.辅助角公式思考1.a sin x +b cos x 化简的步骤有哪些? 答案.(1)提常数,提出a 2+b 2得到a 2+b 2⎝ ⎛⎭⎪⎫a a 2+b 2 sin x +b a 2+b 2cos x .(2)定角度,确定一个角θ满足: cos θ=a a 2+b2,sin θ=b a 2+b2(或sin θ=a a 2+b2,cos θ=b a 2+b 2).一般θ为特殊角⎝ ⎛⎭⎪⎫π4,π3等,则得到a 2+b 2(cos θsin x +sin θcos x )(或a 2+b 2(sin θsin x +cosθcos x )).(3)化简、逆用公式得a sin x +b cos x =a 2+b 2sin(x +θ)(或a sin x +b cos x =a 2+b 2cos(x -θ)).思考2.在上述化简过程中,如何确定θ所在的象限? 答案.θ所在的象限由a 和b 的符号确定. 梳理.辅助角公式:a sin x +b cos x =a 2+b 2sin(x +θ).(其中tan θ=ba)类型一.应用半角公式求值例1.已知sin θ=45,5π2<θ<3π,求cos θ2和tan θ2.解.∵sin θ=45,且5π2<θ<3π,∴cos θ=-1-sin 2θ=-35.由cos θ=2cos 2θ2-1,得cos 2θ2=1+cos θ2=15. ∵5π4<θ2<3π2,∴cos θ2=- 1+cos θ2=-55. tan θ2=sin θ1+cos θ=2.反思与感悟.(1)若没有给出角的范围,则根号前的正负号需要根据条件讨论. (2)由三角函数值求其他三角函数式的值的步骤: ①先化简所求的式子;②观察已知条件与所求式子之间的联系(从角和三角函数名称入手). 跟踪训练1.已知sin α=-817,且π<α<3π2,求sin α2,cos α2和tan α2. 解.∵sin α=-817,π<α<3π2,∴cos α=-1517.又∵π<α<3π2,∴π2<α2<3π4,∴sin α2=1-cos α2= 1+15172=41717, cos α2=-1+cos α2=- 1-15172=-1717, tan α2=sinα2cosα2=-4.类型二.三角恒等式的证明例2.求证:1+sin 4θ-cos 4θ2tan θ=1+sin 4θ+cos 4θ1-tan 2θ. 证明.要证原式,可以证明1+sin 4θ-cos 4θ1+sin 4θ+cos 4θ=2tan θ1-tan 2θ. ∵左边=sin 4θ+(1-cos 4θ)sin 4θ+(1+cos 4θ)=2sin 2θcos 2θ+2sin 22θ2sin 2θcos 2θ+2cos 22θ =2sin 2θ(cos 2θ+sin 2θ)2cos 2θ(sin 2θ+cos 2θ)=tan 2θ,右边=2tan θ1-tan 2θ=tan 2θ, ∴左边=右边, ∴原式得证.反思与感悟.证明三角恒等式的实质是消除等式两边的差异,有目的地化繁为简、左右归一或变更论证.对恒等式的证明,应遵循化繁为简的原则,从左边推到右边或从右边推到左边,也可以用左右归一,变更论证等方法.常用定义法、化弦法、化切法、拆项拆角法、“1”的代换法、公式变形法,要熟练掌握基本公式,善于从中选择巧妙简捷的方法. 跟踪训练2.证明:sin α+11+sin α+cos α=12tan α2+12.证明.∵左边=2tanα21+tan2α2+11+2tan α21+tan 2 α2+1-tan2α21+tan2α2=tan2α2+2tan α2+11+tan 2α2+2tan α2+1-tan2α2=⎝ ⎛⎭⎪⎫tan α2+122tan α2+2=12⎝ ⎛⎭⎪⎫tan α2+1=12tan α2+12=右边, ∴原等式成立.类型三.利用辅助角公式研究函数性质例3.已知函数f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π6+2sin 2⎝ ⎛⎭⎪⎫x -π12 (x ∈R ).(1)求函数f (x )的最小正周期;(2)求使函数f (x )取得最大值的x 的集合. 解.(1)∵f (x )=3sin(2x -π6)+2sin 2⎝ ⎛⎭⎪⎫x -π12 =3sin[2⎝ ⎛⎭⎪⎫x -π12]+1-cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12=2⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫32sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12-12cos ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12+1 =2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12-π6+1 =2sin ⎝ ⎛⎭⎪⎫2x -π3+1, ∴f (x )的最小正周期为T =2π2=π.(2)当f (x )取得最大值时,sin ⎝ ⎛⎭⎪⎫2x -π3=1, 有2x -π3=2k π+π2,即x =k π+5π12 (k ∈Z ),∴所求x 的集合为{x |x =k π+5π12,k ∈Z }.反思与感悟.(1)为了研究函数的性质,往往要充分利用三角变换公式转化为正弦型(余弦型)函数,这是解决问题的前提.(2)解此类题时要充分运用两角和(差)、二倍角公式、辅助角转换公式消除差异,减少角的种类和函数式的项数,为讨论函数性质提供保障.跟踪训练3.已知函数f (x )=cos ⎝ ⎛⎭⎪⎫π3+x ·cos ⎝ ⎛⎭⎪⎫π3-x ,g (x )=12sin 2x -14. (1)求函数f (x )的最小正周期;(2)求函数h (x )=f (x )-g (x )的最大值,并求使h (x )取得最大值时x 的集合. 解.(1)f (x )=⎝ ⎛⎭⎪⎫12cos x -32sin x ·⎝ ⎛⎭⎪⎫12cos x +32sin x=14cos 2x -34sin 2x =1+cos 2x 8-3(1-cos 2x )8=12cos 2x -14, ∴f (x )的最小正周期为T =2π2=π. (2)h (x )=f (x )-g (x )=12cos 2x -12sin 2x=22cos ⎝⎛⎭⎪⎫2x +π4,当2x +π4=2k π(k ∈Z )时,h (x )有最大值22.此时x 的取值集合为⎩⎨⎧⎭⎬⎫x |x =k π-π8,k ∈Z .类型四.三角函数在实际问题中的应用例4.如图,ABCD 是一块边长为100 m 的正方形地皮,其中AST 是半径为90 m 的扇形小山,其余部分都是平地.一开发商想在平地上建一个矩形停车场,使矩形的一个顶点P 在ST 上,相邻两边CQ 、CR 正好落在正方形的边BC 、CD 上,求矩形停车场PQCR 面积的最大值和最小值.解.如图连接AP ,设∠PAB =θ(0°≤θ≤90°),延长RP 交AB 于M ,则AM =90cos θ,MP =90sin θ. 所以PQ =MB =100-90cos θ,PR =MR -MP =100-90sin θ.所以S 矩形PQCR =PQ ·PR=(100-90cos θ)(100-90sin θ) =10 000-9 000(sin θ+cos θ) +8 100sin θcos θ.令t =sin θ+cos θ(1≤t ≤2), 则sin θcos θ=t 2-12.所以S 矩形PQCR =10 000-9 000t +8 100·t 2-12=8 1002(t -109)2+950. 故当t =109时,S 矩形PQCR 有最小值950 m 2;当t =2时,S 矩形PQCR 有最大值(14 050-9 0002) m 2.反思与感悟.此类问题关键在于构建函数模型,首先要选准角,有利于表示所需线段,其次要确定角的范围.跟踪训练4.某工人要从一块圆心角为45°的扇形木板中割出一块一边在半径上的内接长方形桌面,若扇形的半径长为1 m ,求割出的长方形桌面的最大面积(如图).解.连接OC ,设∠COB =θ,则0°<θ<45°,OC =1. ∵AB =OB -OA =cos θ-AD =cos θ-sin θ, ∴S 矩形ABCD =AB ·BC=(cos θ-sin θ)·sin θ =-sin 2θ+sin θcos θ =-12(1-cos 2θ)+12sin 2θ=12(sin 2θ+cos 2θ)-12 =22cos(2θ-45°)-12. 当2θ-45°=0°,即θ=22.5°时,S max =2-12(m 2). ∴割出的长方形桌面的最大面积为2-12m 2.1.若cos α=13,α∈(0,π),则cos α2的值为(..)A.63 B.-63 C.±63 D.±33答案.A解析.由题意知α2∈(0,π2),∴cos α2>0,cos α2=1+cos α2=63. 2.已知tan θ2=3,则cos θ等于(..)A.45B.-45C.415D.-35 答案.B解析.cos θ=cos 2θ2-sin2θ2cos 2θ2+sin2θ2=1-tan2θ21+tan2θ2=1-321+32=-45.3.函数f (x )=sin 2x +3sin x cos x 在区间⎣⎢⎡⎦⎥⎤π4,π2上的最大值是(..)A.1B.2C.32D.3答案.C解析.f (x )=1-cos 2x 2+32sin 2x =sin ⎝⎛⎭⎪⎫2x -π6+12, ∵x ∈⎣⎢⎡⎦⎥⎤π4,π2,∴2x -π6∈⎣⎢⎡⎦⎥⎤π3,5π6,∵sin ⎝ ⎛⎭⎪⎫2x -π6∈⎣⎢⎡⎦⎥⎤12,1, ∴f (x )max =1+12=32,故选C.4.函数f (x )=sin x -cos x ,x ∈⎣⎢⎡⎦⎥⎤0,π2的最小值为 .答案.-1解析.f (x )=2sin ⎝ ⎛⎭⎪⎫x -π4,x ∈⎣⎢⎡⎦⎥⎤0,π2.∵-π4≤x -π4≤π4,∴f (x )min =2sin ⎝ ⎛⎭⎪⎫-π4=-1.5.化简:(1+sin α+cos α)⎝⎛⎭⎪⎫sin α2-cos α22+2cos α.(180°<α<360°)解.原式=⎝⎛⎭⎪⎫2cos 2α2+2sin α2cos α2⎝ ⎛⎭⎪⎫sin α2-cos α24cos2α2=2cos α2⎝ ⎛⎭⎪⎫cos α2+sin α2⎝ ⎛⎭⎪⎫sin α2-cos α22⎪⎪⎪⎪⎪⎪cos α2=cos α2⎝ ⎛⎭⎪⎫sin 2α2-cos 2α2⎪⎪⎪⎪⎪⎪cos α2=-cos α2cos α⎪⎪⎪⎪⎪⎪cos α2.因为180°<α<360°,所以90°<α2<180°,所以cos α2<0,所以原式=cos α.1.学习三角恒等变换,千万不要只顾死记硬背公式,而忽视对思想方法的理解,要学会借助前面几个有限的公式来推导后继公式,立足于在公式推导过程中记忆公式和运用公式.2.辅助角公式a sin x +b cos x =a 2+b 2sin(x +φ),其中φ满足: ①φ与点(a ,b )同象限;②tan φ=b a(或sin φ=b a 2+b2,cos φ=a a 2+b 2).3.研究形如f (x )=a sin x +b cos x 的函数性质,都要运用辅助角公式化为一个整体角的正弦函数或余弦函数的形式.因此辅助角公式是三角函数中应用较为广泛的一个重要公式,也是高考常考的考点之一.对一些特殊的系数a ,b 应熟练掌握,例如sin x ±cos x =2sin ⎝ ⎛⎭⎪⎫x ±π4; sin x ±3cos x =2sin ⎝⎛⎭⎪⎫x ±π3等. 课时作业一、选择题1.若cos α=-45,α是第三象限角,则1+tanα21-tanα2等于(..)A.-12B.12 C.2 D.-2答案.A解析.∵α是第三象限角,cos α=-45,∴sin α=-35,∴1+tanα21-tan α2=1+sinα2cos α21-sinα2cosα2=cos α2+sin α2cos α2-sin α2=cos α2+sin α2cos α2-sin α2·cos α2+sinα2cos α2+sinα2=1+sin αcos α=1-35-45=-12.2.若tan α=2tan π5,则cos ⎝⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5等于(..)A.1B.2C.3D.4 答案.C解析.cos ⎝ ⎛⎭⎪⎫α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=sin ⎝ ⎛⎭⎪⎫π2+α-3π10sin ⎝ ⎛⎭⎪⎫α-π5=sin ⎝⎛⎭⎪⎫α+π5sin ⎝ ⎛⎭⎪⎫α-π5=sin αcos π5+cos αsinπ5sin αcos π5-cos αsin π5=tan αtan π5+1tan αtanπ5-1=2+12-1=3.3.已知180°<α<360°,则cos α2的值等于(..)A.- 1-cos α2 B. 1-cos α2 C.- 1+cos α2D.1+cos α2答案.C4.在△ABC 中,若sin A sin B =cos 2C2,则△ABC 是(..)A.等边三角形B.等腰三角形C.不等边三角形D.直角三角形答案.B解析.用降幂公式进行求解. 5.设函数f (x )=3cos 2ωx +sin ωx cos ωx +a (其中ω>0,a ∈R ),且f (x )的图象在y 轴右侧的第一个最高点的横坐标是π6,则ω的值为(..) A.12 B.-13 C.-23 D.2π3答案.A解析.f (x )=32cos 2ωx +12sin 2ωx +32+a =sin ⎝⎛⎭⎪⎫2ωx +π3+32+a , 依题意得 2ω·π6+π3=π2⇒ω=12. 6.设a =12cos 6°-32sin 6°,b =2sin 13°cos 13°,c = 1-cos 50°2,则有(..) A.c <b <aB.a <b <cC.a <c <bD.b <c <a 答案.C解析.a =sin 30°cos 6°-cos 30°sin 6°=sin(30°-6°)=sin 24°, b =2sin 13°cos 13°=sin 26°,c =sin 25°,∵y =sin x 在[0,π2]上是单调递增的, ∴a <c <b .7.已知sin θ=m -3m +5,cos θ=4-2m m +5(π2<θ<π),则tan θ2等于(..) A.-13B.5C.-5或13D.-13或5 答案.B解析.由sin 2θ+cos 2θ=1,得(m -3m +5)2+(4-2m m +5)2=1,解得m =0或8,当m =0时,sin θ<0,不符合π2<θ<π.∴m =0舍去,故m =8,sin θ=513,cos θ=-1213,tan θ2=1-cos θsin θ=1+1213513=5.二、填空题8.设5π<θ<6π,cos θ2=a ,则sin θ4的值为 .答案.- 1-a2 解析.sin 2θ4=1-cos θ22,∵θ∈(5π,6π),∴θ4∈⎝ ⎛⎭⎪⎫5π4,3π2,∴sin θ4=- 1-cos θ22=- 1-a2.9.sin 220°+sin 80°·sin 40°的值为 .答案.34解析.原式=sin 220°+sin(60°+20°)·sin(60°-20°)=sin 220°+(sin 60°cos 20°+cos 60°sin 20°)·(sin 60°·cos 20°-cos 60°sin 20°)=sin 220°+sin 260°cos 220°-cos 260°sin 220°=sin 220°+34cos 220°-14sin 220°=34sin 220°+34cos 220°=34.10.函数f (x )=sin(2x -π4)-22sin 2x 的最小正周期是 .答案.π解析.∵f (x )=22sin 2x -22cos 2x -2(1-cos 2x )=22sin 2x +22cos 2x -2=sin(2x +π4)-2, ∴T =2π2=π. 三、解答题11.已知sin ⎝⎛⎭⎪⎫α+π3+sin α=-435,-π2<α<0,求cos α的值. 解.∵sin ⎝⎛⎭⎪⎫α+π3+sin α =sin αcos π3+cos αsin π3+sin α =32sin α+32cos α=-435. ∴32sin α+12cos α=-45, ∴sin ⎝⎛⎭⎪⎫α+π6=-45. ∵-π2<α<0,∴-π3<α+π6<π6, ∴cos ⎝⎛⎭⎪⎫α+π6=35. ∴cos α=cos ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫α+π6-π6 =cos ⎝ ⎛⎭⎪⎫α+π6cos π6+sin ⎝⎛⎭⎪⎫α+π6sin π6 =35×32+⎝ ⎛⎭⎪⎫-45×12=33-410. 12.求证:tan 3x 2-tan x 2=2sin x cos x +cos 2x . 证明.∵左边=tan 3x 2-tan x 2=sin 3x 2cos 3x 2-sin x 2cos x 2=sin 3x 2cos x 2-cos 3x 2sin x 2cos 3x 2cos x 2=sin ⎝ ⎛⎭⎪⎫3x 2-x 2cos 3x 2cos x 2 =sin x cos 3x 2cos x 2=2sin x cos ⎝ ⎛⎭⎪⎫3x 2+x 2+cos ⎝ ⎛⎭⎪⎫3x 2-x 2=2sin x cos x +cos 2x=右边. ∴原等式得证.13.已知cos 2θ=725,π2<θ<π, (1)求tan θ的值;(2)求2cos 2θ2+sin θ2sin (θ+π4)的值. 解.(1)因为cos 2θ=725, 所以cos 2θ-sin 2θcos 2θ+sin 2θ=725, 所以1-tan 2θ1+tan 2θ=725, 解得tan θ=±34, 因为π2<θ<π,所以tan θ=-34. (2)因为π2<θ<π,tan θ=-34, 所以sin θ=35,cos θ=-45, 所以2cos 2θ2+sin θ2sin (θ+π4)=1+cos θ+sin θcos θ+sin θ =1-45+35-45+35=-4. 四、探究与拓展14.已知A +B =2π3,那么cos 2A +cos 2B 的最大值是 ,最小值是 . 答案.32.12解析.∵A +B =2π3, ∴cos 2A +cos 2B=12(1+cos 2A +1+cos 2B ) =1+12(cos 2A +cos 2B ) =1+cos(A +B )cos(A -B )=1+cos 2π3·cos(A -B ) =1-12cos(A -B ), ∴当cos(A -B )=-1时,原式取得最大值32; 当cos(A -B )=1时,原式取得最小值12. 15.已知函数f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x . (1)求f (x )的最小正周期和最大值;(2)讨论f (x )在⎣⎢⎡⎦⎥⎤π6,2π3上的单调性. 解.(1)f (x )=sin ⎝ ⎛⎭⎪⎫π2-x sin x -3cos 2x =cos x sin x -32(1+cos 2x ) =12sin 2x -32cos 2x -32=sin ⎝⎛⎭⎪⎫2x -π3-32, 因此f (x )的最小正周期为π,最大值为2-32. (2)当x ∈⎣⎢⎡⎦⎥⎤π6,2π3时,0≤2x -π3≤π,从而 当0≤2x -π3≤π2,即π6≤x ≤5π12时,f (x )单调递增, 当π2≤2x -π3≤π,即5π12≤x ≤2π3时,f (x )单调递减. 综上可知,f (x )在⎣⎢⎡⎦⎥⎤π6,5π12上单调递增;在⎣⎢⎡⎦⎥⎤5π12,2π3上单调递减.。
人教A版高中数学必修四 第三章《简单的三角恒等变换》教案

3.2 简单的三角恒等变换(3个课时)一、课标要求:本节主要包括利用已有的十一个公式进行简单的恒等变换,以及三角恒等变换在数学中的应用.二、编写意图与特色本节内容都是用例题来展现的.通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.三、教学目标通过例题的解答,引导学生对变换对象目标进行对比、分析,促使学生形成对解题过程中如何选择公式,如何根据问题的条件进行公式变形,以及变换过程中体现的换元、逆向使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生的推理能力.四、教学重点与难点教学重点:引导学生以已有的十一个公式为依据,以推导积化和差、和差化积、半角公式的推导作为基本训练,学习三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点,提高推理、运算能力.教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力.五、学法与教学用具学法:讲授式教学六、教学设想:学习和(差)公式,倍角公式以后,我们就有了进行变换的性工具,从而使三角变换的内容、思路和方法更加丰富,这为我们的推理、运算能力提供了新的平台.下面我们以习题课的形式讲解本节内容.例1、试以cos α表示222sin ,cos ,tan 222ααα. 解:我们可以通过二倍角2cos 2cos12αα=-和2cos 12sin 2αα=-来做此题. 因为2cos 12sin2αα=-,可以得到21cos sin 22αα-=; 因为2cos 2cos 12αα=-,可以得到21cos cos 22αα+=.又因为222sin 1cos 2tan 21cos cos 2ααααα-==+. 思考:代数式变换与三角变换有什么不同?代数式变换往往着眼于式子结构形式的变换.对于三角变换,由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此三角恒等变换常常首先寻找式子所包含的各个角之间的联系,这是三角式恒等变换的重要特点.例2、求证:(1)、()()1sin cos sin sin 2αβαβαβ=++-⎡⎤⎣⎦; (2)、sin sin 2sin cos 22θϕθϕθϕ+-+=.证明:(1)因为()sin αβ+和()sin αβ-是我们所学习过的知识,因此我们从等式右边着手.()sin sin cos cos sin αβαβαβ+=+;()sin sin cos cos sin αβαβαβ-=-. 两式相加得()()2sin cos sin sin αβαβαβ=++-;即()()1sin cos sin sin 2αβαβαβ=++-⎡⎤⎣⎦; (2)由(1)得()()sin sin 2sin cos αβαβαβ++-=①;设,αβθαβϕ+=-=, 那么,22θϕθϕαβ+-==.把,αβ的值代入①式中得sin sin 2sincos 22θϕθϕθϕ+-+=.思考:在例2证明中用到哪些数学思想? 例2 证明中用到换元思想,(1)式是积化和差的形式,(2)式是和差化积的形式,在后面的练习当中还有六个关于积化和差、和差化积的公式.例3、求函数sin 3y x x =的周期,最大值和最小值.解:sin 3y x x =这种形式我们在前面见过,13sin 32sin cos 2sin 223y x x x x x π⎛⎫⎛⎫=+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以,所求的周期22T ππω==,最大值为2,最小值为2-.点评:例3是三角恒等变换在数学中应用的举例,它使三角函数中对函数()sin y A x ωϕ=+的性质研究得到延伸,体现了三角变换在化简三角函数式中的作用. 小结:此节虽只安排一到两个课时的时间,但也是非常重要的内容,我们要对变换过程中体现的换元、逆向使用公式等数学思想方法加深认识,学会灵活运用.作业:157158P P - 14T T -。
3.2简单的三角恒等变换 导学案-2021-2022学年高一数学人教A版必修4

3. 2简单的三角恒等变换学习目标、细解考纲1.引导学生以已有的公式为依据,以推导积化和差、和差化积、半角公式作为基本训练.2.学习三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点.3.培养学生化归和整体转化思想,注重方程思想和消元思想的培养.4.通过简单的三角恒等变换的学习,提升学生逻辑推理和运算求解的核心素养.一、自主学习—————(素养催化剂)1.预习学习半角公式2.预习学习积化和差、和差化积公式二、探究应用,“三会培养”-------(素养生长剂)例1、已知,31cos =αα是第四象限角,求2tan ,2cos ,2sin ααα的值变式1:(教材改编)已知α是第四象限角,,51cos sin =+αα求2tan α的值例2、求证:()()[]βαβαβα-++=sin sin 21cos sin变式2:求证:2cos 2sin2sin sin βαβαβα-+=+变式3:求证:αααααsin cos 1cos 1sin 2tan -=+=例3、如图,已知OPQ 是半径为1,圆心角为3π的扇形,C 是扇形弧上的动点,ABCD 是扇形的内接矩形,记α=∠COP ,求当角α取何值时,矩形ABCD 的面积最大?并求出这个最大值变式4:(教材改编)如图,已知OPQ 是半径为1,圆心角为2π的扇形,C 是扇形弧上的动点,ABCD 是扇形的内接矩形,记α=∠COP ,求当角α取何值时,矩形ABCD 的面积最大?并求出这个最大值三、拓展延伸、智慧发展--------(素养强壮剂)例4、设(){}*,2|,cos sin N k k n n x x f x ∈=∈+=ααα,利用三角变换,估计()αf 在6,4,2=x 时的取值情况,进而对x 取一般值时()αf 的取值范围作出一个猜想.四、本课总结、感悟思考--------(素养升华剂)。
高中数学 3.2《简单的三角恒等变换》导学案 新人教A版

3.2《简单的三角恒等变换》导学案【学习目标】1.会用已学公式进行三角函数式的化简、求值和证明,引导学生推导半角公式,积化和差、和差化积公式(公式不要求记忆),2.使学生进一步提高运用转化、换元、方程等数学思想解决问题的能力. 【导入新课】 习引入:复习倍角公式2S α、2C α、2Tα先让学生默写三个倍角公式,注意等号两边角的关系,特别注意2C α.既然能用单角表示倍角,那么能否用倍角表示单角呢? 新授课阶段半角公式的推导及理解 : 例1、 试以cos α表示222sin ,cos ,tan 222ααα.解析: 解:点评:⑴以上结果还可以表示为:1cos sin221cos cos22αααα-=+=1cos tan 21cos ααα-=+并称之为半角公式(不要求记忆),符号由2α角的象限决定.⑵降倍升幂公式和降幂升倍公式被广泛用于三角函数式的化简、求值、证明.⑶代数式变换往往着眼于式子结构形式的变换,三角恒等变换常常首先寻找式子所包含的各个角之间的联系,并以此为依据选择可以联系他们的适当公式,这是三角式恒等变换的重要特点.例2 求证:(1)()()1sin cos sin sin 2αβαβαβ=++-⎡⎤⎣⎦; (2)sin sin 2sin cos22θϕθϕθϕ+-+=. 解析: 证明:点评:在例2证明中用到了换元思想,(1)式是积化和差的形式,(2)式是和差化积的形式,在后面的练习当中还有六个关于积化和差、和差化积的公式.例3 求函数sin 3cos y x x =+的周期,最大值和最小值. 解析: 解: 课堂小结用和(差)角公式、倍角公式进行简单的恒等变换.我们要对三角恒等变换过程中体现的换元、逆向使用公式等数学思想方法加深认识,学会灵活运用.作业课本p143 习题3.2 A 组1、(1)(5) 3 、5 拓展提升1.已知cos (α+β)cos (α-β)=31,则cos 2α-sin 2β的值为( )A .-32B .-31C .31D .32 2.在△ABC 中,若sin A sin B =cos 22C,则△ABC 是( )A .等边三角形B .等腰三角形C .不等边三角形D .直角三角形3.sin α+sin β=33(cos β-cos α),且α∈(0,π),β∈(0,π),则α-β等于( )A .-3π2 B .-3π C .3πD .3π2 4.已知cos (α+β)cos (α-β)=31,则cos 2α-sin 2β的值为( )A .-32B .-31C .31D .32 5.在△ABC 中,若sin A sin B =cos 22C,则△ABC 是( )A .等边三角形B .等腰三角形C .不等边三角形D .直角三角形6.sin α+sin β=33(cos β-cos α),且α∈(0,π),β∈(0,π),则α-β等于( )A .-3π2 B .-3πC .3πD .3π2 7.已知sin (α+β)sin (β-α)=m ,则cos 2α-cos 2β等于( ) A .-m B .m C .-4m D .4m二、填空题8.sin20°cos70°+sin10°sin50°=_________. 9.已知α-β=3π2,且cos α+cos β=31,则cos (α+β)等于_________. 三、解答题10.已知f (x )=-21+2sin 225sinxx,x ∈(0,π). (1)将f (x )表示成cos x 的多项式; (2)求f (x )的最小值.12.已知△ABC 的三个内角A 、B 、C 满足:A +C =2B ,B C A cos 2cos 1cos 1-=+,求cos 2CA -的值.13. 已知sin A +sin3A +sin5A =a ,cos A +cos3A +cos5A =b , 求证:(2cos2A +1)2=a 2+b 2.14. 求证:cos 2x +cos 2(x +α)-2cos x cos αcos (x +α)=sin 2α.15. 求函数y =cos3x ·cos x 的最值.参考答案 例1解析:我们可以通过二倍角2cos 2cos 12αα=-和2cos 12sin 2αα=-来做此题.(二倍角公式中以α代2α,2α代α) 解:因为2cos 12sin2αα=-,可以得到21cos sin22αα-=;因为2cos 2cos 12αα=-,可以得到21cos cos 22αα+=. 两式相除可以得到222sin 1cos 2tan 21cos cos 2ααααα-==+.点评:⑴以上结果还可以表示为:sin2cos2αα==tan 2α=并称之为半角公式(不要求记忆),符号由2α角的象限决定.⑵降倍升幂公式和降幂升倍公式被广泛用于三角函数式的化简、求值、证明. ⑶代数式变换往往着眼于式子结构形式的变换,三角恒等变换常常首先寻找式子所包含的各个角之间的联系,并以此为依据选择可以联系他们的适当公式,这是三角式恒等变换的重要特点.例2:解析:回忆并写出两角和与两角差的正余弦公式,观察公式与所证式子的联系. 证明:(1)因为()sin αβ+和()sin αβ-是我们所学习过的知识,因此我们从等式右边着手.()sin sin cos cos sin αβαβαβ+=+;()sin sin cos cos sin αβαβαβ-=-.两式相加得()()2sin cos sin sin αβαβαβ=++-;即()()1sin cos sin sin 2αβαβαβ=++-⎡⎤⎣⎦; (2)由(1)得()()sin sin 2sin cos αβαβαβ++-=①;设,αβθαβϕ+=-=, 那么,22θϕθϕαβ+-==.把,αβ的值代入①式中得sin sin 2sincos22θϕθϕθϕ+-+=.点评:在例2证明中用到了换元思想,(1)式是积化和差的形式,(2)式是和差化积的形式,在后面的练习当中还有六个关于积化和差、和差化积的公式.例3、解析:利用三角恒等变换,先把函数式化简,再求相应的值. 解: 13sin 3cos 2sin cos 2sin 223y x x x x x π⎛⎫⎛⎫=+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭, 所以,所求的周期22T ππω==,最大值为2,最小值为2-.点评:例3是三角恒等变换在数学中应用的举例,它使三角函数中对函数()sin y A x ωϕ=+的性质研究得到延伸,体现了三角变换在化简三角函数式中的作用.拓展提升一、选择题:1.C 2. B 3. D 4.C 5. B 6. D 7. B 二、填空题:8.41 9.-97三、解答题10.解:(1)f (x )=2cos 23cos 22sin 2sin 23cos 22sin 22sin 25sinx x x xxx x x ==-=cos2x +cos x =2cos 2x +cos x-1.(2)∵f (x )=2(cos x +41)2-89,且-1≤cos x ≤1, ∴当cos x =-41时,f (x )取得最小值-89. 11 分析:本小题考查三角函数的基础知识,利用三角公式进行恒等变形和运算的能力. 解:由题设条件知B =60°,A +C =120°, ∵-︒60cos 2=-22,∴CA cos 1cos 1+=-22. 将上式化简为cos A +cos C =-22cos A cos C , 利用和差化积及积化和差公式,上式可化为 2cos2C A +cos 2CA -=-2[cos (A +C )+cos (A -C )], 将cos2C A +=cos60°=21,cos (A +C )=cos120°=-21代入上式得cos 2CA -=22-2cos (A -C ), 将cos (A -C )=2cos 2(2C A -)-1代入上式并整理得42cos 2(2C A -)+2cos 2C A --32=0,即[2cos2C A --2][22cos 2CA -+3]=0. ∵22cos 2C A -+3≠0,∴2cos 2CA --2=0. ∴cos 2C A -=22.12.证明:由已知得 ⎩⎨⎧=+=+,,b A A A a A A A 3cos 2cos 3cos 23sin 2cos 3sin 2 ∴⎩⎨⎧=+=+.)12cos 2(3cos )12cos 2(3sin b A A a A A ,两式平方相加得(2cos2A +1)2=a 2+b 2. 13.证明:左边=21(1+cos2x )+21[1+cos (2x +2α)]-2cos x cos αcos (x +α) =1+21[cos2x +cos (2x +2α)]-2cos x cos αcos (x +α) =1+cos (2x +α)cos α-cos α[cos (2x +α)+cos α] =1+cos (2x +α)cos α-cos αcos (2x +α)-cos 2α =1-cos 2α=sin 2α =右边,∴原不等式成立. 14.解:y =cos3x ·cos x=21(cos4x +cos2x ) =21(2cos 22x -1+cos2x ) =cos 22x +21cos2x -21 =(cos2x +41)2-169. ∵cos2x ∈[-1,1], ∴当cos2x =-41时,y 取得最小值-169; 当cos2x =1时,y 取得最大值1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、会用已学公式进行三角函数式的化简、求值和证明。
2、会推导半角公式,积化和差、和差化积公式(公式不要求记忆)。
3、进一步提高运用转化、换元、方程等数学思想解决问题的能力。
(预习教材P139—P142)
复习:
Cos(α+β)=
Cos(α-β)=
sin(α+β)=
sin(α-β)=
tan(α+β)=
tan(α-β)=
sin2α=
tan2α=
cos2α=
二、新课导学
※探索新知
探究一:半角公式的推导
请同学们阅看p139例1.
.思考1、2α与α有什么关系?α与α/2有什么关系?进一步体会二倍角公式和半角公式的应用。
.思考2、半角公式中的符号如何确定?
思考3、二倍角公式和半角公式有什么联系?
.思考4、代数变换与三角变换有什么不同?
变式训练1:求证
sin tan 21cos 1cos tan 2sin α
α
αααα
=
+-=
探究二:积化和差、和差化积公式的推导.
请同学们阅看p140例2。
.思考 1、两角和与差的正弦、余弦公式两边有什么特点?它们与例2在结构形式上有什么联系?
.思考2、在例2证明过程中,如果不用(1)的结果,如何证明(2)?
.
思考3、在例2证明过程中,体现了什么数学思想方法?
点评:在例2证明中用到了换元思想,(1)式是积化和差的形式,(2)式是和差化积的形式.
变式训练2:课本p142 2(2)、3(3)
探究三:三角函数式的变换。
请同学们阅看p140例3。
.思考1、例3的过程中应用了哪些公式?
.思考2、如何将形如y=asinx+bcosx 的函数转化为形如y=Asin(ωx+φ)的函数?并求y=asinx+bcosx 的周期,最大值和最小值.
变式3:已知函数x x x x x f 44sin cos sin 2cos )(--=
(1)求)(x f 的最小正周期,
(2)当]2,
0[π∈x 时,求)(x f 的最小值及取得最小值时x 的集合
※ 典型例题
例1.已知135sin =
α,且α在第二象限,求2
tan α的值。
例2:.54sin ,20=<<απ
α已知 的值求αααα2cos cos 2sin sin )1(22++;的值求)45tan()2(πα-.
例3. 如图,已知OPQ 是半径为1,圆心角为3π
的扇形,C 是扇形弧上的动点,ABCD 是扇形
的内接矩形.记∠COP =α,求当角α取何值时,矩形ABCD 的面积最大?并求出这个最大面积.
三、小结反思 常见的三角变形技巧有
①切割化弦;
②“1”的变用;
③统一角度,统一函数,统一形式等等.
).
A. 很好
B. 较好
C. 一般
D. 较差
※ 当堂检测(时量:5分钟 满分:10分)计分:
1.已知cos (α+β)cos (α-β)=3
1,则cos 2α-sin 2β的值为( ) A .-
32 B .-31 C .31 D .3
2 2.在△ABC 中,若sin A sin B =cos 22C
,则△ABC 是 A .等边三角形
B .等腰三角形
C .不等边三角形
D .直角三角形 3.sin α+sin β=
3
3(cos β-cos α),且α∈(0,π),β∈(0,π),则α-β等于( ) A .-
3π2 B .-3π C .3π D .3
π2 4.sin20°cos70°+sin10°sin50°=_________.
1.已知α-β=3π2,且cos α+cos β=3
1,则cos (α+β)等于_________.
2.已知f (x )=-21+2sin 225sin
x
x ,x ∈(0,π). (1)将f (x )表示成cos x 的多项式;
(2)求f (x )的最小值.。