函数性质及数形结合讲义
第2讲 一次函数的图像及性质(讲义)解析版

2
(1)当 x 取何值时, y = 2 ? (2)当 x 取何值时, y > 2 ? (3)当 x 取何值时, y < 2 ? (4)当 x 取何值时, 0 < y < 2 ?
2 (4)令 0 < 1 x - 3 < 2 ,解得: 6 < x < 10 .
2 【总结】本题考察了一次函数与不等式的关系,本题也可以通过函数图像求解. 例 10.已知函数 f (x) = -3x + 1 .
(1)当 x 取何值时, f (x) = -2 ? (2)当 x 取何值时, 4 > f (x) > -2 ? (3)在平面直角坐标系中,在直线 f (x) = -3x + 1 上且位于 x 轴下方所有点,它们的横 坐标的取值范围是什么?
A. x < 0
B. x > 0
C. x < 2
D. x > 2 .
【答案】A
【分析】根据题意在函数图像中寻找 y > 3 时函数图像所在的位置,发现此时函数图像对
应的 x 范围是小于零,从而得出答案
【详解】解:∵由函数图象可知,当 x<0 时函数图象在 3 的上方,
∴当 y>3 时,x<0.
故选:A.
【总结】本题考察了一次函数与一元一次不等式的关系. 例 8.已知 y = kx + b(k ¹ 0) 的函数图像如图所示:
(1)求在这个函数图像上且位于 x 轴上方所有点的横坐标的取值范围; (2)求不等式 kx + b £ 0 的解集.
初三数学专题复习数形结合思想 一次函数与二次函数的图像与性质

初三数学专题复习数形结合思想――一次函数与二次函数的图像与性质一、内容和内容分析数形结合就是根据数学问题的题设和结论之间的内在联系,既分析其数量关系,又揭示其几何意义使数量关系和几何图形巧妙地结合起来,并充分地利用这种结合,探求解决问题的思路,使问题得以解决的思考方法.数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。
本专题的重点是如何根据题目所提供的图形及已知条件提取准确的信息解决函数相关问题,并依据函数图象的几何含义运用数形结合方法解答问题。
主要内容是运用数形结合的思想方法解决初中阶段函数的相关问题。
二、目标和目标分析1. 通过学习数形结合思想方法,加深学生对一次函数、二次函数的图像及性质的理解;2. 在函数学习的基础上,用数形结合的方法,让学生理解方程、函数、不等式这三者的关系;3. 引导学生根据平面直角坐标系内几何图形的特征,寻找恰当的数量关系,求出目标函数的关系式;4. 掌握在函数问题中运用数形结合方法进行求解的基本思想和步骤;5. 培养学生读图分析数据及数形结合的能力三、教学问题诊断分析1.数形结合既是一个重要的数学思想又是一种常用的数学方法。
“数”与“形”是一对矛盾,它包括“以形助数”和“以数辅形”两个方面。
考虑到初中阶段的学习主要是“以形助数”,所以我们选取的数形结合思想专题就以函数为载体,从图像入手,让学生充分去理解函数的图像与性质之间的联系,并且在此基础上通过问题让学生考虑方程、函数、不等式三者的关系。
2.数形结合既是一个重要的数学思想又是一种常用的数学方法。
“数”与“形”是一对矛盾,它包括“以形助数”和“以数辅形”两个方面。
在初中的学习主要是“以形助数”为主,所以在设计上我们选取的问题还是紧扣这一方面,从中考来看,也比较符合现在中考的实际。
利用导数研究函数的零点讲义 解析版

利用导数研究函数的零点题型一 数形结合法研究函数零点1.(2024·南昌模拟节选)已知函数f (x )=(x -a )2+be x (a ,b ∈R ),若a =0时,函数y =f (x )有3个零点,求b 的取值范围.解:函数y =f (x )有3个零点,即关于x 的方程f (x )=0有3个根,也即关于x 的方程b =-x 2ex 有3个根.令g (x )=-x 2e x ,则直线y =b 与g (x )=-x 2ex 的图象有3个交点.g ′(x )=x (x -2)e x,由g ′(x )<0解得0<x <2;由g ′(x )>0解得x <0或x >2,所以g (x )在(-∞,0)上单调递增,在(0,2)上单调递减,在(2,+∞)上单调递增.g (0)=0,g (2)=-4e2,当x >0时,g (x )<0;当x →+∞时,g (x )→0;当x →-∞时,g (x )→-∞,作出g (x )的大致图象如图所示,作出直线y =b .由图可知,若直线y =b 与g (x )的图象有3个交点,则-4e 2<b <0,即b 的取值范围为-4e 2,0 .感悟提升 含参数的函数零点个数,可转化为方程解的个数,若能分离参数,可将参数分离出来后,用x 表示参数的函数,作出该函数的图象,根据图象特征求参数的范围.2.设函数f (x )=ln x +m x ,m ∈R ,讨论函数g (x )=f ′(x )-x 3零点的个数.解:由题意知g (x )=f ′(x )-x 3=1x -m x 2-x 3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1).当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,∴x =1也是φ(x )的最大值点,∴φ(x )的最大值为φ(1)=23.结合y =φ(x )的图象(如图)可知,①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点.综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.题型二 利用函数性质研究函数零点3.已知函数f (x )=(2a +1)x 2-2x 2ln x -4,e 是自然对数的底数,∀x >0,e x >x +1.(1)求f (x )的单调区间;(2)记p :f (x )有两个零点;q :a >ln 2.求证:p 是q 的充要条件.要求:先证充分性,再证必要性.(1)解:∵f (x )=(2a +1)x 2-2x 2ln x -4,∴f (x )的定义域为(0,+∞),f ′(x )=4x (a -ln x ).∵当0<x <e a 时,f ′(x )>0,∴f (x )在(0,e a )上单调递增;∵当x >e a 时,f ′(x )<0,∴f (x )在(e a ,+∞)上单调递减.∴f (x )的单调递增区间为(0,e a ),单调递减区间为(e a ,+∞).(2)证明 先证充分性.由(1)知,当x =e a 时,f (x )取得最大值,即f (x )的最大值为f (e a )=e 2a -4.由f (x )有两个零点,得e 2a -4>0,解得a >ln 2.∴a >ln 2.再证必要性.∵a >ln 2,∴e 2a >4.∴f (e a )=e 2a -4>0.∵a>ln2>0,∀x>0,e x>x+1,∴e2a>2a+1>2a.∴f(e-a)=e-2a(4a+1)-4=4a+1e2a -4<4a+12a-4=12a-2<12ln2-2=1ln4-2<0.∴∃x1∈(e-a,e a),使f(x1)=0;∵f(e a+1)=-e2a+2-4<0,∴∃x2∈(e a,e a+1),f(x2)=0.∵f(x)在(0,e a)上单调递增,在(e a,+∞)上单调递减,∴∀x∈(0,+∞),x≠x1且x≠x2,易得f(x)≠0.∴当a>ln2时,f(x)有两个零点.感悟提升 利用函数性质研究函数的零点,主要是根据函数单调性、奇偶性、最值或极值的符号确定函数零点的个数,此类问题在求解过程中可以通过数形结合的方法确定函数存在零点的条件.4.(2022·全国乙卷节选)已知函数f(x)=ax-1x-(a+1)ln x,若f(x)恰有一个零点,求a的取值范围.解:由f(x)=ax-1x-(a+1)ln x(x>0),得f′(x)=a+1x2-a+1x=(ax-1)(x-1)x2(x>0).①当a=0时,f(x)=-1x-ln x,f′(x)=1-xx2,当x∈(0,1)时,f′(x)>0;当x∈(1,+∞)时,f′(x)<0,所以f(x)≤f(1)=-1<0,所以f(x)不存在零点;②当a<0时,f′(x)=a x-1a(x-1)x2,当x∈(0,1)时,f′(x)>0,f(x)单调递增;当x∈(1,+∞)时,f′(x)<0,f(x)单调递减,所以f(x)max=f(1)=a-1<0,所以f(x)不存在零点;③当a>0时,f′(x)=a x-1a(x-1)x2,(ⅰ)当a=1时,f′(x)≥0,f(x)在(0,+∞)上单调递增,因为f(1)=a-1=0,所以函数f(x)恰有一个零点;(ⅱ)当a>1时,0<1a <1,故f(x)在0,1a,(1,+∞)上单调递增,在1a,1上单调递减.因为f(1)=a-1>0,所以f1a>f(1)>0,当x→0+时,f(x)→-∞,由零点存在定理可知f(x)在0,1a上必有一个零点,所以a>1满足条件;(ⅲ)当0<a<1时,1a >1,故f(x)在(0,1),1a,+∞上单调递增,在1,1a上单调递减.因为f(1)=a-1<0,所以f1a<f(1)<0,当x→+∞时,f(x)→+∞,由零点存在定理可知f(x)在1a,+∞上必有一个零点,即0<a<1满足条件.综上,若f(x)恰有一个零点,则a的取值范围为(0,+∞).题型三 构造函数法研究函数零点5.已知函数f(x)=e x-1+ax(a∈R).(1)当x≥0时,f(x)≥0,求a的取值范围;(2)若关于x的方程f(x)-ax+1e a=ln x+a有两个不同的实数解,求a的取值范围.解:(1)由题意,得f′(x)=e x+a.若a≥-1,则当x∈[0,+∞)时,f′(x)≥0恒成立,∴f(x)在[0,+∞)上单调递增,∴当x∈[0,+∞)时,f(x)≥f(0)=0,符合题意;若a<-1,令f′(x)<0,得x<ln(-a),∴f(x)在(0,ln(-a))上单调递减,∴当x∈(0,ln(-a))时,f(x)<f(0)=0,不符合题意.综上,a的取值范围为[-1,+∞).(2)法一 由f(x)-ax+1e a=ln x+a,得e x-a=ln x+a.令e x-a=t,则x-a=ln t,ln x+a=t,∴x+ln x=t+ln t.易知y=x+ln x在(0,+∞)上单调递增,∴t=x,得a=x-ln x.则原问题可转化为方程a=x-ln x有两个不同的实数解.令φ(x)=x-ln x(x>0),则φ′(x)=x-1 x,令φ′(x)<0,得0<x<1;令φ′(x)>0,得x>1,∴φ(x)在(0,1)上单调递减,在(1,+∞)上单调递增,∴φ(x)min=φ(1)=1,∴a≥1.当a=1时,易知方程1=x-ln x只有一个实数解x=1,不符合题意.下证当a>1时,a=x-ln x有两个不同的实数解.令g(x)=x-ln x-a(a>1),则g(x)=φ(x)-a,易知g(x)在(0,1)上单调递减,在(1,+∞)上单调递增.∵g(e-a)=e-a>0,g(1)=1-a<0,∴g(x)在(e-a,1)上有一个零点.易知g(e a)=e a-2a,令h(a)=e a-2a,则当a>1时,h′(a)=e a-2>0,∴h(a)在(1,+∞)上单调递增,∴当a >1时,h (a )>h (1)=e -2>0,即g (e a )=e a -2a >0,∴g (x )在(1,e a )上有一个零点.∴当a >1时,a =x -ln x 有两个不同的实数解.综上,a 的取值范围为(1,+∞).法二 由f (x )-ax +1e a=ln x +a ,得e x =e a (ln x +a ),∴xe x =xe a (ln x +a ),即xe x =e a +ln x (ln x +a ).令u (x )=xe x ,则有u (x )=u (a +ln x ).当x >0时,u ′(x )=(x +1)e x >0,∴u (x )=xe x 在(0,+∞)上单调递增,∴x =a +ln x ,即a =x -ln x .下同法一.感悟提升 涉及函数的零点(方程的根)问题,主要利用导数确定函数的单调区间和极值点,根据函数零点的个数寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而求得参数的取值范围.6.(2021·全国甲卷节选)已知a >0且a ≠1,函数f (x )=x a ax (x >0).若曲线y =f (x )与直线y =1有且仅有两个交点,求a 的取值范围.解:曲线y =f (x )与直线y =1有且仅有两个交点,可转化为方程x a a x =1(x >0)有两个不同的解,即方程ln x x =ln a a 有两个不同的解.设g (x )=ln x x (x >0),则g ′(x )=1-ln x x 2(x >0),令g ′(x )=1-ln x x 2=0,得x =e ,当0<x <e 时,g ′(x )>0,函数g (x )单调递增;当x >e 时,g ′(x )<0,函数g (x )单调递减,故g (x )max =g (e )=1e ,且当x >e 时,g (x )∈0,1e ,又g (1)=0,所以0<ln a a <1e,所以a >1且a ≠e ,故a 的取值范围为(1,e )∪(e ,+∞).【A 级 基础巩固】7.已知函数f (x )=x -ae x ,a ∈R ,讨论函数f (x )的零点个数.解:f (x )=0等价于x -ae x =0,即x ex =a .设h (x )=x e x ,则h ′(x )=1-x ex ,当x <1时,h ′(x )>0,h (x )单调递增;当x >1时,h ′(x )<0,h (x )单调递减,∴h (x )max =h (1)=1e.又当x <0时,h (x )<0;当x >0时,h (x )>0,且x →+∞时,h (x )→0,∴可画出h (x )大致图象,如图所示.∴当a ≤0或a =1e时,f (x )在R 上有唯一零点;当a >1e 时,f (x )在R 上无零点;当0<a <1e 时,f (x )在R 上有两个零点.8.(2024·青岛调研)已知函数f (x )=ln x +ax x,a ∈R .(1)若a =0,求f (x )的最大值;(2)若0<a <1,求证:f (x )有且只有一个零点.(1)解:若a =0,则f (x )=ln x x ,其定义域为(0,+∞),∴f ′(x )=1-ln x x 2,由f ′(x )=0,得x =e ,∴当0<x <e 时,f ′(x )>0;当x >e 时,f ′(x )<0,∴f (x )在(0,e )上单调递增,在(e ,+∞)上单调递减,∴f (x )max =f (e )=1e.(2)证明 f ′(x )=1x +a x -ln x -ax x 2=1-ln x x 2,由(1)知,f (x )在(0,e )上单调递增,在(e ,+∞)上单调递减,∵0<a <1,∴当x >e 时,f (x )=ln x +ax x =a +ln x x>0,故f (x )在(e ,+∞)上无零点;当0<x <e 时,f (x )=ln x +ax x ,∵f 1e =a -e <0,f (e )=a +1e>0,且f (x )在(0,e )上单调递增,∴f (x )在(0,e )上有且只有一个零点,综上,当0<a <1时,f (x )有且只有一个零点.9.(2024·太原模拟节选)已知函数f (x )=xe x -x -1,讨论方程f (x )=ln x +m -2的实根个数.解;由f (x )=ln x +m -2,得xe x -x -ln x +1=m ,x >0,令h (x )=xe x -x -ln x +1,则h ′(x )=e x +xe x-1-1x =(x +1)(xe x -1)x(x >0),令m (x )=xe x -1(x >0),则m ′(x )=(x +1)·e x >0,∴m (x )在(0,+∞)上单调递增,又m 12 =e 2-1<0,m (1)=e -1>0,∴存在x 0∈12,1,使得m (x 0)=0,即e x 0=1x 0,从而ln x 0=-x 0.当x ∈(0,x 0)时,m (x )<0,h ′(x )<0,则h (x )单调递减;当x ∈(x 0,+∞)时,m (x )>0,h ′(x )>0,则h (x )单调递增;∴h (x )min =h (x 0)=x 0e x 0-x 0-ln x 0+1=x 0·1x 0-x 0+x 0+1=2,又易知,当x →0+时,h (x )→+∞;当x →+∞时,h (x )→+∞.∴当m <2时,方程f (x )=ln x +m -2没有实根;当m =2时,方程f (x )=ln x +m -2有1个实根;当m >2时,方程f (x )=ln x +m -2有2个实根.【B 级 能力提升】10.(2024·郑州模拟节选)已知函数f (x )=ln (x +1)-x +1,g (x )=ae x -x +ln a ,若函数F (x )=f (x )-g (x )有两个零点,求实数a 的取值范围.解:函数F (x )=f (x )-g (x )有两个零点,即f (x )=g (x )有两个实根,即ln (x +1)-x +1=ae x -x +ln a 有两个实根,即e x +ln a +x +ln a =ln (x +1)+x +1有两个实根,即e x +ln a +x +ln a =e ln (x +1)+ln (x +1)有两个实根.设函数h (x )=e x +x ,则e x +ln a +x +ln a =e ln (x +1)+ln (x +1)⇔h (x +ln a )=h (ln (x +1)).因为h ′(x )=e x +1>0恒成立,所以h (x )=e x +x 在R 上单调递增,所以x +ln a =ln (x +1),x >-1,所以要使F (x )有两个零点,只需ln a =ln (x +1)-x 有两个实根.设M (x )=ln (x +1)-x ,则M ′(x )=-x x +1.由M ′(x )=-x x +1>0,得-1<x <0;由M ′(x )=-x x +1<0,得x >0,故函数M(x)的单调递增区间为(-1,0),单调递减区间为(0,+∞).故函数M(x)在x=0处取得极大值,也是最大值,且M(x)max=M(0)=0.易知当x→-1时,M(x)→-∞;当x→+∞时,M(x)→-∞.故要使ln a=ln(x+1)-x有两个实根,只需ln a<M(x)max=0,解得0<a<1.所以实数a的取值范围是(0,1).。
高中数学—函数的基本性质—完整版课件

• 当 > 时, − < ,则
• − = −
− = − = − ().
• 综上,对 ∈ (−∞,) ∪ (,+∞),
• ∴ ()为奇函数.
都有 − = − ().
奇偶性判定
• 【解析】 (4) =
−
−
• 定义域为 −, 关于原点对称
• ③一个奇函数,一个偶函数的积是 奇函数 .
函数的奇偶性
• 判断函数的奇偶性
• 1、首先分析函数的定义域,在分析时,不要把函数化简,而要根据
原来的结构去求解定义域,如果定义域不关于原点对称,则一定是非
奇非偶函数.
• 2、如果满足定义域对称,则计算(−),看与()是否有相等或互为
相反数的关系.
−
−−
+
++
−+
• 即
= 恒成立,
• 则2(+)2+2=0对任意的实数恒成立.
• ∴ ==0.
函数的单调性
+
•
(2)∵ =
∈ 是奇函数, 只需研究(, +∞)上()的单调区间即可.
•
任取, ∈ (,+∞),且 < ,则
应值,故函数取得最值时,一定有相应的x的值.
抽象函数的单调性
• 函数()对任意的、 ∈ ,都有 + = + − ,并且当
> 时,() > .
• (1)求证:()是上的增函数;
• (2)若()=,解不等式( − − ) < .
抽象函数的单调性
• ∴ ()=, ∴原不等式可化为( − − ) < (),
• ∵ ()是上的增函数,
数形结合视角下教学活动的开展——以“二次函数的图象和性质”的教学为例

教学·策略数形结合视角下教学活动的开展———以“二次函数的图象和性质”的教学为例文|张媛“二次函数的图象和性质”是人教版九年级上册第二十二章第一节的内容。
该节内容包含二次函数的概念以及y=ax2、y=a(x-h)2+k、y=ax2+bx+c(其中,a 均不为0)函数的图象和性质等内容。
以下将重点放在对二次函数图象和性质的探寻上,且探寻过程均在a≠0的情况下进行。
一、二次函数y=ax2的图象和性质(一)图象和性质的探寻教学中明确y=ax2图象和性质的探寻方向,可以保证教学活动有序、高效推进,因此,教师可以预告教学内容,从抛物线的开口大小、对称轴与顶点特点、y随x的变化趋势方面进行探讨。
对于抛物线开口大小的教学,课堂上教师分别展示a>0和a<0时的多个二次函数图象,要求学生分析a的大小对函数图象开口大小的影响。
这里a分别取值±12、±1、±2绘制对应函数的图象,如图1所示。
y图1观察图1,在a>0的情况下,a越大,图象的开口越小;在a<0的情况下,a越大,图象的开口越大。
同时,要求学生从图形对称的角度观察函数图象,确定其对称轴,分析图象的特征。
观察、归纳可以得出不考虑a的正负,函数图象均关于y轴对称。
其中当a>0时有最低点,即顶点(0,0);当a<0时,函数有最高点,顶点也为(0,0)。
探究任务:当a>0时,沿着x轴的正方向观察函数图象是怎样变化的,分析对应y值的变化规律,而后与学生一起进行探寻。
沿着x轴的正方向观察对应着x的值逐渐变大,容易看到函数图象先下降至顶点而后上升。
由于函数图象由无数个点构成,图象的下降对应函数的值减小,图象上升对应函数值增大。
用数学语言描述为:当x<0时,y随着x值的增大而减小;当x>0时,y随着x值的增大而增大。
课堂上要求学生参考上述分析思路,分析a<0时函数图象的性质,并完成如下填空内容。
《高一数学函数性质》课件

函数在物理中的应用包括运动学、力学、 电磁学等领域,用于描述物理量的变化。
3 函数在经济中的应用
4 函数在生物中的应用
经济学中的函数应用主要涉及到市场分析、 成本效益分析和经济模型等方面。
生物学中的函数应用主要涉及到种群增长、 代谢率、酶动力学等方面。
总结
函数的性质和运算
通过总结这些函数的性质和 运算,我们能够更好地理解 和应用函数。
二次函数
二次函数的最高次项为二次,表达式一般为 y = ax^2 + bx + c,其中 a、b、c 是实数且 a ≠ 0。
三次函数
三次函数的最高次项为三次,表达式一般为 y = ax^3 + bx^2 + cx + d,其中 a、b、c、d 是实数且 a ≠ 0。
指数函数
指数函数以指定的底数为底,自变量是指数的 函数,表达式一般为 y = a^x,其中 a 是正实数 且不等于 1。
常见函数的性质
对数函数
对数函数是指数函数的反函数,以指定的底数 为底,自变量是函数值的函数,表达式一般为 y = log_a(x),其中 a 是正实数且不等于 1。
正弦函数
正弦函数是三角函数之一,在平面直角坐标系 上呈现周期性变化的波形,表示为 y = sin(x),其 中 x 表示弧度。
余弦函数
《高一数学函数性质》 PPT课件
# 高一数学函数性质
函数的定义与性质,包括定义域、值域、象,图像与单调性,奇偶性和周期 性等。
函数的定义与性质
函数的定义
函数是一种特殊的关系,它将一个集合的每 个元素映射到另一个集合的唯一元素。
定义域、值域和象
函数的定义域是指能使函数有意义的实数集 合,值域是函数的所有可能输出的实数集合。
数学中考复习:数形结合思想PPT课件
距水平面的高度是4米,离柱子OP的距离为1米。 (1)求这条抛物线的解析式; y
(2)若不计其它因素,水池
A
的半径至少要多少米,才能
使喷出的水流不至于落在池 外?
P 3
4
O 1B 水平面 x
5. 已知一次函数y=3x/2+m和 y=-x/2+n的图象都经过点A(﹣2,0),且与 y轴分别交于B、C两点,试求△ABC的面积。
∴S△ABC=1/2×BC×AO=4
6.某机动车出发前油箱内有42升油,行驶若干小时
后,途中在加油站加油若干升。油箱中余油量Q(升)
与行驶时间t(小时)之间的函数关系如图所示,根
据下图回答问题:
(1)机动车行驶几小时后加油?答:_5_小时
(2)加油前余油量Q与行驶时间t的函数关系式
是:_Q=__42_-_6_t Q(升)
中考复习
数形结合思想
2024/9/19
1
谈到“数形结合”,大多与函数问 题有关。
函数的解析式和函数的图象分别从
“数”和“形”两方面反应了函数的性 质,
函数的解析式是从数量关系上反应 量与量之间的联系;
函数图象则直观地反应了函数的各
种性质,使抽象的函数关系得到了形象 的显示。
“数形结合思想”就是通过数量与
B、M = 0
C、M < 0
D、不能确定
运用数形结合的方法,将 -1 0 1
x
函数的解析式、图象和性
质三者有机地结合起来
1.二次函数y=ax2+bx+c的图象如图所
示.下列关于a,b,c的条件中,
不正确的是 ( D ) y
(A)a<0,b>0,c<0
(B)b2-4ac<0
(C)a+b+c<0
函数的基本性质ppt课件
►单调性的两个易错点:单调性;单调区间.
(2)函数的单调递增(减)区间有多个时,不能用并集表示, 可以用逗号或“和”。
例如 函数 f(x)=x+1x的单调递增区间为________.
解析 由f(x)图象易知递增区间为(-∞,-1],[1,+∞). 答案 (-∞,-1],[1,+∞)
变式训练:
已知奇函数f (x)的定义域为- 2,2,且在区间 - 2,0上递减,则满足f (1 m) f (1 m2) 0的 实数m的取值范围是-1,1
题型五、函数的周期性解题方略
1.有关函数周期性的常用结论 (1)若 f(x+a)=f(x-a),则函数的周期为 2|a|; (2)若 f(x+a)=-f(x),则函数的周期为 2|a|; (3)若 f(x+a)=f(1x),则函数的周期为 2|a|; (4)若 f(x+a)=-f(1x),则函数的周期为 2|a|.
叫做f(x)的最小正周期.
题型归纳
题型一 判断函数的单调性 判断函数的单调性或求单调区间的方法 (1)利用已知函数的单调性. (2)定义法:先求定义域,再利用单调性定义.
(3) 图 象 法 : 如 果 f(x) 是 以 图 象 形 式 给 出 的 , 或 者 f(x)的图象易作出,可由图象的直观性写出它的单
域为[a-1,2a],则a=________,b=________.
解析 由定义域关于原点对称得 a-1+2a=0,解得 a=13,即
f(x)=13x2+bx+b+1,又 f(x)为偶函数,由 f(-x)=f(x)得 b=0.
答案
1 3
0
(2)若函数 f(x)为奇函数且在原点有意义,则 f(0)=0
[点评] 解题(1)的关键是会判断复合函数的单调性;解题(2) 的关键是利用奇偶性和单调性的性质画出草图.
函数的基本性质ppt课件
1
即函数f(x)=x+ 为奇函数.
函数的基本性质
例1 判断下列函数的奇偶性:
(3)f(x)=0;
(2)f(x)= ;
解:(1)函数f(x)的定义域为R.
∀x∈R,都有-x∈R,且f(-x)=0=-f(x)=f(x),
函数f(x)既是奇函数,又是偶函数.
1
(2)函数f(x)=x+ 的定义域I为[0,+∞).
(1)若函数f(x)在区间[a,b]上是增(减)函数,则f(x)在区间
[a,b]上的最小(大)值是f(a),最大(小)值是f(b).
(2)若函数f(x)在区间[a,b]上是增(减)函数,在区间[b,c]
上是减(增)函数,则f(x)在区间[a,c]上的最大(小)值是f(b),
最小(大)值是f(a)与f(c)中较小(大)的一个.
当 > 0时,(1 ) − (2 )<0,即(1 ) < (2 )
所以函数() = + 在R上单调递增,即函数() = + 是增函数。
当 < 0时,(1 ) − (2 )>0,即(1 ) > (2 )
所以函数() = + 在R上单调递减,即函数() = + 是减函数。
1
(2)f(x)=x+
;
解:(1)函数f(x)=x4的定义域为R.
∀x∈R,都有-x∈R,且f(-x)=(-x)4=x4=f(x),
函数f(x)=x4为偶函数.
1
(2)函数f(x)=x+ 的定义域I为(-∞,0)∪(0,+∞).
1
1
∀x∈I,都有-x∈I,且f(-x)=-x+ =-(x+ )=-f(x),
高三数学二轮复习讲义专题一函数性质与图象
专题一 集合,常用逻辑用语,不等式,函数与导数(讲案)第二讲 函数的基本性质与图象【最新考纲透析】预计时间:3.13---3.18函数与基本初等函数的主要考点是:函数的表示方法、分段函数、函数的定义域和值域、函数的单调性、函数的奇偶性、指数函数与对数函数的图象与性质、幂函数的图象与性质。
本部分一般以选择题或填空题的形式出现,考查的重点是函数的性质和图象的应用,重在检测对该部分的基础知识和基本方法的掌握程度。
复习该部分以基础知识为主,注意培养函数性质和函数图象分析问题和解决问题的能力。
【考点精析】题型一 函数的概念与表示例1 (1)函数21sin()(10)()0x x x f x e x π-⎧-<<=⎨≥⎩,若(1)()2f f a +=,则的所有可能值为( ) A .1,2- B.2- C .1,2- D .1,2(2)根据统计,一名工作组装第x 件某产品所用的时间(单位:分钟)为 ⎪⎪⎩⎪⎪⎨⎧≥<=Ax A c A x x c x f ,,,)((A ,C 为常数)。
已知工人组装第4件产品用时30分钟,组装第A 件产品用时15分钟,那么C 和A 的值分别是A .75,25B .75,16C .60,25D .60,16(3)已知集合A 到集合{}0,1,2,3B =的映射1:1f x x →-,则集合A 中的元素最多有 个。
解析:1:1f x x →-是集合A 到集合B 的映射,∴A 中的每一个元素在集合B 中都应该有象。
令101x =-,该方程无解,所以0无原象,分别令11,2,3,1x =-解得:342,,23x x x =±=±=±。
故集合A 中的元素最多为6个。
(4)如图,已知底角为450的等腰梯形ABCD ,底边BC 长为7cm,腰长为cm ,当一条垂直于底边BC (垂足为F )的直线l 从左至右移动(与梯形ABCD 有公共点)时,直线l 把梯形分成两部分,令BF x =,试写出左边部分的面积y 与x 的函数解析式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数性质及数形结合
一:学生情况及其分析:上海高三学生,已复习完函数的性质,对于基本题型掌握的很好,那我就横向拓展乐,学生易于沟通(这种性格好的学生人品好啊,因为碰到了我,嘿嘿),成绩在好一点的市重点偏上,思维不是很活跃,但是易于接受。
二:教学目的:本节课的目的在于分析不同类型的函数,如何利用函数的基本性质解题,如何识别并避免问题的陷阱?学习用数形结合这种思想解题时碰到的常见的题型,以此提升学生的数形能力。
(能力好重要额)
三:教学设计:
1,教学回顾:如何定义函数的奇偶性,周期性?又如何判断?
由奇偶性或周期性如何求函数的解析式?(忘了就嘿嘿嘿嘿)
2,教学过程:
易错点的讲解:例1设a 为实常数,()y f x =是定义在R 上的奇函数,当0x <时,
2
()97a f x x x
=++,若()1f x a ≥+对一切0x ≥成立,则a 的取值范围为________
分析:啊?又是恒成立问题,太老土了,亲,有陷阱呢?你看到了吗?
例2已知函数
()122015122015f x x x x x x x =+++++++-+-++-()x ∈R ,
且2(1)(21)f a a f a --=-,则满足条件的所有a 有
分析:该如何分析这个特殊函数的性质?如何解抽象不等式呢?陷阱又在哪里?
吐槽:到处都是陷阱,数学好黑暗啊,嘿嘿,我很阴险呢
推广:
例3函数1111()=1232015
f x x x x x +++⋅⋅⋅⋅⋅⋅+++++的图像的对称中心的坐标为 。
分析:找函数的对称性有哪些常用的方法?本题结合这个特殊的形似能否开辟捷径?
吐槽:果然,数学中有捷径,哈哈,开心
函数的周期性:
例4如图所示,在平面直角坐标系上放置一个边长为的正方形,此正方形沿轴滚动(向左或向右均可),滚动开始时,点位于原点处,设顶点的纵坐标与横坐标的函数关系是,该函数相邻两个零点之间的距离为.
(1)写出的值并求出当时,点运动路径的长度;
(2)写出函数的表达式;研究该函数的性质
分析:是否能用实验的方法找函数的解析式?如何分析韩式的性质?如何利用周期性分析函数的性质?
吐槽:数学也要做实验呢,想象力的攀升也要梯子额
类周期性:
例5:设函数y f x =()的定义域为D ,如果存在非零常数T ,对于任意x ∈D ,都
•()f x T T f x +=(),则称函数y f x =()是“似周期函数”,非零常数T 为函数y f x =()的“似周期”.现有下面四个关于“似周期函数”的命题:
①如果“似周期函数”y f x =()的“似周期”为﹣1,那么它是周期为2的周期函数;
②函数f x x =(
)是“似周期函数”; ③函数2x
f x =﹣()是“似周期函数”; ④如果函数f x cos x ω=(
)是“似周期函数”,那么“k k Z ωπ=∈,”. 其中是真命题的序号是 .(写出所有满足条件的命题序号)
分析:在处理函数的类周期性时要做到两看,什么是两看?
狂力吐槽:换个衣服而已,形变神不变呢?老土。
中场休息的时候又到了,,,,,,,,,,,来一个笑话打破我们平静而又严肃的课堂氛围O(∩_∩)O :
可以随便发挥我们侃大山的本领了,尽情狂欢吧:来一首歌吧,或者来一曲舞蹈,你花前,我月下,要不私奔吧。
xOy 1PABC PABC x P ()y x P ,()y f x =(),R y f x x =∈m m 0x m ≤≤P l [](),42,42,y f x x k k k Z =∈-+∈
下半场:先回答一个问题:数形结合主要可以解决哪些问题?
类型1:特殊形态数形结合
例1若关于x 的方程[]2
a (21)20(,,0)34x
b x a a b R a ++--=∈≠在,至少有一个零点,则22a b +的最小值为
分析:解决零点有哪些常用的办法?(考察我们基本功了,哈哈)由特殊的式子你能想到形吗?
类型2:解复合方程:例2设定义域为R 的函数⎩⎨⎧≤-->=,
0,2,0,|lg |)(2x x x x x x f 若关于x 的函数
1)(2)(22++=x bf x f y 有8个不同的
零点,则实数b 的取值范围是____________
分析:什么是复合方程呢?解复合方程常用的步骤?
练习:关于x 的方程222(1)10x x k ---+=,给出下列四个命题:
①存在实数k ,使得方程恰有2个不同的实根;
②存在实数k ,使得方程恰有4个不同的实根;
③存在实数k ,使得方程恰有5个不同的实根;
④存在实数k ,使得方程恰有8个不同的实根;
其中假.
命题的个数是( )(2006年湖北省高考(理科)第10题) A )0 B )1 C )2 D )3
类型3:数形结合解不等式 若不等式21x x a <++的解集是区间(4,4)-的子集,则实数a 的的取值范围是
分析:含参不等式怎么解?用数形结合该如何处理呢?
吐槽:已经无力
类型4定义域和值域相等:已知不等式b x x a ≤+-≤434
32的解集为],[b a ,则=b , b a +=
分析:定义域和值域相等的问题,由定义域考虑值域怎么处理?本题反过来由值域考虑定义域呢?换做不同函数为载体呢?
类型5:同学,你能自己总结么?
练习时间到了:一张试卷来了,亲,准备好了吗?
课后总结及练习:自他总结:巴拉巴拉巴拉吧啊
课堂总结:如何利用函数的性质解题,如何去分析特殊形态函数的性质,如何不掉进问题的陷进,数形结合有哪些常见的题型,分别怎么处理?(你记住了吗)
下次精彩预告:教你涨涨知识,如何认清题意
课尾八卦:晚上出来遛狗还是遛猫啊?班花搞定了吗?数学老师有我帅吗?
你们学校历史老师和校长有一腿吗?。