小学奥数百分数应用题(三)

合集下载

第3讲 百分数(浓度问题)-六年级奥数下册同步精讲精练(西师大版)

第3讲 百分数(浓度问题)-六年级奥数下册同步精讲精练(西师大版)

第三讲百分数(浓度问题)ʌ知识概述ɔ把盐溶于水就得到盐水,其中盐叫溶质,水叫溶剂,盐与水的混合液叫做溶液㊂我们把盐与盐水的比值叫做盐水的浓度,通常浓度用百分数表示,又叫百分比浓度,这一类问题叫做浓度问题㊂解答与浓度有关的问题经常要用到以下几个关系式:溶质的重量+溶剂的重量=溶液的重量溶质的重量ː溶液的重量ˑ100%=浓度溶液的重量ˑ浓度=溶质的重量溶质的重量ː浓度=溶液的重量例题精学例1现有浓度为25%的盐水80克,加入多少克水就能得到浓度为10%的盐水?ʌ思路点拨ɔ将浓度为25%的盐水变为浓度为10%的盐水,盐水中水的重量增加了,但是盐的重量并没有发生变化㊂可以根据已知条件先求出原来盐水中盐的重量,再求出现在盐水的重量,最后再用现在盐水的重量减去原来盐水的重量就是加入水的重量㊂同步精练1.把碘溶在酒精里,配成碘酒,现在有含碘15%的碘酒50千克,要把它变成含碘3%的碘酒,需要加入多少千克酒精?1462.现有浓度为20%的盐水80克,加入多少克水就能得到浓度为16%的盐水?3.往40千克含盐16%的盐水中加入10千克水,这时盐水的浓度是多少?147例2现有浓度为25%的盐水80克,要使盐水的浓度提高到40%,需要加多少克盐?ʌ思路点拨ɔ将浓度为25%的盐水变为浓度为40%的盐水,在盐水的变化过程中,盐的重量增加了,但是水的重量没有发生变化,也就是原来盐水中水的重量等于现在盐水中水的重量㊂同步精练1.现有浓度为15%的盐水20千克,要使盐水浓度提高到20%,需加多少千克盐?2.现有浓度为10%的糖水300克,要把它变成浓度为25%的糖水,需要加糖多少克?3.往40千克含盐16%的盐水中加入10千克盐,这时盐水的浓度是多少?148例3有浓度为2.5%的盐水700克,为了制成浓度为10%的盐水,从中要蒸发掉多少克水?ʌ思路点拨ɔ要使溶液的浓度变大,可以采取增加溶质(盐㊁糖㊁纯酒精等)的方法,也可以用蒸发水的方法㊂把盐水加热,一部分水变成水蒸气蒸发掉了,于是盐水中水的重量减少了,而在变化过程中盐的重量没有发生变化㊂先根据条件求出原来盐水中含盐的重量,由于在变化过程中盐水中盐的重量没有发生变化,所以原来盐水中盐的重量也是现在盐水中盐的重量,再求出现在盐水的重量,最后用原来盐水的重量减去现在盐水的重量就是要蒸发掉水的重量㊂同步精练1.现有浓度为12.5%的盐水40千克,将它变成浓度为20%的盐水,要蒸发掉多少千克水?2.有浓度为7.5%的盐水700克,为了制成浓度为20%的盐水,从中要蒸发掉多少克水?3.从含盐10%的50千克盐水中蒸发掉10千克水,这时盐水的浓度是多少?149例4把浓度为25%的40千克盐水与浓度为10%的60千克盐水混合在一起,混合后的盐水的浓度是多少?ʌ思路点拨ɔ把两种浓度不同的盐水混合在一起,要求混合后的盐水浓度,需要知道混合后盐水的总重量和混合后盐的总重量㊂两种盐水混合的过程中,盐水的总重量和混合后盐的总重量都没有发生变化,因此,我们解答时,先应分别求出混合后盐水的总重量和盐的总重量,再用盐的总重量除以盐水的总重量求出混合后盐水的浓度㊂同步精练1.把浓度为70%的酒精溶液500克与浓度为50%的酒精溶液300克混合后,酒精溶液的浓度是多少?2.将浓度为30%的酒精溶液15千克,与浓度为40%的酒精溶液35千克混合,混合后得到的酒精溶液的浓度是多少?3.在浓度为50%的100克盐水中,再加入多少克浓度为5%的盐水,就可得到浓度为15%的盐水?150练习卷一㊁填空㊂1.一瓶盐水共重200克,其中盐有20克,这瓶盐水的浓度是()%㊂2.配制一种盐水,在450克水中加了50克盐,这种盐水的浓度是()%㊂3.一种糖水的浓度是15%,200克糖水中含糖()克㊂4.一种酒精溶液的浓度是20%,其中水有240克,酒精有()克㊂5.一种糖水的浓度是10%,15克糖需加水()克㊂二㊁解决问题㊂1.现有浓度为20%的盐水80克,加入20克水,这时盐水的浓度是多少?2.现有浓度为20%的盐水80克,加入20克盐,这时盐水的浓度是多少?3.在200克浓度为15%的糖水中,加入多少克水就能得到浓度为10%的糖水?1514.浓度为20%的糖水500克,要把它变成浓度为50%的糖水,需要加入多少克糖?5.有浓度为2.5%的盐水400克,为了制成浓度为5%的盐水,从中要蒸发掉多少克水?6.将60克含盐25%和40克含盐10%的两种盐水混合在一起,求混合后盐水的浓度㊂7.在20千克浓度为10%的硫酸溶液中,再加入多少千克浓度为30%的硫酸溶液,就可以配成浓度为22%的硫酸溶液?1528.将20%的盐水与5%的盐水混合,配成15%的盐水600克㊂需要20%的盐水与5%的盐水各多少克?9.20克盐放入100克水中,放置三天后,盐水重量只有100克,这时盐水的浓度是多少?浓度比原来提高了百分之几?10.甲容器中有含盐25%的盐水80克,乙容器中有盐水120克㊂现将甲㊁乙两容器中的盐水混合后得到含盐40%的溶液㊂求原来乙容器中盐水的浓度㊂153片,丙分到104张画片㊂4.解:(1-14)ˑ87+8=2521ː(25-14)=140(人)答:三个车间共有140人㊂5.解:30ː21-58-5()=90(人) 90ː11+2=270(人)答:现在厂里共有270名工人㊂6.解:甲ˑ111=乙ˑ151 5ʒ111=11ʒ5160ˑ1111+5=110答:甲数是110㊂7.解:750-420-750ˑ13=80(千克) 80ː(35-13)=300(千克)答:运来面粉300千克㊂8.解:第一桶ˑ12=第二桶ˑ232 3ʒ12=4ʒ312ˑ44-3=48(千克) 48+4=52(千克)12ˑ34-3=36(千克)36+4=40(千克)答:原来第一桶有油52千克,第二桶有油40千克㊂9.解:(130-2900ˑ125)ː(120-125)= 1400(人)2900-1400=1500(人)答:上年度学校男生有1500人,女生有1400人㊂10.解:(156-12)ˑ2ː(1-111+2)= 99(人)156-99=57(人)答:男生有99人,女生有57人㊂第三讲百分数(浓度问题)例1解:80ˑ25%ː10%-80=120(克)答:加入120克水就能得到浓度为10%的盐水㊂[同步精练]1.解:50ˑ15%ː3%-50=200(千克)答:需要加入200千克酒精㊂2.解:80ˑ20%ː16%-80=20(克)答:加入20克水就能得到浓度为16%的盐水㊂3083.解:40ˑ16%ː(40+10)ˑ100%= 12.8%答:这时盐水的浓度是12.8%㊂例2解:80ˑ(1-25%)ː(1-40%)-80 =20(克)答:需要加20克盐㊂[同步精练]1.解:20ˑ(1-15%)ː(1-20%)-20 =1.25(千克)答:需加1.25千克盐㊂2.解:300ˑ(1-10%)ː(1-25%)-300=60(克)答:需要加糖60克㊂3.解:(40ˑ16%+10)ː(40+10)ˑ100%=32.8%答:这时盐水的浓度是32.8%㊂例3解:700-700ˑ2.5%ː10%=525 (克)答:从中要蒸发掉525克水㊂[同步精练]1.解:40-40ˑ12.5%ː20%=15(千克)答:要蒸发掉15千克水㊂2.解:700-700ˑ7.5%ː20%= 437.5(克)答:从中要蒸发掉437.5克水㊂3.解:50ˑ10%ː(50-10)ˑ100% =12.5%答:这时盐水的浓度是12.5%㊂例4解:(40ˑ25%+60ˑ10%)ː(40 +60)ˑ100%=16%答:混合后的盐水的浓度是16%㊂[同步精练]1.解:(500ˑ70%+300ˑ50%)ː(500+300)ˑ100%=62.5%答:混合后酒精溶液的浓度是62.5%㊂2.解:(15ˑ30%+35ˑ40%)ː(15 +35)ˑ100%=37%答:混合后得到的酒精溶液的浓度是37%㊂3.解:设再加入x克浓度为5%的盐水,就可得到浓度为15%的盐水㊂100ˑ50%+xˑ5%=(100+x)ˑ15%x=350答:再加入350克浓度为5%的盐水,就可得到浓度为15%的盐水㊂练习卷一㊁1.102.103.304.605.135309二㊁1.解:80ˑ20%ː(80+20)ˑ100% =16%答:这时盐水的浓度是16%㊂2.解:(80ˑ20%+20)ː(80+20)ˑ100%=36%答:这时盐水的浓度是36%㊂3.解:200ˑ15%ː10%-200=100 (克)答:加入100克水就能得到浓度为10%的糖水㊂4.解:500ˑ(1-20%)ː(1-50%) -500=300(克)答:需要加入300克糖㊂5.解:400-400ˑ2.5%ː5%=200 (克)答:从中要蒸发掉200克水㊂6.解:(60ˑ25%+40ˑ10%)ː(60 +40)ˑ100%=19%答:混合后盐水的浓度是19%㊂7.解:设再加入x千克浓度为30%的硫酸溶液,就可以配成浓度为22%的硫酸溶液㊂20ˑ10%+xˑ30%=(20+x)ˑ22%x=30答:再加入30千克浓度为30%的硫酸溶液,就可以配成浓度为22%的硫酸溶液㊂8.解:设需要20%的盐水x克,5%的盐水(600-x)克㊂20%x+5%(600-x)=600ˑ15%x=400600-400=200(克)答:需要20%的盐水400克,5%的盐水200克㊂9.解:20ː100ˑ100%=20%[20%-20ː(20+100)]ː[20ː(20 +100)]ˑ100%=20%答:这时盐水的浓度是20%,浓度比原来提高了20%㊂10.解:设原来乙容器中盐水的浓度为x㊂80ˑ25%+120x=40%(80+120)x=50%答:原来乙容器中盐水的浓度是50%㊂第四讲百分数(利息和税收)例1解:20000+20000ˑ2.25%= 20450(元)答:张叔叔一共取回20450元㊂310。

百分数及其应用(奥数题)

百分数及其应用(奥数题)

基本知识:1、求常见的百分率如:达标率、及格率、成活率、发芽率、出勤率等求百分率就是求一个数是另一个数的百分之几2、求一个数比另一个数多(或少)百分之几实际生活中,人们常用增加了百分之几、减少了百分之几、节约了百分之几等来表示增加、或减少的幅度。

求甲比乙多百分之几:(甲-乙)÷乙求乙比甲少百分之几:(甲-乙)÷甲3、求一个数的百分之几是多少一个数(单位“1”)×百分率4、已知一个数的百分之几是多少,求这个数部分量÷百分率=一个数(单位“1”)5、折扣几折就是十分之几也就是百分之几十6、纳税缴纳的税款叫做应纳税额。

应纳税额与各种收入的比率叫做税率。

应纳税额=总收入×税率7、利率存入银行的钱叫做本金。

取款时银行多支付的钱叫做利息。

利息与本金的比值叫做利率。

利息=本金×利率×时间税后利息=利息-利息的应纳税额=利息-利息×5%典型例题1去年春天,我们学校的同学在小河边先种240棵小树,18棵没有成活,后来补种了160棵,又有7棵没有成活,这年春天植数的成活率是多少?对应练习11、王爷爷在自家的小屋后面种下了150棵小树,过了一段时间发现枯死了10棵,于是又补种了10棵,结果全部成活,王爷爷去年植树的成活率是多少?2、小明做了180道口算题,要想使正确率达到98%以上,他至少要做对多少道题?典型例题2小王是一个狂热的“驴友”,每周六都要进行户外活动,今天又是一个周六,原计划每小时步行6千米。

8小时可以达到目的地。

实际行进中由于天气原因,速度减少了10%,实际用了多长时间到达目的地?对应练习21、王师傅加工一批零件,计划每小时加工10个,12小时全部完成,实际每小时多加工20%,实际用了多长时间?2、修一条水渠,每天修500米,5天修了全程的50%,剩下的工作效率提高了20%,剩下这段工程可以提前多少天完工?3、王先生向某工厂订购一批产品,每件定价100元,订购60件,王先生对厂长说:“如果你每件减价1元,我就多订购3件。

六年级下册数学一课一练-分数百分数应用题训练(三)提升篇 苏教版(2014秋)(含答案)

六年级下册数学一课一练-分数百分数应用题训练(三)提升篇  苏教版(2014秋)(含答案)

六年级分数百分数应用题集中训练(提升篇)1.商店同时卖出两台洗衣机,每台售价均为2400元,其中一台比进价高20%,另一台比进价低20%,商店卖出这两台洗衣机是赚了还是亏了?赚了(亏了)多少元?2.张叔叔家买了一套新房,准备买一些家电,他带了10000万来到家电超市,看见一1。

款家电组合:电脑4000元,彩电的价钱是电脑的80%,冰箱的价钱比彩电便宜16请你帮张叔叔算一算,他带的钱够不够买这一款家电组合?3.王叔叔新购进200件西服,每件的成本为300元,准备按每件500元上柜销售。

由于市场因素,他决定打八折出售。

全部售出后,要向税务部门按销售款的5%纳税。

税后他盈利多少元?4.甲仓库有粮食80吨,乙仓库有粮食120吨,如果把乙仓库的一部分粮食调到甲仓库,使得乙仓库的粮食是甲仓库的60%,那么需从乙仓库调入甲仓库多少吨粮食?2桶油,用去桶中油的40%,桶中还有油24千克。

整个最多能5.有一个油桶,现装有3装油多少千克?6.甲、乙两个仓库共存粮食1360吨,已知甲仓库的存粮是乙仓库存粮的60%,甲、乙两个仓库各存量多少吨?1。

每只大桶和每7.4只大桶和16只小桶共装油80升,已知每只小桶的容量是大桶的4只小桶各装油多少升?8.妈妈买回5千克苹果和3千克香蕉,一共用去45元。

已知每千克苹果的价格是香蕉的120%,苹果和香蕉的单价各是多少元?2,如果再运50吨,那么剩下的煤比已经运的少30吨。

这堆煤9.运一堆煤,已经运了5原来有多少吨?10.六年级二班体育达标的人数是39,未达标的人数是11,半年后体育未达标的人数是1。

在这半年中又有多少人体育达标?达标人数的911.甲、乙两车在上午8时分别从两个车站相对开出,中午12时在途中相遇。

已知甲4。

两个车站相距多少千米?车每小时行驶75千米,乙车的速度是甲车的57。

现两车同时从甲、乙两地出发,12.一辆货车每小时行70千米,相当于客车速度的8相对开出,结果在距中点50千米处相遇。

五年级奥数《分数、百分数应用题》含答案(通用版)

五年级奥数《分数、百分数应用题》含答案(通用版)

一、 知识点概述:分数应用题是研究数量之间份数关系的典型应用题,一方面它是在整数应用题上的延续和深化,另一方面,它有其自身的特点和解题规律.在解这类问题时,分析中数量之间的关系,准确找出“量”与“率”之间的对应是解题的关键.关键:分数应用题经常要涉及到两个或两个以上的量,我们往往把其中的一个量看作是标准量.也称为:单位“1”,进行对比分析。

在几个量中,关键也是要找准单位“1”和对应的百分率,以及对应量三者的关系例如:(1)a 是b 的几分之几,就把数b 看作单位“1”.(2)甲比乙多18,乙比甲少几分之几?方法一:可设乙为单位“1”,则甲为19188+=,因此乙比甲少191889÷=.方法二:可设乙为8份,则甲为9份,因此乙比甲少1199÷=. 二、 怎样找准分数应用题中单位“1” (一)、部分数和总数在同一整体中,部分数和总数作比较关系时,部分数通常作为比较量,而总数则作为标准量,那么总数就是单位“1”。

例如:我国人口约占世界人口的几分之几?——世界人口是总数,我国人口是部分数,世界人口就是单位“1”。

解答题关键:只要找准总数和部分数,确定单位“1”就很容易了。

(二)、两种数量比较分数应用题中,两种数量相比的关键句非常多。

有的是“比”字句,有的则没有“比”字,而是带有指向性特征的“占”、“是”、“相当于”。

在含有“比”字的关键句中,比后面的那个数量通常就作为标准量,也就是单位“1”。

例如:六(2)班男生比女生多——就是以女生人数为标准(单位“1”),解题关键:在另外一种没有比字的两种量相比的时候,我们通常找到分率,看“占”谁的,“相知识框架分数、百分数应用题当于”谁的,“是”谁的几分之几。

这个“占”,“相当于”,“是”后面的数量——谁就是单位“!”。

(三)、原数量与现数量有的关键句中不是很明显地带有一些指向性特征的词语,也不是部分数和总数的关系。

这类分数应用题的单位“1”比较难找。

六年级奥数百分数应用题

六年级奥数百分数应用题

百分数应用题例1、服装厂一车间人数占全厂的25%,二车间人数比一车间少20%,三车间人数比二车间多30%。

已知三车间有156人,全厂有多少人?训练、有三块地,第二块地的面积是第一块地的80%,第三块地的面积比第二块多20%,三块地共69公顷,求三块地各多少公顷。

例2、已知甲校学生数是乙校学生数的40%,甲校女生数是甲校学生数的30%,乙校男生数是乙校学生数的42%,那么,两校女生数占两校学生总数的百分之几?训练、某班男生人数占全班人数的60%,男生中有12.5%的人希望长大当教师,女生25%的人希望长大当教师。

问:想当教师的男生人数是想当教师的女生人数的百分之几?例3、一个长方体的长比宽多20%,高是宽的75%,如果将长减少4厘米,高增加5厘米,正好可以得到一个正方体。

问:这个长方体的体积是多少立方厘米?训练、把一个正方形的一边减少20%,另一边增加2米,得到一个长方形.它与原来的正方形面积相等.那么正方形的面积是多少平方米?例4、育红小学四年级学生比三年级学生多25%,五年级学生比四年级学生少10%,六年级学生比五年级学生多10%。

如果六年级学生比三年级学生多38人,那么三至六年级共有多少名学生?训练、林场种植杉树、柏树、梧桐树,其中杉树棵数占这三种树的总棵数的40%,柏树棵数占杉树棵数的7/8,梧桐树比杉树少144棵。

问:这三种树一共种了多少棵?例5、某中学上年度高中男、女生共290人,这一年度高中男生增加4%,女生增加5%,共增加了13人,本年度该校有男、女生各多少人?训练、六(3)班男生人数占全班人数的60%,如果男人减少5人,女生增加3人,则男、女生人数正好相等,问:六(3)班原有学生多少人?例6、有一堆糖果,其中奶糖占45%,再放入16块水果糖后,奶糖占25%,那么这堆糖果中有奶糖多少块?训练、有一堆糖果,其中奶糖占45%,再放入32块水果糖后,奶糖就只占25%,那么这堆糖中有奶糖多少块?例7、在某次数学测试中,六年级的及格率为95%,不及格的学生参加了补考,结果及格率为80%,如果补考后该年级还有2名学生没有及格,那么六年级一共有多少名学生?训练、操场上有200人,一部分站着,另一部分坐着。

六年级上册奥数试题-第22讲:分数、百分数应用题_全国通用(含答案)

六年级上册奥数试题-第22讲:分数、百分数应用题_全国通用(含答案)

第22讲分数、百分数应用题知识网络分数、百分数应用题是小学数学的重点内容,较复杂的分数、百分数应用题也是小学数学竞赛中一类常见问题。

分数应用题常涉及“比较数”、“标准数”和“分率”三种量。

这三者之间具有如下关系:比较数÷标准数=分率(几分之几)标准数×分率=比较数比较数÷分率=标准数上述这三种关系式也就对应了分数应用题的三种基本类型:第一类:求一个数是另一个数的几分之几。

第二类:求一个数的几分之几是多少。

第三类:已知一个数的几分之几是多少,求这个数。

百分数即表示一个数是另一个数的百分之几的数。

因为百分数可以看成分母为100的分数,所以百分数应用题的基本类型、解答方法都和分数应用题完全一致。

重点·难点在解答分数、百分数应用题时,关键要正确判断“标准数”及相关的“比较数”、“分率”,通过分析数量关系,找出解题的数量关系式,进而列式解答,这便是本节的重点。

学法指导为了掌握好分数、百分数应用题的解法,提高解题能力,首先要掌握好相关基础知识,深刻理解分数、分数乘法的意义,正确判断三种量及三者间的关系。

其次要学会使用线段示意图法解题。

线段示意图有助于直观地揭示“量”与“率”之间的对应关系,发现隐含条件,探求解题思路。

再次,在解题中要弄清楚把谁当作“1”。

有时在解题的不同阶段需把单位1进行“转化”,这样可使解题思路清晰,计算简便。

最后,此类问题变化多端,关系复杂,不可能靠单一的模式去解答。

因此,要学会多角度、多侧面思考问题。

在寻找正确的解题方法的同时,不断开拓解题思路。

经典例题[例1]爷爷、奶奶两人共养花100盆,爷爷养的比奶奶养的多7盆,求爷爷、奶奶两人各养花多少盆?思路剖析很明显,已知条件中的两个分率各自所对的单位“1”的意义不一样。

因而我们可以采用假设的方法。

假设爷爷养的等于奶奶养的,那么爷爷比实际养花的盆数要少4个7盆,则两人养的总盆数是100-7×4=72(盆),如图1所示。

分数、百分数问题奥数思维拓展(试题)-小学数学六年级上册人教版(含答案)

分数、百分数问题奥数思维拓展(试题)-小学数学六年级上册人教版(含答案)

分数、百分数问题奥数思维拓展-小学数学六年级上册人教版一.选择题(共6小题)1.一袋洗衣粉,第一周用了全部的,第二周用了全部的25%,还剩1.2千克。

这瓶洗衣粉原来有多少千克?()A.3.2B.5.6C.3.5D.5.22.汽车厂今年上半年完成计划的75%,下半年完成计划的,汽车厂今年超产()A.75%B.50%C.25%D.125%3.甲数比乙数多,乙数就比甲数少()A.12.5%B.37.5%C.60%4.体育用品商店进购一批体育器材,其中足球和篮球的总数是150个,足球的数量占两种球总数的40%.后来又进购了一些足球,此时篮球的数量占两种球总数的,后来又进购了()个足球.A.90B.70C.605.学校一次课外活动,缺勤人数是出勤人数的10%,后来又有2人因病请假,这时缺勤人数是出勤人数的,这个学校课外活动小组共有()A.99人B.90人C.100人D.190人6.某厂上半月完成计划的75%,下半月完成计划的,这个月增产()A.25%B.45%C.30%D.20%二.填空题(共8小题)7.某服装厂计划一个月生产衬衫8000件,结果上半月完成了60%,下半月完成,这个月超量生产件。

8.某超市将商品促销活动,一种书包原价是100元,先降价20%后,又提价这种书包现在的售价是元。

9.湖边种了40棵柳树,是桃树棵数的,榕树的棵数是桃树棵数的65%。

湖边种了棵榕树。

10.工地有水泥120吨,沙子的质量是水泥的40%,又是石子的,石子的质量是吨。

11.运动健身迎亚运,和谐杭州展新韵。

为迎接第十九届杭州亚运会,学校组织教师健步走,张老师已经走了全程的40%,如果再走4千米,已走路程就占全程的。

这次健步走的全程是千米。

12.明彩文具超市新购进180支钢笔,新购进的圆珠笔的数量比钢笔多,新购进的圆珠笔有支;新购进的中性笔比圆珠笔少50%。

新购进的中性笔有支。

13.一堆货物,第一天运走了总数的,第二天运走了总数的25%,剩下的按3:4分配给甲车和乙车。

寒假奥数专题:分数、百分数复合应用题(试题)-小学数学六年级上册人教版(含答案)

寒假奥数专题:分数、百分数复合应用题(试题)-小学数学六年级上册人教版(含答案)

寒假奥数专题:分数、百分数复合应用题(试题)-小学数学六年级上册人教版一.选择题(共5小题)1.某厂上半月完成本月计划的75%,下半月完成本月计划的,这个月实际完成量比计划多()A.25%B.30%C.45%D.50%2.据《钱江晚报》报道,共有100多名自行车运动爱好者参与12月1日至11日进行的“爱我浙江环保骑行宣传活动”.车队途经25个县市,全程1600千米.当行进到全程时,已有70%的参与者退出了骑行队伍.坚持骑完全程的有12人,是出发时总人数的10%,他们平均每天骑行8时,骑行路程的60%是山道.问:没有骑完全程的有多少人?要解决这个问题,需要用到的信息是()A.100人,12人,1600米,1090,,70%B.100人,70%,10%C.12人,70%,10%D.12人,10%3.水果店运进两种质量相同并且超出1吨的水果,甲种水果卖出吨,乙种水果卖出30%,两种水果剩下的()A.甲种多B.乙种多C.一样多D.无法比较4.男生人数的等于女生人数的60%,男生和女生人数的比是()A.:60%B.60%:C.4:5D.5:45.某厂上半月完成计划的75%,下半月完成计划的,这个月增产()A.25%B.45%C.30%D.20%二.填空题(共7小题)6.商店上午的营业额占全天营业额的,其余是下午的营业额,上午的营业额比下午少%.7.电信公司要架设一条长4800米的光缆,第一天架设了全长的25%,第二天架设了余下的又10米,还剩下米.8.在一个三角形中,第一个角占其中的,第二个角占其中的50%,这三个角分别是,这是一个三角形.9.小明和弟弟各自积攒很多画片,小明把自己的给弟弟后,两人的一样多,原来小明比弟弟多%.10.用汽车运一批货,已经运了5次,运走的货物比多一些,比75%少一些.运完这批货物最多要运次,最少要运次.11.花园小学有学生1260人,学校组织全校男生的80%和全校女生的的学生参观西湖,其余学生祭扫雨花台烈士陵园,结果发现扫墓的男、女生人数正好相等.花园小学男生、女生各有人.12.甲、乙、丙三人赛跑,已知甲速比乙速快,而乙速又比丙速快10%,则甲速比丙速快%.三.应用题(共9小题)13.六(1)班有32人喜欢跳舞,占全班人数的,喜欢唱歌的占全班人数的75%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

百分数应用题(三) 利润和折扣
导言:
利润问题是一种常见的百分数应用题。

商店出售商品,总是期望获得利润。

例如某商品买入价(成本)是100元,以120元(卖价或售价)卖出,就赚了120-100=20元(利润)。

通常,利润也可以用百分数来说,这个商品赚了20÷100=0.2=20%,我们说获得了20%的利润(利润率)。

解答利润问题的百分数应用题首先要理解以下关系:
售价(卖价)=成本+利润
利润=卖价–成本
利润率=利润÷成本×100%=(售价-成本)÷成本×100%
售价=成本×(1+利润率)
成本=售价÷(1+利润率)
注意:当赚时,利润率前是“+”号,当亏时,利润率前是“-”号商品有时会降价销售,俗称“折扣”或“打折”出售。

“几折”就是表示十分之几,也就是百分之几十。

比如说某种商品打“七折”出售,就是按原卖出价的7/10或70%出售;某商品打“六五折”,就是按原卖价的65%出售。

例1.一种彩电,第一次降价20%,第二次又降价20%,第二次降价后,这种彩电的价格比原价降低了百分之几?
解析:第一个“20%”的单位是“1”是原价,第二个“20%”的单位“1”是第一次降价后的价格,而题目最后的问题中的单位“1”是原价,所以要把第二个单位“1”转化成以原价做单位“1”
第一次降价后的价格是1-20%=80%
第二次降了80%×20%=16% 即第二次降了原价的16%
二次总降低了20%+16%=36%,即比原价降价了36%
例2.某商品按定价的80%(八折)出售,仍能获得20%的利润。

定价时期望的利润是多少?
解析:题目未告之一个具体的数量,可见求定价时期望的利润就是求利润率。

利润率=(售价-成本)÷成本×100%,很明显,想要求出利润率,必须先求出售价和成本。

假设原来售价是100元(可以假设任何具体的钱数,或就是1)打折后的售价是100×80%=80元
卖80元仍能获20%的利润,
根据公式:成本=售价÷(1+利润率)
=80÷(1+29%)
=200/3(元)
原来的期望的利润率=(售价-成本)÷成本×100%
=(100 – 200/3)÷ 200/3
×100%
=50%
例3.某商品按20%的利润定价,然后按八八折卖出,共得利润84元,这种商品的成本是多少元?
解析:方法(一)分数应用题的方法
由“20%”我们可知单位“1”是成本。

属分数除法应用题,如果能找出利润84元所对应的分率,相除就能算出成本来。

成本是1,售价是1+20%=120%,打折后的售价是120%×88%=105.6% 利润就是105.6%-1=5.6%
84÷5.6%=1500(元) 即为单位“1”成本了。

方法(二)方程的方法
设成本为m元,根据公式:实际售价-成本=利润这一等量关系,列出方程
m×(1+20%)×88% - m=84
解得 m=1500(元)
例4.商品以每双6.5元购进一批凉鞋,售价为7.4元.卖到还剩下5双时,除成本外还获利44元.这批凉鞋共有多少双?
解析:由题意可知,每卖出一双凉鞋,就能获利7.4 – 6.5=0.9
元。

卖出还剩下5双时,除成本外还获利44元,这里的成本很明显是全部凉鞋的成本,包括还没卖出的5双凉鞋。

假设最后5双也卖出,这样,这批凉鞋总共可获利44+5×7.4=81(元),根据利润总数÷每双的利润=总双数
总双数=81÷0.9=90(双)
该题也可用方程,不妨试试
例5.某商店同时卖出两件商品,每件各卖得120元,但其中一件赚了20%,另一件亏了20%,问这个商店卖出这两件商品总的是赚了还是亏了?
解析:第一件商品:成本=售价÷(1+利润率)=120÷(1+20%)=100元
第二件商品:成本=售价÷(1+利润率)=120÷(1-20%)=150元
两件商品的总成本是250元,总共卖了240元,该商店亏了10元
例6.某种商品按定价卖出可得利润960元,如按定价的80%出售,则亏损832元。

该商品的购入价是多少元?
解析:由题可知,单位“1”是定价,定价=成本+利润.画出线段图来,并把定价、利润960元、现价(定价的80%)、亏损832元一一在线段图上标明,我们很容易找出(960+832)元所对应的百分率是20%(1-80%),
(960+832)÷(1-80%)=8960(元),即为单位“1”:定价
成本(购入价)=定价-利润=8960-960=8000(元)
我们也可以用方程来解
设该商品的购入价是x元,由这句话“按原定价的80%出售后,正好亏损832元“,可根据这一数量关系列出方程
(x+960)×80%=x-832
解得x=8000(元)
例7.甲乙两种商品成本共200元,甲商品按30%的利润定价,乙商品按20%的利润定价,后来两种商品都按定价的90%出售,结果仍获利27.70元,甲乙两种商品的成本各是多少元?
解析:假设法
假设全是甲商品,甲的成本就是200元,定价是200×(1+30%)=260元,按90%出售的价格是260×90%=234元,获利234-200=34(元),比题目中的获利多出34-27.70=6.3元,一件甲商品与一件乙商品在
利润上相差30%×90%-20%×90%=9%,所以乙商品的成本就是 6.3÷9%=70元,甲商品的成本就是200-70=130(元)
我们也可以用方程来解
设甲商品的成本是y元,那么乙商品的成本是(200-y)元
由这句话“两种商品都按定价的90%出售,结果仍获利27.70元”,根据这一数量关系可列出方程
y×(1+30%)×90%+(200-y)×(1+20%)×90%-200=27.70 解得 y=130(元)
那么,乙商品的成本就是70元
小结:解答利润与折扣问题,常用的方法中,除了分数应用题的一些解答方法外,方程也是一种不错的选择。

相关文档
最新文档