液压与气压传动
液压与气压传动

液压与气压传动液压与气压传动是工业现代化生产的重要组成部分,液压与气压作为传动介质,已经广泛应用于各种机械、工具、设备、以及各类工业自动化系统和生产流水线上。
本文将主要从液压与气压传动的基本原理、特点以及优缺点等方面进行探讨。
一、液压气压传动基本原理液压传动系统的基本组成部分主要包括:液压泵、液压缸、液压阀、液压油箱、油管、以及液压控制阀等。
液压系统中,液压泵负责将机械能转换成液压能,由液压泵产生的液压能作为有效载荷传递到被控制的液压元件上,通过控制液压阀的开启和关闭来实现各种运动控制。
气压传动系统也是由几个部分组成的,主要包括压缩机、气缸、气阀、压力表、以及一个气槽等。
气压系统中,压缩机负责将机械能转换成压缩空气,通过气缸所传递的空气压力,实现各种运动控制。
二、液压气压传动的特点1、液压传动特点液压传动系统比气压传动系统在各方面都更加稳定和可靠。
由于液压能储存时间较长,且油液受热膨胀系数小,不易泄漏,因此液压传动系统运行起来比气压传动稍微安全。
此外,液压传动系统可实现无级调速功能,同时承受的荷载也能大于气压传动系统。
2、气压传动特点相对于液压传动,气压传动具有价格较为便宜的优势。
气压传动的另一个优势是气缸行程大,且行程能通过重复拼接的方式实现无级调节。
此外,气压传动还具有快速响应的特点,当工作中的负荷突然增加时,气压传动能够响应自如,更快地完成加速和减速操作。
三、液压气压传动优缺点比较1、液压传动系统优缺点液压传动系统具有加速、减速平稳、静音、开关灵活、精确度高等优点,此外使用寿命比较长,维护成本较低。
但是,液压传动系统也存在着以下缺点:传动过程中会产生噪音,维护操作人员需要具备一定的技能和经验。
另外还需要经常维护常规保养,以及防止油液泄漏等问题。
2、气压传动系统优缺点气压传动系统具有价格低廉,适用范围广、安全性高的优点。
此外,气压传动系统操作简单,无需专业技能。
但是,气压传动系统存在传动路途中能量损失较大,且响应速度慢,不能实现调速等缺点。
液压与气压传动总结

第一章1.液压与气压传动定义:液压与气压传动是研究以有压流体(压力油或压缩空气)为能源介质,以实现各种机械的传动和自动控制的科学。
液压与气压传动都是利用各种控制元件组成所需要的各种控制回路,再由若干回路组合成能完成一定控制功能的传动系统来进行能量的传递、转换、与控制。
2. 液压与气压传动系统组成:能源装置、执行装置、控制调节装置、辅助装置、传动介质3. 液压与气压传动的优缺点:4.液压传动的工作原理和两个重要概念:第二章1.液压油的密度:单位体积液压油的质量。
传动介质:液压油、乳化性传动液、合成型传动液液体粘度:是指它在单位速度梯度下流动时单位面积上产生的内摩擦。
它是衡量液体粘性的指标。
(10)压力增大时,粘度增大(范围小可忽略);温度升高,粘度下降(其变化率直接影响液压传动工作介质的使用,其重要性不亚于粘度本身)。
2.流体静压力基本方程:压力表示方法:绝对压力=相对压力+大气压力真空度=大气压力-绝对压力液体静压力的两个重要特性:1)液体静压力的方向总是作用面的内法线方向;2)静止也体内任意一点的液体静压力在各个方向上都相等。
3.连续性方程:是质量守恒定律在流体力学中的一种表达形式。
伯努利方程:是能量守恒定律在流动液体中的一种表达形式。
4. 沿程压力损失:油液沿等直径直管流动时所产生的压力损失(由液体流动时的内、外摩擦力所引起)局部压力损失:油液流经局部障碍(弯管、接头、管道截面突然变化以及阀口等处)时,由于液流方向和速度的突然变化,在局部产生漩涡引起油液质点间,以及质点与固体壁面间相互碰撞和剧烈摩擦而造成的压力损失液压冲击:在液压系统中,因某些原因液体压力在一瞬间突然升高,产生很高的压力峰值,这种现象称为液压冲击。
原因:1)管道中的液体因突然停止运动而导致动能向压力能的瞬间转变2)液压系统中运动着的工作部件突然制动或换向时,由你工作部件的动能将引起液压执行元件的回油腔和管路内的油液产生液压激振,导致液压冲击3)液压系统中某些元件的动作不够灵敏,也会产生液压冲击。
液压与气压传动概念

液压与气压传动概念1.液压与气压传动系统的工作原理:1).液压与气压传动是分别以液体和气体作为工作介质来进行能量传递和转换的;2).液压与气压传动是分别以液体和气体的压力能来传递动力和运动的;3).液压与气压传动中的工作介质是在受控制、受调节的状态下进行的。
2.液压与气压传动系统的组成:动力装置、控制及调节装置、执行元件、辅助装置、工作介质。
3.液压与气压传动系统的组成部分的作用:1)动力装置:对液压传动系统来说是液压泵,其作用是为液压传动系统提供压力油;对气压传动系统来说是气压发生装置(气源装置),其作用是为气压传动系统提供压缩空气。
2)控制及其调节装置:用来控制工作介质的流动方向、压力和流量,以保证执行元件和工作机构按要求工作;3)执行元件:在工作介质的作用下输出力和速度(或转矩和转速),以驱动工作机构作功;4)辅助装置:一些对完成主要工作起辅助作用的元件,对保证系统正常工作有着重要的作用;5)工作介质:利用液体的压力能来传递能量。
4.液压传动的特点:1)与电动机相比,在同等体积下,液压装置能产生更大的动力;2)液压装置容易做到对速度的无极调节,而且调速范围大,并且对速度的调节还可以在工作过程中进行;3)液压装置工作平稳,换向冲击小,便于实现频繁换向;4)液压装置易于实现过载保护,能实现自润滑,使用寿命长;5)液压装置易于实现自动化,可以很方便地对液体的流动方向、压力和流量进行调节和控制,并能很容易地和电气、电子控制、气压传动控制或其它传动控制结合起来,实现复杂的运动和操作;6)液压元件易于实现系列化、标准化和通用化,便于设计、制造和推广使用;7)液压传动无法保证严格的传动比;8)液压传动有较多的能量损失(泄露损失、摩擦损失等),因此,传动效率相对低;9)液压传动对油温的变化比较敏感,不宜在较高或较低的温度下工作;10)液压传动在出现故障时不易诊断。
5.在液压传动技术中,液压油液最重要的特性是它的可压缩性和粘性。
液压与气压传动课教案(非常好)

液压与气压传动课教案第一章:液压与气压传动概述1.1 液压与气压传动的概念讲解液压与气压传动的定义分析液压与气压传动的特点和应用范围1.2 液压与气压传动的工作原理介绍液压与气压传动的基本原理通过示意图展示液压与气压传动的工作过程第二章:液压元件2.1 液压泵讲解液压泵的分类和工作原理分析各种液压泵的特点和应用范围2.2 液压缸介绍液压缸的分类和工作原理讲解液压缸的结构和性能要求第三章:液压系统的设计与维护3.1 液压系统的设计原则分析液压系统设计的基本原则讲解液压系统设计的方法和步骤3.2 液压系统的维护与管理介绍液压系统的维护内容和注意事项分析液压系统故障的原因和排除方法第四章:气压传动基础4.1 气压传动的概念和工作原理讲解气压传动的特点和应用范围通过示意图展示气压传动的工作过程4.2 气压元件介绍气压泵、气缸等气压元件的结构和工作原理分析各种气压元件的特点和应用范围第五章:气压系统的应用实例5.1 气压控制系统讲解气压控制系统的组成和工作原理分析气压控制系统的应用实例5.2 气压动力系统介绍气压动力系统的组成和工作原理讲解气压动力系统的应用实例第六章:液压系统的应用实例6.1 液压机械控制系统讲解液压机械控制系统的组成和工作原理分析液压机械控制系统的应用实例6.2 液压伺服系统介绍液压伺服系统的组成和工作原理讲解液压伺服系统的应用实例第七章:气压传动系统的设计与维护7.1 气压系统的设计原则分析气压系统设计的基本原则讲解气压系统设计的方法和步骤7.2 气压系统的维护与管理介绍气压系统的维护内容和注意事项分析气压系统故障的原因和排除方法第八章:液压与气压传动的节能与环保8.1 液压与气压传动的节能技术讲解液压与气压传动节能的技术和方法分析节能技术在液压与气压传动中的应用实例8.2 液压与气压传动的环保问题介绍液压与气压传动对环境的影响讲解液压与气压传动环保问题的解决方法第九章:液压与气压传动的技术发展9.1 新型液压与气压传动技术讲解新型液压与气压传动技术的研究和发展分析新型技术在液压与气压传动中的应用实例9.2 液压与气压传动技术的未来发展趋势介绍液压与气压传动技术的未来发展趋势分析未来技术对液压与气压传动行业的影响第十章:实验与实训10.1 液压与气压传动实验安排液压与气压传动的基本实验项目,如液压泵性能实验、液压缸动作实验等讲解实验目的、实验设备和实验步骤10.2 液压与气压传动实训安排液压与气压传动的实训项目,如液压控制系统安装与调试、气压系统设计等讲解实训目的、实训设备和实训步骤第十一章:液压与气压传动的仿真与优化11.1 液压与气压传动仿真技术介绍液压与气压传动仿真技术的基本概念和作用讲解仿真软件的选择和使用方法11.2 液压与气压传动系统的优化分析液压与气压传动系统优化的目的和方法介绍常见的液压与气压传动系统优化技术第十二章:液压与气压传动的故障诊断与维修12.1 液压与气压传动故障诊断技术讲解液压与气压传动故障诊断的方法和流程分析常见故障的原因和解决方法12.2 液压与气压传动设备的维修与保养介绍液压与气压传动设备维修保养的基本知识讲解维修保养的注意事项和常规操作第十三章:案例分析与讨论13.1 液压与气压传动案例分析提供液压与气压传动领域的实际案例,进行分析和讨论引导学生从案例中学习液压与气压传动的设计与应用经验13.2 液压与气压传动技术讨论组织学生对液压与气压传动技术的发展进行讨论引导学生关注液压与气压传动技术的创新与应用第十四章:课程设计与实践14.1 液压与气压传动课程设计安排学生进行液压与气压传动系统的课程设计指导学生完成设计任务,包括系统选型、参数计算、图纸绘制等14.2 液压与气压传动实践项目安排学生参与液压与气压传动实践项目指导学生将理论知识应用于实践,提高实际操作能力第十五章:总结与展望15.1 课程总结回顾整个液压与气压传动课程的主要内容和知识点强调重点和难点,帮助学生巩固所学知识15.2 液压与气压传动技术展望展望液压与气压传动技术的未来发展趋势激发学生对液压与气压传动技术的兴趣和热情重点和难点解析。
液压与气压传动

第一章液压传动概述第一节液压传动发展概况一、液压传动的定义一部完整的机器由原动机部分、传动机构及控制部分、工作机部分(含辅助装置)组成。
原动机包括电动机、内燃机等。
工作机即完成该机器之工作任务的直接工作部分,如剪床的剪刀、车床的刀架等。
由于原动机的功率和转速变化范围有限,为了适应工作机的工作力和工作速度变化范围变化较宽,以及性能的要求,在原动机和工作机之间设置了传动机构,其作用是把原动机输出功率经过变换后传递给工作机。
一切机械都有其相应的传动机构借助于它达到对动力的传递和控制的目的。
(举例说明机器的组成及传动机构在机器中的作用及能量在机器工作过程中输入、输出的转换形式。
)传动机构通常分为机械传动、电气传动和流体传动机构。
机械传动是通过齿轮、齿条、蜗轮、蜗杆等机件直接把动力传送到执行机构的传递方式。
电气传动是利用电力设备,通过调节电参数来传递或控制动力的传动方式。
流体传动是以流体为工作介质进行能量转换、传递和控制的传动。
它包括液压传动、液力传动和气压传动。
液压传动和液力传动均是以液体作为工作介质进行能量传递的传动方式。
液压传动主要是利用液体的压力能来传递能量;而液力传动则主要是利用液体的动能来传递能量。
(举例说明液压传动和液力传动的区别)由于液压传动有许多突出的优点,因此被广泛用于机械制造、工程建筑、石油化工等各个工程技术领域。
液压传动——利用液体静压力传递动力液体传动液力传动——利用液体静流动动能传递动力流体传动气压传动气体传动气力传动二、液压传动的发展概况自18世纪末英国制成世界上第一台水压机算起,液压传动技术已有二三百年的历史。
直到20世纪30年代它才较普遍地用于起重机、机床及工程机械。
在第二次世界大战期间,由于战争需要,出现了由响应迅速、精度高的液压控制机构所装备的各种军事武器。
第二次世界大战结束后,战后液压技术迅速转向民用工业,液压技术不断应用于各种自动机及自动生产线。
本世纪60年代以后,液压技术随着原子能、空间技术、计算机技术的发展而迅速发展。
液压与气压传动报告

液压与气压传动报告1.液压传动的工作原理液压传动利用液体在封闭系统内的压力传递力量。
液压系统由一个液压泵、液压缸、阀门、管道和液压油组成。
当泵工作时,它通过管道将液压油推送到液压缸中,液压油的压力使液压缸活塞移动,从而产生力量。
这种力量可以用于执行各种工作,如起重、挤压和控制系统中的动作。
2.液压传动的优势液压传动具有以下几个优势:•高功率密度:相比于气压传动,液压传动可以提供更高的功率输出。
•精确控制:液压系统可以通过精确调节流量和压力来实现精确的运动控制。
•动力平稳:液压传动的工作非常平稳,几乎没有冲击和振动。
3.气压传动的工作原理气压传动利用气体在封闭系统内的压力传递力量。
气压系统由一个气压泵、气压缸、阀门、管道和压缩空气组成。
当泵工作时,它将压缩空气推送到气压缸中,压缩空气的压力使气压缸活塞移动,从而产生力量。
气压传动常用于需要较小功率输出的应用,如自动化生产线上的轻型装配工作。
4.气压传动的优势气压传动相对于液压传动具有以下几个优势:•成本较低:气压传动的设备和维护成本通常比液压传动更低。
•安全性较高:气体在泄漏时较容易检测,相比于液体泄漏更加安全。
•简单维护:与液压系统相比,气压系统的维护较为简单。
5.液压与气压传动的应用领域液压传动和气压传动在不同的应用领域中得到广泛应用。
•液压传动:液压系统常用于需要高功率输出和精确控制的应用,如建筑机械、航空航天设备和工业自动化。
•气压传动:气压系统常用于需要较小功率输出和简单操作的应用,如汽车制造、食品加工和轻型装配线。
总结:液压传动和气压传动都是常见的动力传动系统,它们在不同的应用领域中有着各自的优势。
液压传动适用于需要高功率输出和精确控制的场景,而气压传动适用于需要较小功率输出和简单操作的场景。
选择液压传动还是气压传动应根据具体应用需求来决定,以达到最佳效果。
液压与气压传动

液压系统的 基本组成
动力元件:液压泵。
执行元件:液压缸、液压马达。
控制调节元件:控制和调节液压系统的压力、 流量及液流方向的装置,如各类液压阀等。
液压传动系统组成
两次能 量转化
动力元件(液压泵)将机械能转换为液体的压力能;
对环境的适应性好。如:易燃易爆、高温场合、 食品、医药医疗。
气压传动的特点
相比之下,空气介质具有无成本、流动阻力小、较易压缩、环境适应强等特点
压力小,动力性能不如液压,执行件尺寸较大。
气压传动 的特点为
系统稳定性差、调速性能差。
某些情况气源处理装置花费大
液压传动的基本应用
工程机械
1
2 金属切削机床、压力机
液压与气动传动的工作原理
液压传动的工作原理: 如图1-1是液压千斤顶的工作原理图。提起手柄→小活塞 上移→小活塞下端油腔容积增大(形成局部真空)→单向阀 4打开→经吸油管5从油箱12中吸油; 压下手柄→小活塞下移→小活塞下腔压力升高→单向阀4 关闭,单向阀7打开→下腔的油液经管道6、单向阀7输入 油缸9的下腔→迫使大活塞8上移→顶起重物。再提手柄 吸油时→单向阀7自动关闭→油液不能倒流→保证了重物 不会自行下落。不断地往复扳动手柄,就能不断地把油液 压入举升缸下腔,使重物逐渐地升起。如打开截止阀11→ 举升缸下腔的油液经管道10、截止阀11流回油箱→重物 就向下移动。这就是液压千斤顶的工作原理。
执行元件(液压缸、液压马达等)将液体的压力能转 化为机械能输出,以得到既定的运动和力的形式。
工作介质:通常为液压油
液压系统的 基本组成
辅助元件:如油管、管 接头、油箱、过滤器、 蓄能器和压力表等。
液压与气压传动

液压传动的工作原理和特征讲解:杨竞为例来简述液压传动的工作原理=WA1/A2工作压力取决于外负载。
运动的传递遵照容积变化相等的原则而与液体压力P的压力和流量是液压与气压传动中的两个最基本的系统原理图形符号图液压与气压传动系统的组成�动力元件——将机械能转换为流体压力能的装置。
液压泵或空气压縮机。
�执行元件——将流体的压力能转换为机械能的元件。
液压缸或气缸、液压马达或气马达。
�控制元件——控制系统压力、流量、方向的元件以及进行信号转换、逻辑运算和放大等功能的信号控制元件。
如溢流阀、节流阀、方向阀等。
�辅助元件——保证系统正常工作除上述三种元件外的装置。
如油箱、过滤器、蓄能器、油雾器、消声器、管件等。
�工作介质——传递信号和能量。
如空气、水、液压油液压系统的基本组成液压传动的优点与缺点液压传动的优点� 1.流量和压力具有良好的可控性,可实现较宽的调速范围,能较方便地实现无级调速,调速范围为2000:1 ;� 2.易于实现过载保护;� 3.具有防锈和自润滑能力,使用寿命长;� 4.在输出同等功率条件下,液压传动体积小,重量轻,即动力密度大;� 5.便于布局,适宜中距离传输和分配动力;� 6.易于实现系列化、标准化、通用化及自动化。
液压传动的缺点1.由于泄漏和管道的弹性变形等原因,液压传动不宜用于传动比要求严格的场合;2.液压传动如密封不严或零件磨损后产生渗漏,影响工作机构运动的平稳性和系统效率,而且污染环境;3.液压系统混入空气后,会产生爬行和噪声等;4.液压传动的能量损失较大,系统效率较低;5.油液的黏度随温度而变,从而影响运动的平稳性,故不宜在温度变化范围较大的工作场合工作;6.故障不宜查找等。
气压传动及控制的优缺点(1) 气动元件结构简单,标准化、系列化、通用化程度高(2) 工作介质来源方便,能采用集中供气源(3) 易于实现自动化,是实现低成本自动化的最佳手段(4) 具有广泛的工作适应性(如易燃、易爆场合),安全、可靠、易实现过载保护(5) 输出力或力矩小(6) 传动效率低、运动平稳性差、难于实现精确控制容易小小易易较高较差较快较快较大大大较大液压与气压传动的应用概况�工业应用:液压与气动技术应用在机床、工程机械、冶金机械、塑料机械。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、多缸液压系统中,如果要求以相同的位移或相同的速度 运动时,应采用什么回路?这种回路通常有几种控制方法? 哪种方法同步精度最高?
� 答:在多缸液压系统中,如果要求执行元件以相同的位移或相同 的速度运动时,应采用同步回路。从理论上讲,只要两个液压缸 的有效面积相同、输入的流量也相同的情况下,应该做出同步动 作。但是,实际上由于负载分配的不均衡,摩擦阻力不相等,泄 漏量不同,均会使两液压缸运动不同步,因此需要采用同步回路 。 � 同步回路的控制方法一般有三种:容积控制、流量控制和伺服控 制。容积式同步回路如串联缸的同步回路、采用同步缸(同步马 达)的同步回路,其同步精度不高,为此回路中可设置补偿装置 ;流量控制式同步回路如用调速阀的同步回路、用分流集流阀的 同步回路,其同步精度较高(主要指后者);伺服式同步回路的 同步精度最高。
答:液压传动的主要优点 (1)由于液压传动是油管连接,所以借助油管的连接可以方便灵活地布置传动 机构,这是比机械传动优越的地方。 (2)液压传动装置的重量轻、结构紧凑、惯性小。 (3)可在大范围内实现无级调速。 (4)传递运动均匀平稳,负载变化时速度较稳定。 (5)液压装置易于实现过载保护——借助于设置溢流阀等,同时液压件能自行 润滑,因此使用寿命长。 (6)液压传动容易实现自动化——借助于各种控制阀,特别是采用液压控制和 电气控制结合使用时,能很容易地实现复杂的自动工作循环,而且可以实现遥 控。 (7)液压元件已实现了标准化、系列化和通用化,便于设计、制造和推广使用。
二、请正确写出下列液压元件名称(每个2分,共10分)
磁芯过滤器
压力继电器
不可调节流阀
直动式顺序阀
单向阀
三、画出下列液压元件职能符号(每个2分,共10分) (1)双向定量液压泵 (2)卸荷阀 (3)双作用单活塞杆缸 (4)可调单向缓冲缸 (5)三位四通换向阀
四、简答题(每题5分,共20分)
1.简述液压传动的优缺点。
例:
①三位四通O型机能电磁换向阀
②三位四通M型机能手动换向阀
③二位二通常闭式电磁换向阀
五、压力控制阀
1.溢流阀 2.减压阀
3.顺序阀
一般符号或直动型 内控顺序阀
外控顺序阀
先导型内控 顺序阀
4.压力继电器
六、流量控制阀
�
1.七、液压辅助元件
� 1.蓄能器
2.过滤器
�了解液压系统设计计算的内容与步骤 : �明确设计要求、进行工况分析 ; �确定液压系统的主要参数; �拟定系统原理图; �选择液压元件; �验算系统性能; �绘制工作图、编制技术文件。
十、气动基本知识
�气源装置、气动三联件的工作原理、应用 ; �气动基本回路的工作原理、功能( 过载保护 气动基本回路的工作原理 )。
1.简述液压传动的优缺点。
液压传动的主要缺点: (1)液压系统中的漏油等因素,影响运动的平稳性和正确性, 使得液压传动不能保证严格的传动比。 (2)液压传动对油温的变化比较敏感,温度变化时,液体粘性 变化,引起运动特性的变化,使得工作的稳定性受到影响 ,所以它不宜在温度变化很大的环境条件下工作。 (3)为了减少泄漏,以及为了满足某些性能上的要求,液压元 件的配合件制造精度要求较高,加工工艺较复杂。 (4)液压传动要求有单独的能源,不像电源那样使用方便。 (5)液压系统发生故障不易检查和排除。
�了解阀芯的结构与原理; �熟悉方向控制阀、压力控制阀、流量控制 阀的基本结构,工作原理和工作特性 。( 单向阀、换向阀、减压阀、溢流阀、顺序 阀、压力继电器、节流阀、调速阀的作用 ,工作原理,职能符号,应用及各自的区 别;液压回路的压力计算 )
五、液压辅助元件
�了解油管和管接头,油箱 ,过滤器,密封 装置,蓄能器的结构和工作原理。
七、典型液压传动系统
�了解组合机床动力滑台、液压压力机的结构与 工作原理; �理解液压与气压传动技术在组合机床和压注机 上的应用; �掌握阅读分析液压系统图的方法; �理解各个控制元件在不同情况下的工作状态。
八、液压伺服控制和电液比例控制
�了解液压伺服控制和电液比例控制的基本 原理。
九、液压系统的设计与计算
三、液压执行元件
�掌握液压缸、液压马达的结构和基本参数计 算;(活塞式液压缸,对液压缸的基本参数 的计算,特别是三种不同联接形式的单杆活 塞液压缸的压力、推力、速度、流量及负载 的计算) �掌握液压缸、液压马达的工作原理,种类和 特点及应用范围(增压缸的增压原理); �了解液压缸的设计步骤。
四、液压控制元件*
� 答: 1.(3分)1油箱、2单向变量液压泵、 3M型中位机能的三位 四通电磁换向阀、 4单活塞杆液压缸、 5调速阀、6液控单向阀、 7 二位三通电磁换向阀、 8溢流阀。 � 2.(4分)电磁铁动作顺序表
序号 1 2 3 4 工作循环 快进 工进 快退 停止 1YA + + — — 2YA — — + — 3YA + — — —
(1)液压缸左腔的压力 pl; (2)当负载FL =9000N 时的p2。
五、计算题(每题10分,共30分)
五、计算题(每题10分,共30分)
� 3、如图所示,现有两个 同规格液压缸油路串联。 已知液压缸无杆腔活塞有 效面积A1=100cm2,有杆 腔活塞有效面积A2=80 cm2。缸1的输入压力p1= 1.8MPa,输入流量qV1=12 L/min,若不计泄漏和损 失。当两缸承受相同的负 载时(F1= F2),该负载 为多少?两缸的运动速度 各是多少?
五、计算题(每题10分,共30分)
� 1、如图,已知液压泵的输出压力pp=10MPa,泵 的排量VP=10mL/r,泵的转速nP=1450r/min ,容积效率ηPV=0.9,机械效率ηPm=0.9;液压 马达的排量VM=10mL/r,容积效率ηMV=0.92, 机械效率ηMm=0.9,泵出口和马达进油管路间 的压力损失为0.5MPa,其它损失不计,试求: � (1)泵的输出功率; � (2)驱动泵的电机功率; � (3)马达的输出转矩; � (4)马达的输出转速;
二、液压动力元件
�了解液压泵的分类,理解液压泵的基本性 质和基本参数;(泵的性能参数的计算) �掌握液压泵工作原理、结构特点及其应用 范围;(泵的密闭工作腔的确定,泵的困 油和泄漏现象及消除方法;外啮合齿轮泵 径向不平衡力;液压泵产生噪声的原因及 降低噪声的措施) �掌握轴向柱塞泵,齿轮泵,叶片式泵的工 作原理和特性。(限压式变量叶片泵的工 作原理及其压力流量特性曲线分析 )
2.简述溢流阀与顺序阀的主要区别。
�答:溢流阀与顺序阀都是压力控制阀,溢 流阀的出油口与油箱连接,而顺序阀的出 油口通常与液压执行机构相连 。 �顺序阀具有单独的泄油路与油箱相连 ,溢 流阀起溢流定压或安全作用,顺序阀起压 力开关作用,实现油路的通断。
3.简述齿轮泵的困油现象及其消除?
� 答:为了使齿轮泵的齿轮平稳地啮合运转,吸压油腔密封 和均匀、连续供油,时必须使齿轮啮合的重叠系数大于1 。这样,就会出现前一对轮齿尚未脱开啮合前,后一对轮 齿又进入啮合,在这两对啮合的轮齿间形成封闭的容积, 称之为闭死容积。闭死容积从最大到最小,再到最大,这 种现象叫困油现象。 � 为了消除困油现象,可在齿轮泵的侧板上开卸荷槽,一对 矩形卸荷槽相对齿轮中心线对称布置,左边矩形卸荷槽与 吸油腔相通,右边矩形卸荷槽与压油腔相通。使闭死容积 从小到大时,始终与吸油腔相通;使闭死容积从大到小时 ,始终与压油腔相通。
液压元件职能符号
两位两通
两位三通
两位四通
两位五通
三位四通
三位五通
油口固定方位和含义: P——进油口(左下),T——回油口(右下),A、B——与执行元件连接的工 作油口(左上、右上)。
一、填空题(每空1分,共20分)
1.液压马达把( )能转换成( 机械)能,输出的 液压 主要参数是( )和( 转速 转矩)。 2.液压系统中的压力取决于( 负载),执行元件的 运动速度取决于(流量 )。 3.液体在管道中存在两种流动状态,(层流)时粘 紊流 性力起主导作用,( )时惯性力起主导作用, 液体的流动状态可用( 雷诺数 )来判断。 偏心距e 4.单作用叶片泵的特点是改变( )就可以改 变输油量,改变( )就可以改变输油方向。 偏心方向
五、计算题(每题10分,共30分)
六、综合题(共10分)
�1、下各图所示的液压回路是由哪些液压元 件组成的? �2、根据工作循环图,编写电磁铁动作顺序 表(得电用“+”表示,断电用:“—”表 示)。 �3、写出所示液压回路中都包括有哪些基本 回路?
六、综合题(共10分)
六、综合题(共10分)
�3.( 3分)基本回路有调压回路、换向回路、容积节流调速 回路、卸荷回路、快慢速转换回路等。
粗过滤器 精过滤器
3.油箱
油管在油面以下 油管在油面以上
4.冷却器
5.加热器
液压元件职能符号
位
位:阀心相对于阀体的工作位置数。 用方格表示,几位即几个方格
通
通: 阀体对外连接的主要油口数(不包括 控制油和泄漏油口)通——↑;不通—— ┴ 、┬ 箭头首尾和堵截符号与一个方格 有几个交点即为几通。
� 1.单向阀 (普通单向阀)
�
2.液控单向阀
�
3.双向液压锁
4.换向阀的图形符号
①用方框表示阀的工作位置,有几个方框就表示有几“位”。 ②方框内的箭头表示油路处于接通状态,但箭头方向不一定 表示液流的实际方向。 ③方框内符号“⊥”或“ ”表示该通路不通。 ④方框外部连接的接口数有几个,就表示几“通”。 ⑤一般,阀与系统供油路连接的进油口用字母P表示;阀与 系统回油路连通的回油口用T(有时用O)表示;而阀与执行 元件连接的油口用A、B等表示。有时在图形符号上用L表 示泄漏油口,用K表示控制油口。 ⑥换向阀的工作位置,其中有一个为常态位,即阀芯未受到 操纵力时所处的位置。在图形符号中,三位阀的中位是常 态位。利用弹簧复位的二位阀则以靠近弹簧的方框内的通 路状态为其常态位。 绘制系统图时,油路一般应连接在换向阀的常态位上。