2020年整合高中数学人教A版必修5不等式教材分析与教学建议名师资料

合集下载

人教A版高中数学必修5《基本不等式》精品教案

人教A版高中数学必修5《基本不等式》精品教案

人教A版高中数学必修5《基本不等式》精品教案课题: 基本不等式:2ba ab +≤(第一课时)教材:人教版高中课程标准实验教科书《数学·必修5》第三章第四节 1 教材分析本节书介绍了两个不等式定理:(1)、如果R b R a ∈∈,,那么ab b a 222≥+①;(2)、如果0,0>>b a ,那么2ba ab +≤②。

这两个定理是解决一些数学问题和实际应用问题的重要的数学方法。

本节书教学共需3课时,这是第一课时,主要是了解探索基本不等式的证明过程,熟悉基本不等式的结构,为下节基本不等式的应用做准备(以下用①②代替两个定理)。

2 学生分析有了前面“不等式性质”的学习,学生要理解这两个定理难度并不大。

针对学生求知欲旺盛的特点,在教学中,以思考、探索、讨论为主要方法,适当加以讲解,使学生自己收获结论、总结方法,动手解决实际问题,并且增强学习数学的的信心。

3 教学策略(1)、以“孔融选蛋糕”为例引入,课件辅助,引导学生探究①的证明,并总结证明方法;利用正方形和弦图让学生了解①的几何意义,同时介绍“国际数学家大会”,培养学生的民族自豪感和使命感。

(2)、利用①式,通过“换元法”练习引入定理②,引导学生从不同角度探究②的证明过程,利用“半径和半弦的关系”让学生了解②的几何意义,并强调①②的联系与区别。

(3)、巩固练习。

设置三道习题由浅到深让学生对基本不等式逐渐熟悉,应用它们去比较大小、解决生活常见问题,最后让学生通过替换定理中的字母发现更多②式有趣的变形式,为下一节课铺垫。

4 教学目标(1)、知识目标了解不等式①②的证明过程和方法;了解不等式①②的几何意义;初步应用基本不等式比较大小,熟悉其变形式。

(2)、能力目标通过探究结果的汇报以及讨论活动,提高学生语言表达能力;在对不等式①②的证明过程中培养学生发现、比较、论证、转化等分析问题和解决问题的能力;通过掌握不等式①②的结构特点和运用不等式①②的适当变形,培养学生的思维能力和创新精神。

高中数学必修五《基本不等式》说课稿

高中数学必修五《基本不等式》说课稿

《基本不等式》说课稿尊敬的各位老师大家好!我说课的题目是《基本不等式》,我将从教材分析、教法分析、教学设计、教学评价四个方面来阐述我对这节课的设计.一、教材分析1、教材所处地位、作用本节是人教A版必修5第三章第四节的内容,是在学完不等式性质的基础上对不等式的进一步研究.同时也是为了以后学习(选修4—5)《不等式选讲》中的几种重要不等式,以及不等式的证明作铺垫,起着承上启下的作用.2、教学目标知识与技能:学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;过程与方法:引导学生通过观察、归纳、抽象、概括,学会从不同的角度体验探索基本不等式,体会数形结合的思想,明确其简单应用.培养学生发现问题、分析问题、解决问题的能力;情感态度价值观:通过本节的学习,体会数学来源于生活,提高学习数学的兴趣.3、重点与难点教学重点:应用数形结合的思想理解基本不等式,并从不同角度探2a b+≤的证明过程以及其简单应用; 教学难点:2a b+≤等号成立条件. 二、教法分析在教学中,学生始终是主体,教师只是起主导作用.因此,在教学中,我引导学生去观察、发现、分析解决问题,通过实例让学生抽象出基本不等式,并通过分析法证明和几何图例,来完成对基本不等式的证明.让学生从问题中尝试、归纳、总结、运用,培养学生发现问题、研究问题和分析解决问题的能力.发挥了学生的主体能动性,让每一个学生充分地参与到学习活动中来.三、教学设计.你能利用这个图形得出基本不等式四、教学评价本节课教学突出以下几个特点:(1)用第24届国际数学家大会的会标引入,引起学生对数学的热爱和学习数学的兴趣.(2)给出基本不等式后,通过让学生取数验证,让学生从数的角度更好的熟悉理解基本不等式,突破了难点.(3)在不等式证明中及例题的处理过程中充分发挥了学生的主体能动性.总之,这节课比较好的完成了教学目标,突出了重点,突破了难点,而且学生的自主探索、合作交流贯穿本课,体现了新课改精神.。

高中数学必修5第三章《不等式》内容分析

高中数学必修5第三章《不等式》内容分析

数学必修5第三章《不等式》内容分析同文中学高二数学备课组:陈劲一.教学内容分析:“不等式”是高中数学的传统内容,与高中数学中很多内容有密切关系。

同大纲教材相比,新课标(北师大版)教材在内容安排、编写思路、教材目标与要求上都有较大变化。

新课标教材中不等式主要包括:1.必修5第三章《不等式》中:不等关系、一元二次不等式、基本不等式及二元一次不等式组与简单的线性规划问题。

其结构是:第一节不等关系,讲不等关系、不等式的性质和用不等式来比较大小;第二节讲一元二次不等式;第三节讲基本不等式和用基本不等式求最大值、最小值;最后一节讲简单的线性规划。

线性规划也分几个层次,第一个层次是用二元一次不等式组来刻画平面区域,然后讲简单线性规划的问题,最后讨论简单线性规划的应用。

2.选修4—5《不等式选讲》中:不等式的性质、含绝对值的不等式、基本不等式、不等式的证明、不等式的应用及柯西不等式、排序不等式、贝努利不等式等内容。

大纲教材中“不等式”只有一章内容共五部分:不等式的基本性质及其证明、两个正数的算术平均数与几何平均数定理的证明与应用、不等式的证明、简单不等式的解法、含绝对值的不等式。

新课程教材的主要变化体现在:在必修5中删除了大纲教材中的“不等式的基本性质及其证明”,“不等式的证明”,“含绝对值的不等式”放在选修4—5中学习。

增加了“不等关系”,将“一元二次不等式”与“线性规划问题”从原来分散在其他章节整合到了本章中,增强了知识体系的整体性、逻辑性和严谨性。

同时还强调信息技术与课程内容的整合,还在“一元二次不等式”中融入了算法思想等。

二.教学目标与要求的分析:1.不等关系:通过具体情境,感受现实世界与生活中存在着大量的不等关系,包括:常量与常量之间的不等关系,常量与变量之间的不等关系,函数与函数之间的不等关系,一组变量之间的不等关系等。

通过了解不等式(组)的实际背景,经历由实际问题建立数学模型的过程,体会基本方法。

【高中数学说课稿】人教A版数学必修5《一元二次不等式的解法(第一课时)》说课稿

【高中数学说课稿】人教A版数学必修5《一元二次不等式的解法(第一课时)》说课稿

一元二次不等式的解法(第一课时)说课稿
一、教材分析
1、教学内容
本节课是人教A版普通高中课程标准实验教科书数学必修5第三章第二节《一元二次不等式及其解法》第1课时。

2、教材地位和作用
从内容上看它是我们初中学过的一元一次不等式的延伸,同时它也与一元二次方程、二次函数之间联系紧密,涉及的知识面较多。

从思想层面看,本节课突出本现了数形结合思想。

同时一元二次不等式是解决函数定义域、值域等问题的重要工具,因此本节课在整个中学数学中具有较重要的地位和作用。

3、教学目标
知识目标:正确理解一元二次不等式、一元二次方程、二次函数的关系。

熟练掌握一元二次不等式的解法。

能力目标:培养数形结合思想、抽象思维能力和形象思维能力。

思想目标:在教学中渗透由具体到抽象,由特殊到一般,类比猜想、等价转化的数学思想方法。

情感目标:通过具体情境,使学生体验数学与实践的紧密联系,感受数学魅力,激发学生求知欲望。

4、重难点
重点:一元二次不等式的解法。

难点:一元二次方程,一元二次不等式与二次函数的关系。

二、教法探讨
1、选择教法的原则和依据
根据学生的原有知识和现有的认知规律,以发展学生的能力和应试水平为原则。

2、教法选择
探究、启发诱导法,分层教学法。

重点以引导学生为主,让学生积极主动的参与到新知识的探究中去。

三、学法分析
结合本节内容和学生实际,适当引入研究性学习,采用讲练结合方法,通过阅读发现问题,分析探索,合作交流最终形成技能。

使学生在观察、思考、交流中体验数学学习的乐趣。

人教版高中数学必修5第三章《不等式》教材分析

人教版高中数学必修5第三章《不等式》教材分析
2、学生数学基本能力和思想(主要是本节内容 学习过程中的蕴含的有关能力,如实际背景抽 象出数学模型的能力、数形结合的能力、从直 观到理性和从特殊到一般的认识能力)较好的 班级也可以暂时沿用以往的办法来处理。
但我们应努力改变这种情况。
3、教学中要重体验淡模式、重应用淡技 巧、重背景控难度。
如:(1)通过尝试设计程序框图反映解 一元二次不等式的规范;
• 删除一元高次、分式不等式,把绝对值不等式移到选 修4-5,应在高三(上)供学生选修(1B);
• 把不等式证明的基础部分移到选修 1-2(文)、2- 2(理),应在高二(下)学习(1A),并在选修4 -5(1B)中继续提高不等式证明的综合能力 。
不等关系和不等思想
• 通过前后移动、左右拆分等动作试图把 体现和刻画不等关系的意义、价值、方 法和思想的有关内容进行了一次整编,
• 强调学生体验知识的形成过程,淡化一 些技巧性的要求;
• 强调利用图象的直观性和合情推理,淡 化纯演绎推理。
3.1不等关系与不等式
• 横看成岭侧成峰,远近高低各不同;不识庐山 真面目,只缘身在此山中。 ----苏东坡《题西林壁》
让学生从大文化和实际背景认识
不等关系的普遍性 .
具体建议
1、不必在性质的证明上化过多的时间,而应着 眼于通过实际背景、几何意义、具体例子来说 明这些性质的合理性,对一些不等式的推断作 一些分析验证;
必修5第三章《不 等式》教材分析
课程目标
一、知识结构 二、教学要求 三、课标教材特点分析 四、课时分配 五、具体教学要求分析
三、课标教材特点分析
1.教学内容的构成 2.教学要求 3.教学意义
1与不

的 大
等式

高中数学必修五《不等式》教材分析

高中数学必修五《不等式》教材分析

《不等式》教材分析一、教材的地位:客观世界中存在着相等和不相等的数量关系,反映在教学中,可归纳为等式和不等式问题。

而不等式在解决许多实际问题中有广泛的应用:对中学数学而言,在比较两个量的大小以及数、式、方程和函数的研究中,都要用到不等式的知识。

因此,不等式是进一步学习数学知识必不可少的工具。

二、课程目标:1 知识与技能:(1)掌握不等式的基本性质及常用的证明方法;(2)熟练掌握两个基本不等式,并能用来解决一些简单的实际问题;(3)掌握不等式的解法,重点是一元二次不等式。

2 过程与方法:(1)在证明不等式性质的过程中渗透构造法和放缩法等数学思想方法(2)用“类比”、“猜想”、“判断——论证”进行发现法教学,培养学生探究性学习思维和创造性思维的能力;(3)在探究不等式解法的过程中,体会不等式、方程与函数的联系。

3 情感与价值观:解决实际问题时,理解不等式(组)对于刻画不等关系的意义和价值。

三、教材分析及处理:(一)不等式的基本性质及证明:1 不等式的基本原理:根据两个实数之差的符号来判断两个实数的大小关系是两个实数比较大小的基本方法,也是本章的出发点。

在教学过程中要根据学生情况适当补充例题,使学生理解利用因式分解或配方法进行变形、然后确定差的符号的方法。

2 不等式的基本性质及证明:(1)通过不等式的3条基本性质的证明,可进一步看到基本原理的应用。

在证明不等式的基本性质的过程中,必须注意推理的严密性。

另外,不等式的性质可用来作为证明其他不等式的依据。

(2)性质1、性质2及性质4的证明过程中,渗透着构造法和放缩法等数学思想方法,在教学过程中要注意引导,培养学生的思维能力。

(3)学生易把不等式的性质3及异向不等式相减的性质与等式性质混淆,教学过程中要反复强调它们的不同之处;学生也易忽视正数的同向不等式相乘的性质及同号两数的倒数的性质成立的条件,要反复提醒。

(4)例5是证不等式的开方性质,从已知条件很难入手,在复习命题知识的基础上,积极引导学生逆向思考,最后引出反证法;要控制难度,不要再补充其它题目。

高中数学A版必修5《基本不等式》说

高中数学A版必修5《基本不等式》说

“基本不等式:2b a ab +≤(第一课时)”说课 一、教材分析⒈教材的地位和作用“基本不等式:2b a ab +≤”是高中课本必修5第三章《不等式》的最后一节,其主要内容是:两个不等式“如果R b R a ∈∈,,那么ab b a 222≥+”和“如果0,0>>b a ,那么2b a ab +≤”的推导和应用。

在此之前,学生已经学习了不等式的基本性质,同时也接触过“作差比较”等一些证明不等式的基本方法。

在这个基础上,教材在第三章的最后安排了这一节。

学生在经历过对不等式基本性质的探究过程后,在这一节,学生将更进一步感受到日常生活中存在的大量的不等关系,基本不等式是比较大小、处理最优化问题的重要的数学工具,利用这个工具,学生将进一步积累解决问题的经验和方法,形成解决问题的一些基本策略,提高应用数学的意识和解决实际问题的能力。

⒉教材的重点和难点因为是第一课时,我认为本节课的教学重点是对两个不等式的 推导、理解和不等式的初步应用。

课本对不等式的推导采用了“作差比较法”,“作差比较法”是证明不等式的基本方法,所以应当作为教学的重点。

这两个不等式之间既有联系又有区别,学生容易混淆和忽略,所以两个不等式“成立的前提条件不同和等号成立的条件相同”,也是教学的重点。

如何通过对这两个不等式的变形、拓展,学生能更深入地理解不等式的结构,并能初步地应用它解决一些实际问题,为下一个课时“利用基本不等式求最优解的学习”作好铺垫,这是教学的难点。

二、教学目的分析根据以上分析,我确定本节课的教学目的如下:1、知识目标:了解不等式的证明过程和方法;理解不等式的几何意义;初步利用两个不等式解决问题,熟悉其变形式。

2、能力目标:通过探究结果的汇报以及讨论活动,提高学生语言表达能力;在对不等式的证明过程中培养学生发现、比较、论证、转化等分析问题和解决问题的能力;通过掌握不等式的结构特点和运用不等式的适当变形,培养学生的形象思维能力、类比能力和创新精神。

2020人教A版数学必修五3.4基本不等式word教案1

2020人教A版数学必修五3.4基本不等式word教案1

高一数学集体备课学案与教学设计 章节标题 第三章 不等式 3.4 基本不等式(1) 计划学时 2 学案作者 高考要求 掌握基本不等式,并能运用基本不等式解决一些简单最大(小)值问题;培养学生探究能力以及分析问题解决问题的能力。

三维目标 1、知识与能力目标:掌握基本不等式,并能运用基本不等式解决一些简单问题;培养学生探究能力以及分析问题解决问题的能力。

2、过程与方法目标:按照创设情景,提出问题→ 剖析归纳证明→ 几何解释→ 应用(最值的求法、证明)的过程呈现,体验成功的乐趣。

3、情感与态度目标:使学生认识到数学是从实际中来,培养学生用数学的眼光看世界,通过数学思维认知世界,从而培养学生善于思考、勤于动手的良好品质。

教学重点教学难点及解决措施 重点:从不同角度探索基本不等式2b a ab +≤的证明过程及应用。

难点:基本不等式成立时的三个限制条件(简称一正、二定、三相等);教学流程一、 创设情景,提出问题;如图是在北京召开的第24届国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去像一个风车,代表中国人民热情好客。

[问]你能在这个图中找出一些相等关系或不等关系吗?本背景意图在于利用图中相关面积间存在的数量关系,抽象出不等式ab b a 222≥+。

在此基础上,引导学生认识基本不等式。

同时,(几何画板辅助教学)通过几何画板演示,让学生更直观的抽象、归纳出以下结论:二、抽象归纳:一般地,对于任意实数a,b ,有ab b a 222≥+,当且仅当a =b 时,等号成立。

[问] 你能给出它的证明吗?特别地,当a>0,b>0时,在不等式ab b a 222≥+中,以a 、b 分别代替a 、b ,得到什么?【归纳总结】如果a,b 都是正数,那么2b a ab +≤,当且仅当a=b 时,等号成立。

我们称此不等式为基本不等式。

其中2b a +称为a,b 的算术平均数,ab 称为a,b 的几何平均数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教A版必修5《不等式》教材分析与教学建议1.课程目标不等关系与相等关系都是客观事物的基本数量关系,是数学研究的重要内容。

不等关系在现实世界和日常生活中大量存在,任何人都需要对发生在我们周围的事物作出某种判断,判断有时需借助于量与量的比较来实现,这就是不等关系在本章的地位与作用。

在本章中,学生将通过具体情境感受不等关系,理解不等式(组)对于刻画不等关系的意义和价值;掌握求解一元二次不等式的基本方法,并能解决一些实际问题;能用二元一次不等式组表示平面区域,并尝试解决一些简单的二元线性规划问题;认识基本不等式及其简单应用;体会不等式、方程及函数之间的联系。

我们将重点研究一元二次不等式、二元一次不等式(组)、基本不等式三种不等式模型,在了解不等式实际背景的前提下,重点研究不等式的应用。

2.课标内容(1)不等关系:通过具体情境,感受在现实世界和日常生活中大量存在的数量关系,了解不等式(组)的实际背景,了解不等式的一些基本性质。

(2)一元二次不等式:经历从实际情景中抽象出一元二次不等式模型的过程;通过函数图象了解一元二次不等式与相应函数、方程的联系;会解一元二次不等式,对给定的一元二次不等式,尝试设计求解的程序框图。

(3)二元一次不等式组与简单线性规划问题:从实际情景中抽象出二元一次不等式组;了解二元一次不等式的几何意义,能用平面区域表示二元一次不等式组;从实际情景中抽象出一些简单的二元线性规划问题,并能加以解决。

基本不等式:探索基本不等式的证明过程;会用基本不等式解决简单最值问题。

(4).教学要求3.3.1基本要求(1)了解不等式(组)的实际背景;(2)理解不等式(组)对于刻划不等关系的意义和价值;(3)会用不等式(组)表示实际问题中的不等关系,能用不等式(组)研究含有不等关系的实际问题;(4)了解从实际情境中抽象出一元二次不等式模型的过程;(5)理解一元二次不等式的概念;(6)理解并掌握一元二次不等式、二次函数及一元二次方程之间的关系;(7)理解并掌握解一元二次不等式的过程;(8)会求一元二次不等式解集;(9)掌握求解一元二次不等式的程序框图及隐含的算法思想;(10)了解从实际情境中抽象出二元一次不等式(组)模型的过程;(11)理解二元一次不等式(组)、二元一次不等式(组)的解集的概念;(12)了解二元一次不等式的几何意义,理解(区域)边界的概念及实线、虚线边界的含义;(13)会用二元一次不等式(组)表示平面区域,能画出给定的不等式(组)表示的平面区域;(14)了解线性约束条件、目标函数、线性目标函数、线性规划、可行解、可行域、最优解的概念;(15)掌握简单的二元线性规划问题的解法;(16)了解基本不等式的代数背景、几何背景以及它的证明过程;(17)理解算术平均数,几何平均数的概念;(18)会用基本不等式解决简单的最大(小)值的问题;)通过基本不等式的实际应用,感受数学的应用价值。

19(3.2发展要求)理解并掌握不等式的基本性质;1(.(2)体会不等式的基本性质在不等式证明中所起的作用;(3)一元二次不等式解法能应用;(4)能把一些简单的实际问题转化成二元线性规划问题并加以解决。

3.3说明(1)一元二次不等式的求解只要求达到基本要求即可;(2)淡化解不等式的技巧性要求,突出不等式的实际背景及其应用;(3)能把一些实际问题转化成二元线性规划问题并能加以解决;)突出用基本不等式解决问题的基本方法,不必推广到三个变量以上的情形。

4(4.纲标比较4.1章节、课时比较教学大课程标数章不等式1数学第二册(上)第六章不等式1课时课时3.1不等关系与不等含不等式性)(6.不等式的性(课)课)3.2一元二次不等式及其解(课课6.算术平均数与几何平均())3.3.二元一次不等(6.不等式的证课)与平面区(课)3.3.2简单的线性规划问题(3) 课时)课时不等式解法举例6.4(2(阅读与思考)(2课时) 6.5含有绝对值的不等式(阅读材料() 信息技术应用)3.4 课时小结与复习(2)基本不等式(3课时))小结与复习(3课时直线和圆的方程数学第二册(上)第七章(3简单的线性规划7.4课时))研究性课题与实习作业(4.2内容主要变化原大纲教材中,一元二次不等式安排在“集合与简易逻辑”之后,是学生刚步入高一就要学习的内容,而课标教材则安排在模块5中,意图在高二(上)学习,简单的线性规划问题从解析几何《直线和圆的方程》中移到模块5的不等式中,与二元一次不等式组成一个单元。

不等式内容进一步整编,删除一元高次、分式不等式,把不等式证明后移到选修中,基本不等式则控制难度,只用于解决求最值问题。

4.3几个特点①内容安排上的特点把简单的线性规划和不等式放在一起,将线性规划问题作为不等式来处理,突出了不等式的几何意义以及在解决优化问题中的作用,有利于理解不等式的本质,体现优化思想。

②教学要求上的特点在不等式求解方面,《课标》对学生的基本要求进一步弱化,在大纲教材删除了指、对数不等式和无理不等式的基础上,又删除了分式不等式、一元高次不等式求解,将绝对值不等式移至选修4-5(不等式选讲);不等式证明采取分步到位、螺旋上升的做法,由于选修4-5不作高考要求(但是为学业考试内容),其基本要求是降低的。

但在选修1-2(文科必选)、选修2-2(理科必选)的推理与证明中,均提出用综合法与分析法证明不等式。

在选修4-5中,介绍了不等式证明的常用方法—比较法、综合法、分析法、反证法、放缩法,进一步介绍了柯西不等式、排序不等式、均值不等式及其应用,还介绍了数学归纳法与贝努利不等式。

二元一次不等式(组)与简单的线性规划问题。

不变学习要求基本③教学价值上变化不等式是原教材中的一个重点和难点,是培养学生思维能力和推理能力的一个很好素材,所以它强调理论叙述、推理严密、变化技巧,而《课标》则更加关注不等式的背景和实际应用,把不等而不再把重点放作为描述优化问题的一种数学模型,式作为刻画现实世界中不等关系的数学工具,在纯理论的数学探究上。

5. 教学建议☆章头图本章的章头图是一幅山峦重叠起伏的壮观画面,将学生带入“横看成岭侧成峰,远近高低各不同”的大自然中,使学生在具体情境中感受到不等关系在现实世界和日常生活中是大量存在的,由此产生用数学研究不等关系的强烈愿望。

☆3.1不等关系与不等式这一节的要求和原教材有很大的不同,原教材作为研究不等式的理论基础,所以对它们归结为几个定理和推论,并给出了证明。

而现在把所有的定理和推论整理为不等式的八大性质,并作一些简要的说明,强调这些关于不等式的事实和性质是解决不等式问题的依据。

建议在教学中不要对这些性质的证明作过多的纠缠,而应该在说明这些性质的合理性上举例说明,引导学生进一步挖掘一些感兴趣的和富有时代感的素材,通过分析其中的基本数量关系,以加深学生对“不等关系是客观事物的基本数量关系”的认识。

也可以类比等式的基本性质,对一些不等式的推断作一些分析验证,通过类比,使学生认识不等式与等式性质之间的相同点与不同点。

☆3.2 一元二次不等式及其解法在大纲教材的函数部分,借助于二次函数安排了二次不等式的内容。

这样安排已为广大教师所接受,其好处也是多方面的。

课标教材则把二次不等式的内容移至“必修5”,在“必修1”的函数内容中,强调函数“是描述现实世界变量之间的依赖关系的数学模型”,把重点放在函数概念的本质的理解、函数性质讨论以及函数的实际应用上,其用意固然是为了防止教师在集合的学习与函数概念的教学中,在求解定义域、值域等“细枝末节”的问题上对学生进行大量人为的、繁琐的训练,但这种“釜底抽薪”的做法似乎更多的是因为受到各个模块课时的限制而造成的无奈,许多首批参与实验的教师也对此提出质疑,认为这样处理值得商榷。

一元二次不等式解集的求法对于高一学生而言并不会感到困难,但理解二次函数、一元二次.方程与一元二次不等式解集之间的关系,则要经历观察、思考、探究的过程。

课标教材着眼于让学生体验知识形成过程的精心设计值得我们在教学中细心体味,无论是一元二次不等式模型的建立、解法的归纳,还是以填空的形式让学生尝试设计求解一般一元二次不等式过程的程序框图,都为学生的思维活动留足了空间。

这种从特殊到一般的处理方式符合学生的认知规律,有助于学生了解知识的形成过程和来龙去脉,加深对知识的理解,以及对隐藏在知识发生过程中的数学思想方法的领悟。

另外,教学中要控制不等式的难度,一般不要超出教科书的要求,一元二次不等式的求解只要达到基本要求即可,要淡化解不等式技巧性要求,要注意加强与函数、方程的联系,积极渗透算法思想,突出不等式的实际背景及其应用,有关内容将在选修系列4—5中作进一步讨论。

☆3. 3 二元一次不等式(组)与简单的线性规划问题不等式作为用来刻划不等关系的有效工具,有着丰富的现实背景,不等式也是刻划区域的重要工具,刻划区域是解决线性规划问题的一个基本步骤,在现实生产、生活中,经常遇到的资源利用、人力调配、生产安排等问题常常可归结为二元线性规划问题。

线性规划是数学规划中理论较完整、方法较成熟、应用较广泛的一个分支,它能解决科学研究、工程设计、经济管理等许多方面的实际问题。

教学中要注意从实际问题引入,着眼于不等式与实际问题的联系,使学生明确数学问题源于生活且用于生活。

由于线性规划属于多元条件极值问题,对高一学生有一定难度,因此教学中应当强调借助几何直观解决一些简单的线性规划问题,引导学生体会线性规划的基本思想,在其它方面的一些应用不宜作过多展开。

另外,直线方程是平面解析几何内容,根据《指导意见》先上模块5、后上模块2的顺序,学生对直线的斜率、截距、平行直线系等概念尚不清晰,无疑这也将增加学习线性规划的难度,有人提出“让线性规划回去”,也是有一定道理的。

在本节内容的后面,教材安排了阅读材料“错在哪儿”和信息技术应用“用Excel解线性规划问题举例”。

前者提出的问题既有思考性又有挑战性,对于同一道习题得到不同答案的类似问题情境学生常常经历,也常常给学生带来困惑,引导学生辨析纠错,有利于培养学生思维的深刻性和反后者借助计算机为研究二元一次不等式组的解集表示的平面区域和简单的线性规划问题提思意识。

.供试验探索平台,从动手实践、观察猜想中发现规律,且有较强的操作性,可指导学生课外完成。

a?b?ab☆3.4基本不等式:2本节主要内容是使学生了解基本不等式的代数、几何背景及基本不等式的证明,通过基本不等式的实际应用,感受数学的应用价值,重点是应用数形结合的思想理解基本不等式并从不同的角度探究其证明过程。

根据课标立足基础、螺旋上升的教学要求,教学时要突出用基本不等式解决问题的基本方法和基本的应用,如运用基本不等式可解决周长、面积、造价的最大(小)值问题等。

相关文档
最新文档