刚体动力学
合集下载
刚体动力学

●
刚体基本动力学量
现在取 Axyz 坐标系为一个平动参考系 , 则刚体上的 R 点相对速度为 v r R =× R
dV
【定理】刚体相对动量为 p r =× mt R C
证明:pr =∫ v r R dV =∫ × R R dV
=×∫ R R dV =×m t RC(证毕)
⇒ L'A =∫ R2 I − R R ⋅ R dV =[∫ R2 I − R R R dV ]⋅
= J A⋅
(证毕)
1 1 ' 【定理】刚体相对动能为 T r = ⋅L A= ⋅J A⋅ 2 2
证明: T r=
1 1 2 v r R dV = ∫ v r⋅v r R dV ∫ 2 2 1 1 × R ⋅ v R dV = R × v r ⋅ R dV ∫ ∫ r 2 2
【推论】匀质刚体如果有一过 A 的镜像对称面,则过 A 且 与该镜像面垂直的轴是主轴;如果过 A 有两个正交的 镜像面,则两镜像面过 A 点的法线以及镜像面的交线 构成主轴系;匀质旋转体的旋转轴和任意与之正交的 两正交轴构成主轴系 . (请自己根据定义证明) 【定理】假定角速度在主轴坐标系下表示为
d d' J A⋅ 是矢量, J A⋅ = J A⋅× J A⋅ dt dt
⇒⋯⇒ J A⋅ = J XZ X J YZ Y J ZZ Z = ˙ Z ˙
d e ⋅M A ⇒ Z⋅ J A⋅= J ZZ = ≡M Z ¨ Z dt
2
J lk = J kl
(证毕)
因为:
lk =kl , Rl R k = Rk Rl
注:一般把 Jlk 称为惯量系数,由于对称性,只有 6 个是独立的 注:如果 AXYZ 不是固连在刚体上的坐标系,则 R 相对 AXYZ 有 转动,那么在 AXYZ 上看到的质量分布一般会随时间改变, 故在这个坐标系中惯量系数依赖于时间 . 注:如果 AXYZ 不是固连在刚体上的坐标系,在少数有良好对称性 的情况下 AXYZ 上看到的质量分布可能不随时间改变,此时在 这个坐标系中惯量系数是常数 .
《刚体动力学 》课件

牛顿第二定律
物体的加速度与作用在物 体上的力成正比,与物体 的质量成反比。
牛顿第三定律
对于任何两个相互作用的 物体,作用力和反作用力 总是大小相等,方向相反 ,作用在同一条直线上。
刚体的平动
刚体的平动是指刚体在空间中 的位置随时间的变化而变化, 而刚体的形状和大小保持不变
的运动。
刚体的平动具有三个自由度 ,即三个方向的平动。
05
刚体的动力学方程
刚体的动力学方程
牛顿第二定律
刚体的加速度与作用力成正比,与刚体质量 成反比。
刚体的转动定律
刚体的角加速度与作用力矩成正比,与刚体 对转动轴的转动惯量成反比。
刚体的动量方程
刚体的动量变化率等于作用力对时间的积分 。
刚体的自由度与约束
自由度
描述刚体运动的独立变量,如平动自由度和转动 自由度。
约束
限制刚体运动的条件,如固定约束、滑动约束等 。
约束方程
描述刚体运动受约束的数学表达式。
刚体的动力学方程的求解方法
解析法
通过代数运算求解动力学方程,适用于简单问 题。
数值法
通过迭代逼近求解动力学方程,适用于复杂问 题。
近似法
通过近似模型求解动力学方程,适用于实际问题。
06
刚体动力学中的问题与实例 分析
人工智能和机器学习的发展将为刚体 动力学的研究提供新的思路和方法, 有助于解决复杂动力学问题。
感谢您的观看
THANKS
船舶工程
在船舶工程中,刚体动力学 用于研究船舶的航行稳定性 、推进效率以及船舶结构的 安全性等。
兵器科学与技术
在兵器科学与技术领域,刚 体动力学用于研究弹药的发 射动力学、火炮的射击精度 和稳定性等。
第七章 刚体动力学(讲义)

MO = ∑ MO ( Fi ) = ∑ (ri × Fi )
i =1 i =1
n
n
注意,主矩的的计算与参考点的选取有关。例如,将参考点由 O 改成 O′ ,于是
MO = ∑ ri × Fi = ∑
i =1 i =1
n
n
(ri′ + OO′) × Fi = ∑ (ri′ × Fi ) + OO′ × ∑ Fi
R = ∑ Fi
i =1
n
这是个自由矢量,它只给出矢量的大小和方向,不过问作用点的位置。 对力系的矩也可作类似的讨论。对于共点力系,合力的矩等于各个力对同一点的矩的矢量 和,即
MO ( F) = r × F = r × ∑ Fi = ∑ (r × Fi )
i =1 i =1
n
n
一般的力系中不一定存在合力,因此也就谈不上求合力的矩。但是每个力相对于同一参考 点的力矩是矢量,我们可以求这些矢量的和,并称为主矩,记为 MO ,即有
(II)刚体绕质心的转动:
dLc = ∑ ric × Fi (对质心的角动量定理) dt i
第一个式子求质心运动等同于质点动力学,可以解出刚体的平动运动部分(三个方程解三个运 动变量) 。第二个式子又可求出刚体的转动角速度 ω ( L 与 ω 有一定的关系) ,于是刚体的运动 就完全确定了。由角动量定理求刚体的转动角速度是重点讨论的内容。 7.2 作用在刚体上的力和力矩 通常矢量指的是所谓自由矢量(free vector) :只有大小和方向,它可以平行自由移动。 作为物理量的矢量则不然,例如,力矢量 F ,为了完全确定这个力,还要说明力的作用点, 若用 r 表示作用点的话,则要有两个矢量 F 和 r ,这个力才完全被确定下来。这种矢量被称为定 位矢量(bound vector) 。除了力矢量是定位矢量外,质点的速度和加速度等也是定位矢量的例 子。 还有一种矢量,称为滑动矢量(sliding vector) ,它可在包含该矢量的一直线上自由移动。 例如,作用在刚体上的力(见下面的讨论) 。
4-2刚体的转动-刚体动力学解析

1 ( m A m C )m B g 2 T2 1 m A m B mC 2
mB g
1 m A mB mC 2 m Am B g T1 1 m A m B mC 2
物体B由静止出发作匀速直线运动
2mB gy v 2ay 1 m A mB mC 2
考虑滑轮与轴承间的摩擦力
由初始条件 : t 0时, 0 0, 0 0得 :
0
3g d sind 2l 0
3g (1 cos ) 2l
例4:一半径为R,质量为m的匀质圆盘,平放在粗 糙的水平桌面上。设盘与桌面间摩擦系数为 , 令圆盘最初以角速度 0绕通过中心且垂直盘面的 轴旋转,问它经过多少时间才停止转动?
2m1m2 T1 T2 g m2 m1
m2 m1 a g m2 m1
上题中的装置叫阿特伍德机,是一种可用来测 量重力加速度g的简单装置。因为在已知m1、 m2 、 r和J的情况下,能通过实验测出物体1和2的加速度a, 再通过加速度把g算出来。在实验中可使两物体的m1 和 m2 相近,从而使它们的加速度 a 和速度 v都较小, 这样就能角精确地测出a来。
例2.质量为 m A 的物体A静止在光滑的水 平面上,它和一轻绳相连接,此绳跨过一半 径为R、质量为 mC 的园柱形滑轮C,并系在 另一质量为 m B 的物体B上,滑轮与轴承间 A 的摩擦力不计.问: C (1)两物体的线加 速度? 水平和铅直 B 两段绳的张力? (2)B由静止下落距离y时速率? (3)若滑轮与轴承间的摩擦力矩为 M ,再 求线加速度及绳的张力.
1 1 2 a RT2 RT1 M J mC R mC Ra 2 R 2 ( 4)
解(1)(2)(4),即可得 a,T
mB g
1 m A mB mC 2 m Am B g T1 1 m A m B mC 2
物体B由静止出发作匀速直线运动
2mB gy v 2ay 1 m A mB mC 2
考虑滑轮与轴承间的摩擦力
由初始条件 : t 0时, 0 0, 0 0得 :
0
3g d sind 2l 0
3g (1 cos ) 2l
例4:一半径为R,质量为m的匀质圆盘,平放在粗 糙的水平桌面上。设盘与桌面间摩擦系数为 , 令圆盘最初以角速度 0绕通过中心且垂直盘面的 轴旋转,问它经过多少时间才停止转动?
2m1m2 T1 T2 g m2 m1
m2 m1 a g m2 m1
上题中的装置叫阿特伍德机,是一种可用来测 量重力加速度g的简单装置。因为在已知m1、 m2 、 r和J的情况下,能通过实验测出物体1和2的加速度a, 再通过加速度把g算出来。在实验中可使两物体的m1 和 m2 相近,从而使它们的加速度 a 和速度 v都较小, 这样就能角精确地测出a来。
例2.质量为 m A 的物体A静止在光滑的水 平面上,它和一轻绳相连接,此绳跨过一半 径为R、质量为 mC 的园柱形滑轮C,并系在 另一质量为 m B 的物体B上,滑轮与轴承间 A 的摩擦力不计.问: C (1)两物体的线加 速度? 水平和铅直 B 两段绳的张力? (2)B由静止下落距离y时速率? (3)若滑轮与轴承间的摩擦力矩为 M ,再 求线加速度及绳的张力.
1 1 2 a RT2 RT1 M J mC R mC Ra 2 R 2 ( 4)
解(1)(2)(4),即可得 a,T
《刚体动力学》课件

动量定理公式:Ft=mv
单击此处输入你的项正文,文字是您思想的提炼。
应用场景:碰撞、打击、爆炸等 角动量定理 角动量定理
定义:角动量是物体转动惯量和角速度的乘积 单击此处输入你的项正文,文字是您思想的提炼。
角动量定理公式:L=Iω
单击此处输入你的项正文,文字是您思想的提炼。
应用场景:行星运动、陀螺仪等
刚体的滚动和滑动摩擦
刚体滚动:刚体在平面内绕固定点转动,滚动摩擦力产生的原因和影响
刚体滑动摩擦:刚体在平面内滑动时产生的摩擦力,滑动摩擦系数与接触面材料和粗糙度等因素 的关系
刚体滚动和滑动摩擦的应用实例:例如,汽车轮胎与地面之间的滚动摩擦力,以及机械零件之间 的滑动摩擦力等
刚体滚动和滑动摩擦的实验研究:通过实验研究刚体滚动和滑动摩擦力的影响因素和规律,为实 际应用提供理论支持
04
刚体动力学基本原理
牛顿第二定律
定义:物体加速度的大小跟作用 力成正比,跟物体的质量成反比
应用:解释物体运动状态变化的 原因
添加标题
添加标题
公式:F=ma
添加标题
添加标题
注意事项:只适用于宏观低速运 动的物体
动量定理和角动量定理
定义:动量是物体质量与速度的乘积
单击此处输入你的项正文,文字是您思想的提炼。
刚体动力学研究内容
刚体的定义和性质 刚体运动的基本形式 刚体动力学的基本方程 刚体动力学的研究方法
刚体动力学发展历程
早期发展:古代力学对刚体的研究 经典力学时期:牛顿、伽利略等经典力学大师对刚体动力学的研究 弹性力学时期:弹性力学的发展对刚体动力学的影响 现代发展:计算机技术和数值模拟方法在刚体动力学中的应用
课程内容:刚体 的平动、转动、 碰撞等动力、力学等相关专 业的本科生和研 究生
单击此处输入你的项正文,文字是您思想的提炼。
应用场景:碰撞、打击、爆炸等 角动量定理 角动量定理
定义:角动量是物体转动惯量和角速度的乘积 单击此处输入你的项正文,文字是您思想的提炼。
角动量定理公式:L=Iω
单击此处输入你的项正文,文字是您思想的提炼。
应用场景:行星运动、陀螺仪等
刚体的滚动和滑动摩擦
刚体滚动:刚体在平面内绕固定点转动,滚动摩擦力产生的原因和影响
刚体滑动摩擦:刚体在平面内滑动时产生的摩擦力,滑动摩擦系数与接触面材料和粗糙度等因素 的关系
刚体滚动和滑动摩擦的应用实例:例如,汽车轮胎与地面之间的滚动摩擦力,以及机械零件之间 的滑动摩擦力等
刚体滚动和滑动摩擦的实验研究:通过实验研究刚体滚动和滑动摩擦力的影响因素和规律,为实 际应用提供理论支持
04
刚体动力学基本原理
牛顿第二定律
定义:物体加速度的大小跟作用 力成正比,跟物体的质量成反比
应用:解释物体运动状态变化的 原因
添加标题
添加标题
公式:F=ma
添加标题
添加标题
注意事项:只适用于宏观低速运 动的物体
动量定理和角动量定理
定义:动量是物体质量与速度的乘积
单击此处输入你的项正文,文字是您思想的提炼。
刚体动力学研究内容
刚体的定义和性质 刚体运动的基本形式 刚体动力学的基本方程 刚体动力学的研究方法
刚体动力学发展历程
早期发展:古代力学对刚体的研究 经典力学时期:牛顿、伽利略等经典力学大师对刚体动力学的研究 弹性力学时期:弹性力学的发展对刚体动力学的影响 现代发展:计算机技术和数值模拟方法在刚体动力学中的应用
课程内容:刚体 的平动、转动、 碰撞等动力、力学等相关专 业的本科生和研 究生
刚体的一般运动的运动学和与动力学动力学

加速度
刚体在一段时间内速度的 变化率,表示刚体速度变 化的快慢。
刚体的平动
平动
刚体在运动过程中,其上任意两 点都沿着同一直线作等距离的移 动。
平动特点
刚体上各点的速度和加速度都相 等,与参考系的选择无关。
刚体的转动
转动
刚体绕某一定点做圆周运动。
转动特点
刚体上各点的速度和加速度大小相等,方向不同。
阻尼振动
阻尼振动是指由于阻力作用而使振动系统受到损 耗的振动。
受迫振动
受迫振动是指在外力作用下产生的振动。
刚体的稳定性和平衡性
静态平衡
刚体在静止状态下,如果受到微小扰 动后能恢复到原来的平衡位置,则称 该平衡为静态平衡。
动态平衡
刚体在运动状态下,如果受到微小扰 动后能保持原来的运动状态不变,则 称该平衡为动态平衡。
感谢观看
THANKS
刚体的平衡
总结词
刚体的平衡是指刚体在运动或静止时,其上各点的加速度均为零的状态。
详细描述
刚体的平衡可以通过力的合成和分解来分析。当刚体处于平衡状态时,其上各点的加速度均为零,即合外力为零。 根据力的平移定理,可以将力的作用点平移至刚体的质心,从而将刚体平衡问题转化为质点平衡问题。同时,根 据力矩平衡条件,可以得出刚体平衡的条件为合外力矩为零。
力矩和角速度
总结词
力矩是力和力臂的乘积,它描述了力对刚体转动的效应;角速度是描述刚体转动快慢的 物理量。
详细描述
力矩是力和力臂的乘积,其方向垂直于力和力臂所在的平面。力矩可以改变刚体的转动 状态,包括转动方向和角速度大小。角速度是描述刚体绕固定点转动的快慢的物理量, 其方向与转动方向相同。公式表示为M=FL,其中M表示力矩,F表示力,L表示力臂。
高中物理竞赛辅导之刚体动力学

其轴的转动惯量与圆盘的相同。
球体绕其直径的转动惯量
将均质球体分割成一系
列彼此平行且都与对称轴垂
直得圆盘,则有
JO
1 dm r 2 2
1 2
r 2dz
r
2
R 1( R2 z2 )2 dz
R 2
8 R5 2 mR2
15
5
z
r
z
dz R
om
JO
2 mR2 5
设任意物体绕某固定轴O的转动惯量为J,绕 通过质心而平行于轴O的转动惯量为Jc,则有
0 t 2 gt R
达到纯滚动时有: vc R
解得作纯滚动经历的时间:
t v0 2g h R
3 g
3 g
2)达到纯滚动时经历的距离:
x
v0t
1 2
at 2
v02
3 g
1 2
g
v02
3g 2
5v02
5h R
18 g 9
例 5 质量为 mA 的物体 A 静止在光滑水平面上,
和一质量不计的绳索相连接,绳索跨过一半径为 R、质
J 1 ml2 3
球壳: 转轴沿直径
J 2 mr2 3
竿
子
长
些
还
是
短
些
较
安
飞轮的质量为什么
全
大都分布于外轮缘?
?
例1 一长为 l 质量为 m 匀质细杆竖直放置,其
下端与一固定铰链 O 相接,并可绕其转动. 由于此竖
直放置的细杆处于非稳定平衡状态,当其受到微小扰
动时,细杆将在重力作用下由静止开始绕铰链O 转动.
压力N 和刹车片与圆盘间的摩擦系数均已被实验测出.试
刚体动力学

刚体动力学
刚体动力学是指研究力和质量对刚体运动的影响,它涉及物理
和数学,主要研究力对物体运动的影响。
它广泛应用于工程和物理领域,用于描述物体在局部或全局中的运动状态。
如何利用运动学理论
来分析和解释物理世界中物体的运动轨迹,最终揭示物体运动的物理
原理至关重要。
在刚体动力学的概念中,物体的运动被建模为一种力对对对象的
瞬时影响。
通过应用力,物体的运动可以得到估计。
瞬时力是指在特
定时空会给物体造成瞬时影响的力。
可以从特征定律出发,将其用于
物体运动分析。
这些定律涉及到物理力学,牛顿力学和拉普拉斯力学,上述定律可将物体的运动状态的分类。
与此同时,通过测量物体的加
速度、速度和位移,有可能解释其运动轨迹,解析物体的运动和定义
有关的物理参数,这些物理参数的累积可以描述物体的运动状态,从
而揭示物体运动的原理。
刚体动力学的原理也可以用来处理运动学中更加抽象的问题,例
如变换,尤其是物体受力时联合受力的问题。
此外,它还可以用于研
究物理系统中某些复杂的力的运动模式,包括动量、角动量、能量和
声学等。
可以说,它是物理上最基本的模型,用于解释物体的局部或
全局运动。
利用刚体动力学的原理,可以研究物体运动在各种复杂条
件下的变化,从而揭示物体运动的物理原理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
刚体任意两点距离不变,故内力不做功 .
d Rn e d Rn =× R n ⇒ ∑n F n ⋅ =∑n F ne ⋅× R n =∑n ⋅ R n × F ne dt dt d RC d RC =× R C ⇒− mt a A⋅ =−⋅ R C × mt a A dt dt
【定义】坐标基矢 e*=[e1*, e2*, e3*]T 使得所代表的坐标系称为
∗ ∗ , J , J 主轴坐标系 , 相应的惯量系数 J ∗ 11 22 33 称为主转动惯量
思考题:怎样寻找主轴坐标系和主转动惯量?(特征向量和特征值)
【推论】任意两个主转动惯量之和大于剩余的第三个
证明:直接在主轴坐标系内用惯量系数的定义即可得证 . 略
d d' J A⋅ 是矢量, J A⋅ = J A⋅× J A⋅ dt dt
⇒⋯⇒ J A⋅ = J XZ X J YZ Y J ZZ Z = ˙ Z ˙
d e ⋅M A ⇒ Z⋅ J A⋅= J ZZ = ≡M Z ¨ Z dt
˙ 利用动能定理 由于 A 点不动,加速度为 0, 且 ⋅M A = M Z
d 1 e ⋅J A⋅ =⋅ M A − R C × mt a A dt 2
e
可导出上述推论 . (证毕) 注:对于定轴转动刚体,由于 Jzz=JZZ 是常数,故动能定理 也可表示为
d 1 2 J zz ˙ =M z ˙ dt 2
z (Z)
ω A x φ X
Y y
【推论】定轴转动刚体的运动微分方程为 J ZZ = ¨ MZ
证明:由于 A 点不动,加速度为 0 ,利用角动量定理
d e J A⋅ = M A dt d d' ˙ 注意 φ 是标量, = 微商可不加区别地记为 dt dt
参考系 Axyz 中的微商 固连坐标系 AXYZ 中的微商
附:关于 Jzz=JZZ 的证明 . 证明:坐标变换关系为 z=Z, x=Xcosφ+Ysinφ, y=-Xsinφ+Ycosφ 可以证明 dxdydz=dXdYdZ, x2+y2=X2+Y2 ,ρ(x,y,z)=ρ'(X,Y,Z), 故有
J zz =∭ dxdydz x 2 y 2 x , y , z =∭ dXdYdZ X 2Y 2 ' X ,Y , Z = J ZZ
⇒ L'A =∫ R2 I − R R ⋅ R dV =[∫ R2 I − R R R dV ]⋅
= J A⋅
(证毕)
1 1 ' 【定理】刚体相对动能为 T r = ⋅L A= ⋅J A⋅ 2 2
证明: T r=
1 1 2 v r R dV = ∫ v r⋅v r R dV ∫ 2 2 1 1 × R ⋅ v R dV = R × v r ⋅ R dV ∫ ∫ r 2 2
证明:注意到质心系中 RC=0 即可 . (证毕)
【动能定理】
d 1 e ⋅J A⋅ =⋅ M A − R C × mt a A dt 2
证明:应用任意平动参考系的动能定理
注:刚体的动能定理 与角动量定理不独立
d T r=∑n F ne ⋅d R n ∑n F ni ⋅d R n − m t a A⋅d R C
2
Z z A O x y R
dV
注:在 AXYZ 坐标基矢 e=[e1, e2, e3] 下,
T
Y X
R = R1 e 1 R2 e 2 R3 e 3 ⇒
R R = R1 e 1 R 2 e 2 R3 e 3 R1 e 1 R 2 e 2 R3 e 3 = R e1 e1 R1 R2 e1 e 2 R1 R3 e1 e3 R2 R 1 e 2 e 1 R 2 e 2 e 2 R2 R3 e 2 e 3 R3 R1 e 3 e 1 R3 R 2 e 3 e 2 R3 e 3 e3
[
][ ]
矢量 如果 Tkl=Tlk 则称 T 为对称张量
【定义】单位张量(或球形张量) I :满足 I ⋅v = v , ∀ v
注:在坐标基矢 e=[e1, e2, e3]T 下,可表示为 I =kl e k e l
【定义】刚体惯量张量:
J A =∫ [ R I − R R ] R dV
2 2 2 1
Oxyz :本征参考系 AXYZ: 基点 A 为原 点的坐标系
【推论】刚体惯量张量 JA 是对称张量 .
证明:在 AXYZ 坐标基矢 e=[e1, e2, e3]T 下,
J lk =∫ [ R 2 lk − Rl R k ] R dV ⇒ J kl =∫ [ R kl − Rk Rl ] R dV
[
J 31 J 32
J 33 3
][ ]
故对于任意角速度矢量,均有 Tr>0. 说明 [Jlk]3×3 是正定的 . (证毕)
【定理】存在一组特殊的坐标基矢 e*=[e1*, e2*, e3*]T 使得
J A = J 11 e 1 e1 J 22 e 2 e 2 J 33 e 3 e 3 ,
z
z A
R y y
O
【定理】刚体相对 A 角动量为 L'A= J A⋅
证明: L'A=∫ R× v r R dV =∫ R×× R R dV
Oxyz :本征参考系 Axyz: 平动参考系
R ×× R = R⋅R − R R⋅ = R2 − R R⋅ = R2 I − R R ⋅
[
0
0
J
∗ 33
]
[
0
0
J∗ 33
]
只需令 e*=[K] e 并注意到 [K]T= [K]-1 即有
J A = J 11 e 1 e1 J 22 e 2 e 2 J 33 e 3 e 3 J 110, J 22 0, J 330
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
由于 [J] 是正定的,那么经正交变换后的矩阵也正定,故 (证毕)
= 1 e1 2 e2 3 e 3
∗ ∗ ∗
则在主轴坐标系下角动量和动能分别表示为
L = J 1 e J 2 e J 3 e 1 ∗ 2 2 ∗ 2 T r = J 11 1 J ∗ J 22 2 33 3 2
证明:直接将主坐标系中的角速度和惯量张量表达式代人 1 ' 角动量 L A= J A⋅ 和动能表达式 T r = ⋅J A⋅ 即可 . (证毕) 2
(证毕)
注:对于定轴转动,可以证明 Jzz 也是常数( =JZZ ), 故运动微分方程也可表示为 J zz = ¨ Mz
d 1 2 【推论】定轴转动的刚体满足动能定理 J ZZ ˙ =M Z ˙ dt 2 2 ⇒ J A⋅= J XZ X J YZ Y J ZZ Z ˙ 证明: = ˙ Z ˙ ⇒ ⋅J A⋅= J ZZ
第六章
刚体动力学
§6.1 动力学基本方程
●
刚体的惯量张量
【定义】张量:坐标旋转下的不变量,它与任意矢量的 点积结果是矢量
在给定坐标系下,设坐标系的基矢为 e=[e1, e2, e3]T, 矢量 u 可 表示为 u =u i ei, 张量 T 可表示为 T = T kl e k e l , 它们的点积
' A ∗ 11 ∗ 1 ∗ 22 ∗ 2 ∗ 33 ∗ 3
●
动力学基本定理
dV
【动量定理】
mt [ a A × ˙ RC ×× RC ]=F
证明:质心加速度为
e
z
z A
R y y
a C = a A × ˙ RC ×× RC
利用质心运动定理得证 . (证毕) 注:也可应用 Axyz 参考系中的动量定理 e p ˙ r =F − mt a A 证明 x
得证!
d 1 e ⋅J C⋅ =⋅M C 【推论】在质心系中,动能定理为 dt 2
证明:注意到质心系中 RC=0 即可 . (证毕)
§6.2 定轴转动
●
运动微分方程
在轴上取基点 A ,建立静止参考系 Axyz 以及与刚体固连的坐标系 AXYZ. 使得 z(Z) 恰好为转动轴 . 自由度: DOF=1, 用转角 φ 表示 , 只需要 1 个运动微分方程 注意:参考系和坐标系关系!在一个参考系中 可建立很多个不同的坐标系 . 可取最方便 的一个坐标系来解决问题 . 例如在与刚体固连的坐标系 AXYZ 中讨论问题 . 在这个坐标系中惯量系数是常数 .
2
J lk = J kl
(证毕)
因为:
lk =kl , Rl R k = Rk Rl
注:一般把 Jlk 称为惯量系数,由于对称性,只有 6 个是独立的 注:如果 AXYZ 不是固连在刚体上的坐标系,则 R 相对 AXYZ 有 转动,那么在 AXYZ 上看到的质量分布一般会随时间改变, 故在这个坐标系中惯量系数依赖于时间 . 注:如果 AXYZ 不是固连在刚体上的坐标系,在少数有良好对称性 的情况下 AXYZ 上看到的质量分布可能不随时间改变,此时在 这个坐标系中惯量系数是常数 .
●
刚体基本动力学量
现在取 Axyz 坐标系为一个平动参考系 , 则刚体上的 R 点相对速度为 v r R =× R
dV
【定理】刚体相对动量为 p r =× mt R C
证明:pr =∫ v r R dV =∫ × R R dV
=×∫ R R dV =×m t RC(证毕)
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
且上述三个惯量系数均大于 0.
证明:根据线性代数的知识,我们知道对于任意对称矩阵,总存在 一个正交矩阵将其对角化 . 由于 [J] 是对称矩阵,所以存在正交 矩阵 [K] 使得 ∗ ∗ J 11 0 0 J 11 0 0 −1 ∗ [ J ]=[ K ] [ K ][ J ][ K ]−1= 0 J ∗ 0 J 0 [K ] 或 0 22 22