06 刚体动力学 I
合集下载
刚体动力学

●
刚体基本动力学量
现在取 Axyz 坐标系为一个平动参考系 , 则刚体上的 R 点相对速度为 v r R =× R
dV
【定理】刚体相对动量为 p r =× mt R C
证明:pr =∫ v r R dV =∫ × R R dV
=×∫ R R dV =×m t RC(证毕)
⇒ L'A =∫ R2 I − R R ⋅ R dV =[∫ R2 I − R R R dV ]⋅
= J A⋅
(证毕)
1 1 ' 【定理】刚体相对动能为 T r = ⋅L A= ⋅J A⋅ 2 2
证明: T r=
1 1 2 v r R dV = ∫ v r⋅v r R dV ∫ 2 2 1 1 × R ⋅ v R dV = R × v r ⋅ R dV ∫ ∫ r 2 2
【推论】匀质刚体如果有一过 A 的镜像对称面,则过 A 且 与该镜像面垂直的轴是主轴;如果过 A 有两个正交的 镜像面,则两镜像面过 A 点的法线以及镜像面的交线 构成主轴系;匀质旋转体的旋转轴和任意与之正交的 两正交轴构成主轴系 . (请自己根据定义证明) 【定理】假定角速度在主轴坐标系下表示为
d d' J A⋅ 是矢量, J A⋅ = J A⋅× J A⋅ dt dt
⇒⋯⇒ J A⋅ = J XZ X J YZ Y J ZZ Z = ˙ Z ˙
d e ⋅M A ⇒ Z⋅ J A⋅= J ZZ = ≡M Z ¨ Z dt
2
J lk = J kl
(证毕)
因为:
lk =kl , Rl R k = Rk Rl
注:一般把 Jlk 称为惯量系数,由于对称性,只有 6 个是独立的 注:如果 AXYZ 不是固连在刚体上的坐标系,则 R 相对 AXYZ 有 转动,那么在 AXYZ 上看到的质量分布一般会随时间改变, 故在这个坐标系中惯量系数依赖于时间 . 注:如果 AXYZ 不是固连在刚体上的坐标系,在少数有良好对称性 的情况下 AXYZ 上看到的质量分布可能不随时间改变,此时在 这个坐标系中惯量系数是常数 .
刚体动力学

利用上述运动微分方程组并考虑运动学方程组(5)以及初始条件,即可确定刚体在空间中的一般运动。刚体 一般运动的研究对研究各种航行器轨迹和姿态运动之间的相互关系有重要意义。
以上论及的只是单刚体动力学。由于现代科学技术的发展,多刚体系统动力学的研究也正在开展中(见多刚 体系统)。
参考文献
1、词条作者:陈滨.《中国大百科全书》74卷(第一版)力学词条:刚体动力学:中国大百科全书出版社, 1987 :168-170页.
谢谢观看
逐项类比。同质点质量m对应的量是Iz。m是质点运动时惯性的度量;Iz则是刚体定轴转动时转动惯性的度量。 这正是Iz称为“转动惯量”的来由。
应用刚体定轴转动的微分方程(2)可以对物理摆的运动规律、旋转机械输入和输出功率同平衡转速的关系进 行研究。刚体定轴转动的另一重要研究课题是支承的动载荷。动载荷是与刚体转动角速度有关的载荷。当刚体既 满足静平衡——刚体的重心在转动轴上,又满足动平衡——旋转轴是惯性主轴时,支承才不受动载荷的作用。这 个结论在工程上有重要价值(见动平衡)。
刚体平面运动是机器部件一种常见的运动形态,例如曲柄连杆、滚轮等的运动。过刚体质心作刚体平面运动 的固定平面,此平面在刚体上截得一平面图形。此图形在上述固定平面上的运动完全刻画了刚体的平面运动。由 运动学可知,刚体的平面运动可由质心C在平面上相对固定坐标系Oxy的运动和刚体绕过C并同固定平面垂直的轴 Cz的转动合成(图2)。刚体的旋转轴Cz虽然在空间中变动,但它的方向不变,相对刚体的位置也不变,因而刚 体绕Cz轴旋转的转动惯量是常值Iσ,绕Cz轴的动量矩为
刚体一般运动是对惯性坐标系而言的。设C为刚体的质心,Cxyz为同刚体固联的质心惯性主轴坐标系。因刚 体一般运动可分解为平动和绕质心的转动,故应用质心运动定理和对质心的动量矩定理,可以立即建立刚体一般 运动的微分方程组:
以上论及的只是单刚体动力学。由于现代科学技术的发展,多刚体系统动力学的研究也正在开展中(见多刚 体系统)。
参考文献
1、词条作者:陈滨.《中国大百科全书》74卷(第一版)力学词条:刚体动力学:中国大百科全书出版社, 1987 :168-170页.
谢谢观看
逐项类比。同质点质量m对应的量是Iz。m是质点运动时惯性的度量;Iz则是刚体定轴转动时转动惯性的度量。 这正是Iz称为“转动惯量”的来由。
应用刚体定轴转动的微分方程(2)可以对物理摆的运动规律、旋转机械输入和输出功率同平衡转速的关系进 行研究。刚体定轴转动的另一重要研究课题是支承的动载荷。动载荷是与刚体转动角速度有关的载荷。当刚体既 满足静平衡——刚体的重心在转动轴上,又满足动平衡——旋转轴是惯性主轴时,支承才不受动载荷的作用。这 个结论在工程上有重要价值(见动平衡)。
刚体平面运动是机器部件一种常见的运动形态,例如曲柄连杆、滚轮等的运动。过刚体质心作刚体平面运动 的固定平面,此平面在刚体上截得一平面图形。此图形在上述固定平面上的运动完全刻画了刚体的平面运动。由 运动学可知,刚体的平面运动可由质心C在平面上相对固定坐标系Oxy的运动和刚体绕过C并同固定平面垂直的轴 Cz的转动合成(图2)。刚体的旋转轴Cz虽然在空间中变动,但它的方向不变,相对刚体的位置也不变,因而刚 体绕Cz轴旋转的转动惯量是常值Iσ,绕Cz轴的动量矩为
刚体一般运动是对惯性坐标系而言的。设C为刚体的质心,Cxyz为同刚体固联的质心惯性主轴坐标系。因刚 体一般运动可分解为平动和绕质心的转动,故应用质心运动定理和对质心的动量矩定理,可以立即建立刚体一般 运动的微分方程组:
《刚体动力学 》课件

牛顿第二定律
物体的加速度与作用在物 体上的力成正比,与物体 的质量成反比。
牛顿第三定律
对于任何两个相互作用的 物体,作用力和反作用力 总是大小相等,方向相反 ,作用在同一条直线上。
刚体的平动
刚体的平动是指刚体在空间中 的位置随时间的变化而变化, 而刚体的形状和大小保持不变
的运动。
刚体的平动具有三个自由度 ,即三个方向的平动。
05
刚体的动力学方程
刚体的动力学方程
牛顿第二定律
刚体的加速度与作用力成正比,与刚体质量 成反比。
刚体的转动定律
刚体的角加速度与作用力矩成正比,与刚体 对转动轴的转动惯量成反比。
刚体的动量方程
刚体的动量变化率等于作用力对时间的积分 。
刚体的自由度与约束
自由度
描述刚体运动的独立变量,如平动自由度和转动 自由度。
约束
限制刚体运动的条件,如固定约束、滑动约束等 。
约束方程
描述刚体运动受约束的数学表达式。
刚体的动力学方程的求解方法
解析法
通过代数运算求解动力学方程,适用于简单问 题。
数值法
通过迭代逼近求解动力学方程,适用于复杂问 题。
近似法
通过近似模型求解动力学方程,适用于实际问题。
06
刚体动力学中的问题与实例 分析
人工智能和机器学习的发展将为刚体 动力学的研究提供新的思路和方法, 有助于解决复杂动力学问题。
感谢您的观看
THANKS
船舶工程
在船舶工程中,刚体动力学 用于研究船舶的航行稳定性 、推进效率以及船舶结构的 安全性等。
兵器科学与技术
在兵器科学与技术领域,刚 体动力学用于研究弹药的发 射动力学、火炮的射击精度 和稳定性等。
《刚体动力学 》课件

常用方法:拉格朗日方程、 哈密顿原理等
注意事项:需要熟练掌握 数学基础
数值法
定义:数值法 是一种通过数 值计算求解刚 体动力学问题
的方法
特点:精度高、 计算速度快、 适用于复杂问
题
常用算法:有 限元法、有限 差分法、有限
体积法等
应用领域:航 空航天、机械 制造、土木工
程等领域
近似法
近似法的定义和特点
刚体转动实例
风力发电机:利用风力驱动风车叶片旋转,通过变速器和齿轮装置将动力传递至发电机,最终 转化为电能。
搅拌机:利用电动机驱动搅拌器旋转,对物料进行搅拌、混合和输送等操作。
洗衣机:利用电动机驱动洗衣机的滚筒旋转,通过水和洗涤剂的作用将衣物清洗干净。
旋转木马:利用电动机驱动旋转木马旋转,使人们能够欣赏到各种美丽的景观和音乐。
物理教师
需要了解刚体 动力学知识的
相关人员
Part Three
刚体动力学概述
刚体定义
刚体:在运动过程中,其内部任意两点间的距离始终保持不变的物体 刚体运动:刚体的运动是相对于其他物体的位置和姿态的变化
刚体动力学:研究刚体运动过程中所受到的力、力矩以及运动状态变化规律的科学
刚体动力学的研究对象:各种工程实际中的刚体,如机械零件、构件、机构等
动能定理
定义:动能定理是描述物体动能变化的定理 表达式:动能定理的表达式为ΔE=W 应用范围:动能定理适用于一切具有动能变化的物理系统 注意事项:在使用动能定理时需要注意初始和终了状态的动能
Part Five
刚体动力学应用实 例
刚体平动实例
刚体平动定义 刚体平动应用实例1 刚体平动应用实例2 刚体平动应用实例3
刚体动力学在各领 域的应用
《刚体动力学》课件

动量定理公式:Ft=mv
单击此处输入你的项正文,文字是您思想的提炼。
应用场景:碰撞、打击、爆炸等 角动量定理 角动量定理
定义:角动量是物体转动惯量和角速度的乘积 单击此处输入你的项正文,文字是您思想的提炼。
角动量定理公式:L=Iω
单击此处输入你的项正文,文字是您思想的提炼。
应用场景:行星运动、陀螺仪等
刚体的滚动和滑动摩擦
刚体滚动:刚体在平面内绕固定点转动,滚动摩擦力产生的原因和影响
刚体滑动摩擦:刚体在平面内滑动时产生的摩擦力,滑动摩擦系数与接触面材料和粗糙度等因素 的关系
刚体滚动和滑动摩擦的应用实例:例如,汽车轮胎与地面之间的滚动摩擦力,以及机械零件之间 的滑动摩擦力等
刚体滚动和滑动摩擦的实验研究:通过实验研究刚体滚动和滑动摩擦力的影响因素和规律,为实 际应用提供理论支持
04
刚体动力学基本原理
牛顿第二定律
定义:物体加速度的大小跟作用 力成正比,跟物体的质量成反比
应用:解释物体运动状态变化的 原因
添加标题
添加标题
公式:F=ma
添加标题
添加标题
注意事项:只适用于宏观低速运 动的物体
动量定理和角动量定理
定义:动量是物体质量与速度的乘积
单击此处输入你的项正文,文字是您思想的提炼。
刚体动力学研究内容
刚体的定义和性质 刚体运动的基本形式 刚体动力学的基本方程 刚体动力学的研究方法
刚体动力学发展历程
早期发展:古代力学对刚体的研究 经典力学时期:牛顿、伽利略等经典力学大师对刚体动力学的研究 弹性力学时期:弹性力学的发展对刚体动力学的影响 现代发展:计算机技术和数值模拟方法在刚体动力学中的应用
课程内容:刚体 的平动、转动、 碰撞等动力、力学等相关专 业的本科生和研 究生
单击此处输入你的项正文,文字是您思想的提炼。
应用场景:碰撞、打击、爆炸等 角动量定理 角动量定理
定义:角动量是物体转动惯量和角速度的乘积 单击此处输入你的项正文,文字是您思想的提炼。
角动量定理公式:L=Iω
单击此处输入你的项正文,文字是您思想的提炼。
应用场景:行星运动、陀螺仪等
刚体的滚动和滑动摩擦
刚体滚动:刚体在平面内绕固定点转动,滚动摩擦力产生的原因和影响
刚体滑动摩擦:刚体在平面内滑动时产生的摩擦力,滑动摩擦系数与接触面材料和粗糙度等因素 的关系
刚体滚动和滑动摩擦的应用实例:例如,汽车轮胎与地面之间的滚动摩擦力,以及机械零件之间 的滑动摩擦力等
刚体滚动和滑动摩擦的实验研究:通过实验研究刚体滚动和滑动摩擦力的影响因素和规律,为实 际应用提供理论支持
04
刚体动力学基本原理
牛顿第二定律
定义:物体加速度的大小跟作用 力成正比,跟物体的质量成反比
应用:解释物体运动状态变化的 原因
添加标题
添加标题
公式:F=ma
添加标题
添加标题
注意事项:只适用于宏观低速运 动的物体
动量定理和角动量定理
定义:动量是物体质量与速度的乘积
单击此处输入你的项正文,文字是您思想的提炼。
刚体动力学研究内容
刚体的定义和性质 刚体运动的基本形式 刚体动力学的基本方程 刚体动力学的研究方法
刚体动力学发展历程
早期发展:古代力学对刚体的研究 经典力学时期:牛顿、伽利略等经典力学大师对刚体动力学的研究 弹性力学时期:弹性力学的发展对刚体动力学的影响 现代发展:计算机技术和数值模拟方法在刚体动力学中的应用
课程内容:刚体 的平动、转动、 碰撞等动力、力学等相关专 业的本科生和研 究生
刚体的一般运动的运动学和与动力学动力学

加速度
刚体在一段时间内速度的 变化率,表示刚体速度变 化的快慢。
刚体的平动
平动
刚体在运动过程中,其上任意两 点都沿着同一直线作等距离的移 动。
平动特点
刚体上各点的速度和加速度都相 等,与参考系的选择无关。
刚体的转动
转动
刚体绕某一定点做圆周运动。
转动特点
刚体上各点的速度和加速度大小相等,方向不同。
阻尼振动
阻尼振动是指由于阻力作用而使振动系统受到损 耗的振动。
受迫振动
受迫振动是指在外力作用下产生的振动。
刚体的稳定性和平衡性
静态平衡
刚体在静止状态下,如果受到微小扰 动后能恢复到原来的平衡位置,则称 该平衡为静态平衡。
动态平衡
刚体在运动状态下,如果受到微小扰 动后能保持原来的运动状态不变,则 称该平衡为动态平衡。
感谢观看
THANKS
刚体的平衡
总结词
刚体的平衡是指刚体在运动或静止时,其上各点的加速度均为零的状态。
详细描述
刚体的平衡可以通过力的合成和分解来分析。当刚体处于平衡状态时,其上各点的加速度均为零,即合外力为零。 根据力的平移定理,可以将力的作用点平移至刚体的质心,从而将刚体平衡问题转化为质点平衡问题。同时,根 据力矩平衡条件,可以得出刚体平衡的条件为合外力矩为零。
力矩和角速度
总结词
力矩是力和力臂的乘积,它描述了力对刚体转动的效应;角速度是描述刚体转动快慢的 物理量。
详细描述
力矩是力和力臂的乘积,其方向垂直于力和力臂所在的平面。力矩可以改变刚体的转动 状态,包括转动方向和角速度大小。角速度是描述刚体绕固定点转动的快慢的物理量, 其方向与转动方向相同。公式表示为M=FL,其中M表示力矩,F表示力,L表示力臂。
刚体运动的动力学方程

一、已知刚体的转动规律,求作用于刚体上的外力 例12-4 二、已知作用于刚体上的力矩,求转动规律 例12-5 例12-6
第四节 动静法
节
一、质点的达朗伯原理
二、质点系的达朗伯原理
平面任意力系的平衡条件: (1)力系中各力在X 轴和Y轴上投影的代数和为零; (2)力系中各力对平面内任一点的力矩的代数和为零
第二节 刚体简单运动的动力学方程
一、平动刚体的动力学方程
平动刚体的动力学方程 :
刚体的质心加速度
二、刚体定轴转动的动力学方程
二、刚体定轴转动的动力学方程
刚体定轴转动的转动定律: 刚体绕定轴转动时,作用于刚体 上的合外力矩等于刚体对转轴的转动惯量与角加速度的乘积。
上式反映了刚体的转动状态变化与其所受的外力矩之间的关系, 称为刚体定轴转动动力学基本方程。
成是车轮随同车厢的平动和
相对车厢的转动的合成.
车轮对于静系的平面运动 车厢(动系Ax y ) 相对静系的平动
(绝对运动) (牵连运动)
车轮相对车厢(动系Ax y)的转动
(相对运动)
所以,平面运动随基点平动的运动规律与基点的选择有关, 而绕基点转动的规律与基点选取无关.(即在同一瞬间,图 形绕任一基点转动的 ,都是相同的)基点的选取是任意的。 (通常选取运动情况已知的点作为基点)
动静法的应用:刚体的平动和绕定轴转动 1、刚体的平动
例题
;
惯性力系的主矢等于刚体质量和质心加速度的乘积,方向和加 速度方向相反。 惯性力系的主矩等于转动惯量和角加速度的乘积,但方向和刚 体转动的角加速度相反。
练习
(m1>m2)
第五节 点的复合运动分析
有关概念
两种参考系——动参考系和静参考系 三种运动——绝对运动、相对运动和牵连运动 三种速度——绝对速度、相对速度和牵连速度
高中物理竞赛辅导之刚体动力学

其轴的转动惯量与圆盘的相同。
球体绕其直径的转动惯量
将均质球体分割成一系
列彼此平行且都与对称轴垂
直得圆盘,则有
JO
1 dm r 2 2
1 2
r 2dz
r
2
R 1( R2 z2 )2 dz
R 2
8 R5 2 mR2
15
5
z
r
z
dz R
om
JO
2 mR2 5
设任意物体绕某固定轴O的转动惯量为J,绕 通过质心而平行于轴O的转动惯量为Jc,则有
0 t 2 gt R
达到纯滚动时有: vc R
解得作纯滚动经历的时间:
t v0 2g h R
3 g
3 g
2)达到纯滚动时经历的距离:
x
v0t
1 2
at 2
v02
3 g
1 2
g
v02
3g 2
5v02
5h R
18 g 9
例 5 质量为 mA 的物体 A 静止在光滑水平面上,
和一质量不计的绳索相连接,绳索跨过一半径为 R、质
J 1 ml2 3
球壳: 转轴沿直径
J 2 mr2 3
竿
子
长
些
还
是
短
些
较
安
飞轮的质量为什么
全
大都分布于外轮缘?
?
例1 一长为 l 质量为 m 匀质细杆竖直放置,其
下端与一固定铰链 O 相接,并可绕其转动. 由于此竖
直放置的细杆处于非稳定平衡状态,当其受到微小扰
动时,细杆将在重力作用下由静止开始绕铰链O 转动.
压力N 和刹车片与圆盘间的摩擦系数均已被实验测出.试
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对轴的力矩 M z =−mg l sin ⇒ V =− mg l cos
1 2 机械能守恒 E = J zz ˙ −mgl cos =const. 2 1 2 − cos = h =const. d 2 2 0=mgl / J zz , = 0 t , = 令 d 下面画出相图定性说明(可用椭圆函数定量求解 , 感兴趣可查参考书)
e 故运动微分方程也可表示为 J zz = ¨ Mz
附:关于 Jzz=JZZ 的证明 . 证明:坐标变换关系为 Z=z, X=xcosφ+ysinφ, Y=-xsinφ+ycosφ 可以证明 dXdYdZ=dxdydz, X2+Y2=x2+y2
X , Y , Z = x cos y sin ,− x sin y cos , z ≡ x , y ,z
d 1 1 2 2 e m t v C J ZZ ˙ =∑ n F n ⋅v n dt 2 2
蚂蚁位置与 x 轴夹角 θ. 设固连于圆盘的直线逆时针转过角 φ ,
˙ ⇒ ˙ u/ R ⇒ u = R − = ˙ ˙ −
质点系所受外力只有 mg 不过轴心 O ,可应用角动量定理
d a [ J zz ˙ L z ]=−mg R sin dt
˙ 其中蚂蚁对 O 轴的角动量 Lza = mR2
O
-3π
-2π -π π 2π 3π
φ
φ C
特点 : (1) 2 =
(2) h<-1 时无解 ;h=-1 时稳定平衡点 2nπ
(3) -1<h<1 时对应为有限周期摆动(红线) (5) h>1 单向转动(黑粗线) (4)h=1 一种是不稳定点 2nπ+π; 一种是摆向最高点 , 周期∞(蓝线) (6) 相曲线走向如箭头所示
z
y r θ x
m0g mg
FB
这些力对 z 轴的力矩为零,利用复合质点系对 z 轴的角动量 定理,有
d a a ˙ ˙ [ J zz L z ]=0 ⇒ J zz L z = const. dt
这些力对复合质点系也不做功,利用复合质点系动能定理, 有
d 1 1 ˙ 2 T a = 0 ⇒ J zz ˙ 2T a =const. J zz dt 2 2
u 8g 讨论:当 2 时 , 蚂蚁可以爬过最高点 . R R m0 / m2
m0 / m 2 u u 8g 当 2 时 , 蚂蚁可以爬到 arccos 1 − 4 gR R R m0 / m2
2
2
[
2
]
思考题:请问以下做法是否可以?为什么? 应用动能定理
d 1 2 a ˙ J zz T =−mg R sin ˙ dt 2
J ZZ =∭ dXdYdZ X Y X , Y , Z =∭ dxdydz x y x , y , z = J zz
2 2 2 2
【推论】定轴转动的刚体满足动能定理
d 1 2 e J ZZ ˙ =M Z ˙ dt 2
W e d W i 证明:动能定理告诉我们 dT =d
W i = 0 刚体内力不做功 , 故 d 1 2 T =∭ [ v r ] dV 1 2 2 T = J ZZ ˙ 2 2 2
v = ˙ X Y
பைடு நூலகம்
W e d e d r n =∑ F n ⋅ =∑ F ne ⋅× r n =∑ ⋅ r n× F ne dt dt e ⋅ r × F e = ( 证毕 ) = ˙ ∑Z ˙ M
if M z = M z , then ∃ V =−∫ M d z
⇒d
[
1 1 2 2 ⇒ E = J J zz V = 0 ˙ zz ˙ V = const.(证毕) 2 2
]
例题 1 物理摆 . 讨论重力场中绕光滑固定水平轴摆动的刚体运动行为 解:建立图示本征坐标系 Oxyz. 记转轴到质心连线 OC 与 x 轴夹角为 φ, |OC|=l. 首先可以证明均匀重力场对刚体产生的合力矩 等价于作用在质心的总重力产生的力矩 . O φl C x mg y
n n Z
注:对于定轴转动刚体,由于 Jzz=JZZ 是常数,故动能定理 也可表示为
d 1 2 e J zz ˙ =Mz ˙ dt 2
注:对于定轴转动刚体动能定理与角动量定理不独立
【推论】如果 Mz 是仅仅含 φ 的函数,则机械能守恒 .
证明:
d 1 1 2 2 J zz J zz ˙ =Mz ˙ ⇒d ˙ =M z d dt 2 2
因此,根据初始状态可写出复合质点系的运动微分方程
1 ˙ m r 2 = ˙ 1 m0 L 2 0 m L 0 m0 L2 3 3 2
1 1 1 L 2 2 2 2 2 ˙ 2 1 m r ˙ = 1 1 m0 L 2 2 m0 L m 0 ˙ r 0 0 2 3 2 2 3 2 2
1 1 2 2 2 ˙ J = m0 R T = mR , zz 2 2
a
[
]
˙ ⇒ ˙ u/ R u = R − = ˙ ˙ −
1 u 1 2 2 2 ˙ ˙ = mg R d cos ⇒⋯⇒ d m0 R − mR 4 R 2
1 1 2 ˙ m m R d = mg d cos 这完全不同于角动量定理得到的方程 0 2 2 到底哪个结果是对的呢?
x x
设 Oxyz 是本征坐标系 , Cxyz 是质心系 , CXYZ 是刚体固连系 , 夹角 φ.
【定理】刚体平面运动满足
mt r ¨ C = F , ∩ z =0
J ZZ = ¨ MZ
e
证明:我们可以把截面放在 Oxy 面内,故 z≡0. 利用质心运动定理,即有 m t r ¨ C= F
e
a z 2
a
[
]
1 1 2 2 2 2 ˙ 质点 m 动能 T = m v = m r ˙ r 2 2 L 2 2 2 刚性杆惯量系数 J zz =∫ x y dV =∫0 r m0 / L dr = 1 m0 L 2 3
˙ 质点 m 角动量 L = m r
( 请结合右上图思考 )
●
定轴转动刚体与其它质点组成的复合质点系
设其他质点对 z 轴角动量为 L
a z
, 动能记为 T
a
z (Z)
【推论】复合质点系对 z 轴角动量定理为
d a e [ J zz ˙ L z ]= M z dt
作用在复合质点系 上的外力合力矩
ω A x φ X
圆盘的惯量系数 J zz =∫ x y dV =∫0
2 2
R
1 2 r m0 / R 2 r dr = m 0 R 2
2 2
于是可以得到
1 ¨ m0 m R =− mg sin 2
⇒
1 ¨ =− ˙ ˙ 1 1 m0m R d ˙ 2 = mg d cos m0m R mg sin ⇒ 2 2 2
第六章
刚体动力学 I
— 定轴转动和平面平行运动
§6.1 定轴转动
●
运动微分方程
在轴上取基点 A ,建立本征参考系 Axyz 以及与刚体固连的坐标系 AXYZ. 使得 z(Z) 恰好为转动轴 . 自由度: DOF=1, 用转角 φ 表示 , 只需要 1 个运动微分方程
z (Z)
ω A
Y y X
刚体是特殊的质点系,满足对固定轴的 角动量定理 dL Z dL z e e
R
C , ⋅ r C ×a C 第二步用力矩定义及质心运动定理证明 M ZC = M z1− mt z r' r'C d , , , r C × vC = r ˙ C × vC r C ×aC 第三步 O1 dt d , , 2 , , z⋅ r C × aC = r C ˙ v C = 0 ˙ z ×r C ⇒ z⋅ r C ×v C =r ,C2 ˙ 瞬心 dt
Y y
证明:这是质点系对 z 轴角动量定理的自然推论 .
【推论】复合质点系动能定理为
d 1 2 a e i J zz ˙ T = w w dt 2
[
]
注:复合质点系的动能 定理与角动量定理独立
证明:这是质点系动能 定理的自然推论 .
作用在复合质点系 的内外力功率总和
例题 2 水平匀质细管长为 L ,质量为 m0, 能绕过管一端并与其固连的竖直轴转动; FA 轴质量可忽,轴承处光滑;管内放质量 为 m 的小球;初始时,管的角速度为 ω0 , 小球位于管的中点、相对管的速度为零; 设小球与管壁间无摩擦;试求小球运动 规律以及出口时速度 . 解:取本征坐标系 Oxyz, 并以极坐标 {r,θ} 表示小球的位置 . 系统所受外力如图所示,杠的重力 m0g , 小球重力 mg ,以及轴的约束力 FA 和 FB.
初始态 :
˙ 0 = u / R 0 = 0, ˙ 0 = 0 ⇒
2 2 u u 4 g 1− cos u u 4 g 1 − cos ˙ ˙ ⇒ = − = − − ⇒⋯⇒ = − ˙ 2 2 R R m0 / m2 R R m0 / m 2 R R
if r c =const. ⇒ r ˙ C =× r C = v C
, , ,
第四步
J ZZ = ¨ M Z ⇒ J zz = ¨ M z , 即对瞬心角动量定理成立 .( 证毕 )
C
C