与冲激函数或阶跃函数的卷积

合集下载

与冲激函数或阶跃函数的卷积

与冲激函数或阶跃函数的卷积

系统并联
3、结合律
[ f1(t) f2 (t)] f3(t) f1(t) [ f2 (t) f3(t)]
f1(t)
f1(t)*f2(t)
h2 (t)=f2(t)
h3 (t)=f3(t)
y1(t) f1(t) h(t)= =
y1(t)
f2(t)*f3(t)
系统级联或串联
二 卷积的微分和积分
推广:任意两函数卷积
若:s(t) f1(t) * f2 (t)
则:f1(t t1) * f2 (t t2 ) s(t t1 t2 ) 证明:f1(t t1) * f2 (t t2 )
f1(t)* (t t1)* f2 (t)* (t t2 ) f1(t) * f2 (t) * (t t1) * (t t2 ) s(t) * (t t1 t2 )
t
f2 () * 1()d
类似地:对高阶导数和积分
f (t) f1(t) * f2(t)
则:
f
(i ) (t )

f1( j) (t) *
f
(i 2
j
)
(t)
其中,I,j取正整数时,为导数阶次 若I,j取负整数时,为重积分次数,如
f (t)

f1(1) (t) *

e(t)

lim
t1 0
e(t1)t1
t1
(t

t1)
卷积的物理含义图解:
k (t t1)
kh(t t1)
A
e(t1)t1 (t t1)
A
e(t1)t1h(t t1)
LTI系统的性质
e(t)为激励系统的零状态响应

阶跃响应冲击响应与卷积积分法

阶跃响应冲击响应与卷积积分法

补充第一章 阶跃响应冲击响应与卷积积分法电路中除电阻元件外,还包括有电容和电感等动态元件,如此的电路称为动态电路。

在动态电路分析中,鼓励和响应都表示为时刻t 的函数,采纳微分方程求解电路和分析电路的方式,称为时域分析法。

本章要紧讨论一阶电路的阶跃响应、冲激响应、任意输入的零状态响应,和二阶电路在恒定输入下的零状态响应。

§1-1 阶跃响应和冲激响应电路的输入除恒定不变的常量(即恒定输入或直流输入)和按正弦规律变更的交流量(即正弦输入)之外,常见的还有另外两种奇异函数,即阶跃函数和冲激函数。

本节就来讨论这两种函数的概念、性质及作用于线性动态电路时所引发的响应。

单位阶跃函数(unit step function )用()t ε来表示,它概念为 0(0)()1(0)t t t ε<⎧=⎨>⎩ 波形如图1-1(a )所示,在0t =处,()t ε由0跃变至1。

若是单位阶跃函数的跃变点不是在0t =处,而是在0t t =处,波形如图1-1(b )所示,那么称它为延迟的单位阶跃函数,用0()t t ε-表示,即0000()()1()t t t t t t ε<⎧-=⎨>⎩图1-1单位阶跃函数与任一常量K 的乘积()K t ε仍是一个阶跃函数,现在阶跃的幅度为K 。

单位阶跃函数与任一函数()f t 的乘积将只保留该函数在阶跃点以后的值,而使阶跃点以前的值变成零,即有0000(0)()()()(0)0()()()()()t f t t f t t t t f t t t f t t t εε<⎧=⎨>⎩<⎧-=⎨>⎩因此,单位阶跃函数能够用来“起始”一个任意函数()f t ,这给函数的表示带来了方便。

例如关于线性函数()(f t Kt K =为常数),由图1-2(a)、(b)、(c)能够清楚地看出()f t 、()()f t t ε及0()()f t t t ε-的不同。

三、与冲激函数或阶跃函数的卷积.ppt

三、与冲激函数或阶跃函数的卷积.ppt

间,并称此时刻为“起始时刻”;而用0+表示激励接入之
后的瞬间,并称此时刻为“初始时刻”。
第2章 连续系统的时域分析
系统的起始条件就是系统响应及其各阶导函数在0-时刻的 函数值,可用{y(i)(0-), i=0,1,…,n-1} 表示;而系统的初始条件就 是 系 统 响 应 及 其 各 阶 导 函 数 在 0+ 时 刻 的 函 数 值 , 用 {y(i)(0+),i=0,1,:,n-1}表示。一般情况下,我们求的系统响应是指 系统接入激励以后的响应,即0+≤t<+∞。所以,应当利用系统 的初始条件求齐次解中的各个系数。
c1c1
c2 c2
2
2
1
1
c1=1, c2=-2 所以,全响应y(t)为
y(t) e-t 2e-2t t 2 2t 2
(t≥0)
第2章 连续系统的时域分析
2.2起始点的跳变——从0-到0+状态的转换
例:建立电流 i t 的微分方程并求解 i t 在 t 0
时的变化。
2 S R1 1
第2章 连续系统的时域分析
【例】描述某线性时不变系统的方程为
d2
d
d
dt 2
y(t) 3 dt
y(t) 2 y(t)
dt
f (t) 2 f (t)
若系统激励f(t)=t2,系统初始条件为y(0+)=1, y′(0+)=1。试求系统 全解。
【解】
特征方程为
d2
d
dt 2
y(t) 3 dt
y(t) 2 y(t)
第2章 连续系统的时域分析
•根据实际系统的物理特性列写系统的微分方程。 •对于电路系统,主要是根据元件特性约束和网 络拓扑约束列写系统的微分方程。

三、与冲激函数或阶跃函数的卷积.ppt

三、与冲激函数或阶跃函数的卷积.ppt
R1 i t
C
L
iL 0
et
vc 0
R2
第2章 连续系统的时域分析
(1)零输入响应:此时令e(t)=0,系统在 t 0 时刻的等效
电路如下图所示.电路将在 作.
vc
0
和iL
0
的作用下工
R1
C
L
iL 0
vc 0
R2
第2章 连续系统的时域分析
根据上图系统满足微分方程
d2 dt 2
izi
0
2 3 2 0
第2章 连续系统的时域分析 解得特征根为
1 1, 2 2
所以,齐次解为
yc (t) c1e-t c2e-2t
由于f(t)=t2,因此,设特解为
yp (t) p2t2 p1t p0
将上式和f(t)=t2代入原系统微分方程,有
2 p2t 2 (2 p1 6 p2 )t (2 p0 3 p1 2 p2 ) 2t 2 2t
dt
给定0-状态起始值为r 0- ,确定它的0+状态r 0+ 。
第2章 连续系统的时域分析
设: d r t a ' t b t cu t (#)
dt
积分一次 0 t 0 得
r t a t but (*)
将(#)式和(*)式代入原方程
a ' t b t cu t 3a t bu t 3 ' t
由于电容两端电压和电感中的电流不会发生突变,
因而有:
i 0+
=
1 R1
e 0+
vc
0+
1 1
4
6 5
14 5
A
d dt
i

§2.2++冲激响应和阶跃响应及卷积(1)

§2.2++冲激响应和阶跃响应及卷积(1)
第 4页
冲激响应求解举例1 冲激响应求解举例
d2 y(t)
求系统 dt 2 解:将f(t)→δ(t), → ,
+4
d y(t) d f (t) + 3y(t) = + 2 f (t) dt dt
的冲激响应。 的冲激响应。
y(t)→h(t) →
d2 h(t ) d h(t ) dδ (t ) +4 + 3h(t ) = + 2δ (t ) 2 dt dt dt
∫0

第 13 页
§2.6 卷积积分
• 信号的时域分解与卷积积分 信号的时域分解与 • 卷积的图解法
第 14 页
一、信号的时域分解与卷积积分
1.信号的时域分解 信号的时域分解
• 预备知识
f1(t)
问 f1(t) = ? p(t) 直观看出
p(t)
1 ∆
A
t

f1 (t) = A ∆ p(t)

∆ 2
δ (tห้องสมุดไป่ตู้)
h(t )
T {0}
第 2页
2.系统冲激响应的求解
•冲激响应的数学模型
对于LTI系统,可以用一n阶微分方程 阶微分方程表示 对于LTI系统,可以用一 阶微分方程表示 LTI系统
dn y(t) dt n bm + an−1 dn−1 y(t) d t n−1 +L+ a1 d y(t) + a0 y(t) = dt d f (t) + b0 f (t) dt
h′ (t) = C1e−t + C2e−3t δ (t) + − C1e−t − 3C2e−3t ε (t)
−t −3t 1 2 1 2

matlab中阶跃函数算卷积,与冲激函数、阶跃函数的卷积.ppt

matlab中阶跃函数算卷积,与冲激函数、阶跃函数的卷积.ppt

matlab中阶跃函数算卷积,与冲激函数、阶跃函数的卷积.ppt 与冲激函数、阶跃函数的卷积信号与系统总 复 习 第⼀章 绪论 1、信号的概念 2、分类:典型的连续时间信号: 指数、正弦、复指数、抽样、钟形、δ(t), u(t), eat,sin(ω0t), Sa(kt) 3、信号的运算: 移位、反褶、尺度变换、微分运算、相加、相乘 4、奇异信号: 单位斜变、 阶跃、冲激(特性)、冲击偶 5、信号的分解: 脉冲分量、 6、系统模型及其分类 7、线性是不变系统的基本特性: 线性(叠加性、均匀性)、时不变特性、微分特性、因果特性 8、系统分析⽅法: 输⼊输出描述法、状态变量描述法 两对关系式 第⼀章 绪论 系统分析过程 (⼀)冲激响应 h (t) 1)定 义 系统在单位冲激信号δ(t) 的激励下产⽣的零状态响应。

2)求 解 形式与齐次解相同 第⼆章 第三章 傅⽴叶变换 周期信号的傅⽴叶级数 三⾓函数形式、指数形式 典型信号的频谱:Gτ(t),δ(t), u(t), Sa(t) 傅⽴叶变换 ⾮周期信号的傅⽴叶变换 傅⽴叶变换的性质 对称性,线性、尺度变换特性、时移性(符号相同),频移性(符号相反) 奇偶虚实性、微分特性、积分特性 卷积定理 周期信号的傅⽴叶变换——与单脉冲 信号的傅⽴叶级数的系数的关系 抽样信号的傅⽴叶变换——与抽样脉冲序列的傅⽒变换及原连续信号的 傅⽴叶变换的关系 抽样定理 时域抽样定理、频域抽样定理——注意2倍关系!! 第三章 傅⽴叶变换 周期信号的傅⽴叶级数 指数形式傅⽴叶级数的傅⾥叶系数 傅⽴叶变换特性主要内容 第三章 典型周期信号傅⽴叶变换 周期单位冲激序列的傅⾥叶变换 周期矩形脉冲序列的傅⽒变换 (⼆) 抽样信号的傅⽴叶变换 1、 矩形脉冲抽样 即 p(t) 为周期矩形脉冲 2、 单位冲激抽样 即 p(t) 为周期冲激脉冲 总结 周期信号的傅⽴叶变换 第四章 拉普拉斯变换、 连续时间系统的s域分析 定义: 单边拉⽒变换、双边、收敛域、常⽤函数的拉⽒变换 拉⽒变换的性质 线性、原函数微分、原函数积分、时域平移、s域平移、尺度变换、初值、终值 卷积特性 拉⽒逆变换 部分分式展开法(求系数) 系统函数H(s) 定义(两种定义⽅式) 求解(依据两种定义⽅式) 第四章 拉普拉斯变换、 连续时间系统的s域分析 三.⼀些常⽤函数的拉⽒变换 4.tnu(t) 第四章 因果系统的s域判决条件: 稳定系统:H(s)的全部极点位于s平⾯左半平⾯(不包括虚轴); 不稳定系统:H(s)的极点落于s平⾯的右半平⾯,或在虚轴上具有⼆阶以上的极点; 临界稳定系统: H(s)的极点落于s平⾯的虚轴上,且只有⼀阶极点。

卷积的性质

卷积的性质

第 17 页
阶跃响应的定义
(t )
初始状态为0 LTI
阶跃响应g(t)
第 18 页
冲激与阶跃响应之间的关系
线性时不变系统满足微、积分特性
(t ) (t ) d t
t
g (t ) h( ) d

t
d g (t ) , h(t ) dt
第 19 页
冲激响应举例
LTI系统分析概述
系统分析研究的主要问题:对给定的具体系统,求出它对给定激励的响 应。具体地说:系统分析就是建立表征系统的数学方程并求出解答。
输入输出法(外部法) 系统的分析方法:
状态变量法(内部法)(chp.8)
时域分析(chp.2,chp.3) 外部法 变换域法 离散系统—频域法(4)和z域法(6) 系统特性:系统函数(chp.7)

h ' ( 0 ) h ' ( 0 ) a 1
代入h(t),确定系数C1,C2,得
h(t ) (e e ) (t )
2t 3t
第 21 页
四、卷积积分
1
2 3
卷积概念
卷积图解法 Matlab求卷积
第 22 页
1.卷积概念
卷积概念视频
第 23 页
已知定义在区间( – ∞,∞)上的两个函数f1(t)和f2(t), 则定义积分
第 1页
连续系统—频域法(4)和复频域法(5)
求解的基本思路:
把零输入响应和零状态响应分开求。 把复杂信号分解为众多基本信号之和,根据线性系统的可加性:多个基本 信号作用于线性系统所引起的响应等于各个基本信号所引起的响应之和。
采用的数学工具: • 时 域: 卷积积分与卷积和 • 频 域: 傅里叶变换 • 复频域:拉普拉斯变换与Z变换

卷积代数运算

卷积代数运算


f 2 ( ) f1 (t ) d f 2 t f1 t
•卷积结果与交换两函数的次序无关。 •一般选比较简单函数进行反转和平移。

第 3页
f1 (t ) [ f 2 (t ) f 3 (t )] f1 (t ) f 2 (t ) f1 (t ) f 3 (t )
系统级联,框图表示:
f (t ) h1 ( t ) h2 ( t )
y (t )
系统级联
f ( t ) h1 ( t )
f (t )
h( t )
y (t )
f ( t ) h1 ( t ) h2 ( t )
ht h1 (t ) h2 (t )
结论:1.子系统级联时,总的冲激响应等于子系 统冲激响应的卷积。 2.子系统级联时,可以交换子系统响应次序。
2.分配律
f1 (t ) [ f 2 (t ) f 3 (t )] f1 (t ) f 2 (t ) f1 (t ) f 3 (t )
系统并联运算
3.结合律 f (t ) f1 (t ) f 2 (t ) f (t ) [ f1 (t ) f 2 (t )]
▲ ■ 第 9页
t
t
t
卷积微分性质例1
例1:f1(t) 如图, f2(t) = e–tu(t),求f1(t)* f2(t)
f 1(t)
解: f1(t)* f2(t) = f1’(t)* f2(–1)(t) f1’(t) =δ (t) –δ (t –2)
y (t )
f (t )
ht h1 t h2 t
结论:子系统并联时,总系统的冲激响应等于 各子系统冲激响应之和。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

•两有限长序列的卷积和也是 有限长的序列
•序列长度---->序列值不为零的个数 •卷积和的序列长度=两序列长度之和-1 L=L1+L2-1
三、列表法:卷积的数值计算


h(t)
f1(n) 1 2 3 1 1 2 3 1 1 2 3
f2(n)
1 1 2 3
E(t)
1 1 2 3


四、解析法
证:
d d [ f1 (t ) * f 2 (t )] f1 f 2 t d dt dt d d f1 ( ) f 2 (t )d f1 ( ) f 2 (t )d dt d (t ) d f1 (t ) * f 2 (t ) dt
r ( n)

k n
e(k )u(k )h(n k )u(n k )
k 0
e( k ) h ( n k )
(2)任意两个序列的卷积和
f (n) f1 (n) f 2 (n)
k
f (k ) f
1

2
(n k )
满足交换律、分配率、结合律
f1 (t ) * f 2 (t ) * (t t1 ) * (t t2 ) s(t ) * (t t1 t2 ) s(t t1 t2 )
(2)与冲激偶‘(t)的卷 积
卷积的微分性质
f (t ) * ' (t )
f ' (t ) * (t ) f ' (t )
*

*
t0

t0
*
t1 t2

t1+ t2
推广:任意两函数卷积
若:s(t ) f1 (t ) * f 2 (t )
则:f1 (t t1 ) * f 2 (t t2 ) s(t t1 t2 )
证明:f1 (t t1 ) * f 2 (t t2 ) f1 (t ) * (t t1 ) * f 2 (t ) * (t t2 )
(3)性质---与(n)的卷积和 f (n) (n) (n) f (n)

k
(k ) f (n k )

k 0时, (k ) 1
f ( n)
推广:
f (n) * (n n1 ) (n n1 ) * f (n) f (n n1 )
h2 (t)=f2(t)
h3 (t)=f3(t)
=
系统级联或串联
二 卷积的微分和积分
(1)微分:两个函数相卷积后的导数等于其中一个函 数的导数与另一个函数的卷积
d df 2 (t ) df1 (t ) [ f1 (t ) * f 2 (t )] f1 (t ) * * f 2 (t ) dt dt dt
作业:2-6(1) (4),2-10, 2-12(d)
作业:2-7, 2-14(2) (3)(6), 2-17(1) 2-18(2)
§2.5卷积积分与卷积和( Convolution) 2.5.1借助于信号分解求系统零状态响应 信号分解为冲激信号之和: 求和变积分
e(t )
e(t1 )
t1
e(t ) lim

t1 0
t1
e(t )t (t t )
1 1 1

e( ) (t )d
卷积图解实例

2.4.3卷积的性质
一、卷积的代数性质
二、卷积的积分和微分
三、与冲激函数或阶跃函数的卷积 一、卷积的代数性质
卷积运算是一种代数运算,与乘法运算的某些 性质相同 1、交换律
f1 (t ) f 2 (t ) f 2 (t ) f1 (t )
2、分配律
f1 (t ) [ f 2 (t ) f3 (t )] f1 (t ) f 2 (t ) f1 (t ) f3 (t )
同理可证:左边=
df1 (t ) * f 2 (t ) dt
(2)积分:两个函数相卷积后的积分等于其中一个 函数的积分与另一个函数的卷积

t

f1 ( ) * f 2 ( )d f1 ( ) * f 2 ( ) *
t
t
f 2 ( )d f1 ( )d

类似地:对高阶导数和积分
卷积的积分性质
1 t
(3)与阶跃函数u(t)的卷积
1
f (t ) * u(t ) f (t ) * (t ) f (t ) f ( )d

应用:函数与奇异信号的卷积与下式结合紧密
f (t ) f
(1) 1
(t ) * f 2
( 1)
t d (t ) f1 t * f 2 ( )d dt
it c e r f (t ) i
i 1 n
离散系统解的形式: r (t )
ci i
i 1
n
n
r f (t )
2 系统的单位冲激响应与单位样值响应
单位冲激响应h(t):
定义: (t)
单位样值响应h(n): (n)
h(t)
(1)零状态响应响应 (2)具有零输入响应的 形式 (3)反映系统本身特性 因果性 稳定性
h(n)
(4)根据框图求h(t),h(n)
3 卷积定义 ( Convolution)
r (t ) e(t ) h(t )
3.1 3.2

e( )h(t )d
系统的零状态响应=激励与系统冲激响应的卷积
卷积的性质 与图解 与冲激函数的卷积及其推广
f (t ) * (t t0 ) (t t0 ) * f (t ) f (t t0 )
f2(k)--> f2(k)
(2)反褶:将f2(k)以纵轴为对称轴反褶,得f2(n-k)
(3)平移:将f2(-k)沿k轴自左向右平移n,得f2(n-k),
n>0时,右移n,n<0时,左移 |n|; (4)相乘求和:对给定的n,计算两波形重合部分的乘 积f1(k)f2(n-k)的各点值,取和得到该n值下的f(n);
例如:已知系统的单位样值响应 h(n) a nu(n) 激励 x(n) bnu(n) a b 求零状态响应 y ( n) ?
解:
y ( n) x ( n) * h( n)
n k 0
x(n)和h(n)均为因果信号
n k 0
y ( n ) x ( k ) h( n k ) b k a n k
t1 0
t1
e(t )t (t t )
1 1 1

卷积的物理含义图解:
k (t t1 )
A
kh(t t1 ) e(t1 )t1h(t t1 )
A
e(t1 )t1 (t t1 )
LTI系统的性质 e(t)为激励系统的零状态响应
r (t ) lim
f (n n1 ) * (n n2 ) (n n1 ) * f (n n2 ) f (n n1 n2 )
二、卷积和的图解说明
f (n) f1 (n) f 2 (n)
卷积和的图解步骤:
k
f (k ) f
1

2
(n k )
(1)变量置换: f1(k)--> f1(k),
§2.5 卷积和—已知单位样值响应, 求系统零状态响应 一、 卷积和定义
e(n)

h( n)
r (n) e(n) * h(n)
e(n)
Convl89.m
k
e(k ) (n k )
r ( n ) e( n ) * h ( n )
k
e( k ) h ( n k )
f (t ) f1(t ) * f 2 (t ) 则: f (i ) (t ) f1( j ) (t ) * f2(i j ) (t )
其中,I,j取正整数时,为导数阶次 若I,j取负整数时,为重积分次数,如
f (t ) f
(1) 1
(t ) * f 2
( 1)
t d (t ) f1 t * f 2 ( )d dt

t1 d t1
t1
e(t1 )t1 (t t1 ) e(t1 )t1h(t t1 )
r (t )
r (t ) lim
t1 0
t1


e(t1 )t1h(t t1 )
r (t ) e( )h(t )d


e(t ) lim
f (t ) f1 (t ) f 2 (t ) f1 ( ) f 2 (t )d


2.4.2卷积的图解说明
卷积的图解步骤: (1)变量置换: f1(t)--> f1(), f2(t)--> f2() (2)反褶:将f2()以纵轴为对称轴反褶,得f2(-) (3)平移:将f2(-)沿轴自左向右平移t,得f2(t-),t 从-向+ 变化; (4)相乘:函数f1()与f2(t-)相乘,两波形重叠部分有 值,不重叠部分乘积为0; (5)积分:计算积分 f1 ( ) f 2 ( t ) d ,f1()与f2(t-)乘 积曲线下的面积为t时刻卷积值。
b n 1 1 ( b n k n a) a ( ) a b a 1 k 0 a n

a
n 1
b a b
n 1
u ( n)
第二章 连续时间系统的时域分析方法 要内容
1 ቤተ መጻሕፍቲ ባይዱ微分(差分)方程的解——求时域响应
相关文档
最新文档