材料力学课件:7_第四章_扭转

合集下载

第四章 扭转(张新占主编 材料力学)

第四章 扭转(张新占主编 材料力学)

2M A M e M B 0 (2)
联立式(1)与式(2),得
Me MB 3
MA MB Me 3
26
4.6 等直圆轴扭转时的应变能
圆轴在外力偶作用下发生扭转变形,轴内将积蓄应变能。这种 应变能在数值上等于外力所做的功。
T1 在位移 d1上所做的功为 dW T1d1
PB M eB M eC 9549 n 796(N m) PA M eA 9549 1910(N m) n PD M eD 9549 318(N m) n
5
(2)求扭矩(扭矩按正方向假设) 1-1 截面
M M M
x
0
T1 M eB 0
T1 M eB 796N m
d1 85.3 mm
取 d1 85.3 mm。 BC段:同理,由扭转强度条件得 d2 67.4 mm ,由扭转刚度条件得
d 2 74.4 mm
取 d 2 74.4 mm。
23
(2)将轴改为空心圆轴后,根据强度条件和刚度条件确定轴的 外径D。 由强度条件得 D 96.3 mm 由刚度条件得 D 97.3 mm 取 D 97.3 mm ,则内径为
T Me
M e RdA RRd 2R 2
A 0
2
Me 2 2R
8
二、切应力互等定理
M
z
0
(dy)dx ( dx)dy
得到

切应力互等定理:在单元体在相互垂直的一对平面上,切应力 同时存在,数值相等,且都垂直于两个平面的交线,方向共同 指向或共同背离这一交线。 纯剪应力状态:单元体上四个侧面上只有切应力,而无正应力 作用

材料力学4.

材料力学4.
1. 剪应力互等定理 由 MZ 0
'dxdz dy dydzdx 0
得: '
图4-1
2. 剪切虎克定律 在弹性范围内应有:
G G ——剪切弹性模量
图4-2
3.E、G、μ μ μ 的关系
G

E
21


低碳钢:
E 2 105 MPa
Mnmax 4.5KN m
max

M nmax Wn


Wn

D3
16

M nmax

解得: D 66mm
(三)由刚度条件设计 D 。
max

M nmax GI p
180



D4
32

Ip

M nmax
G
180

解得: D 102mm
从以上计算可知,该轴直径应由刚度条件确定,选用 D=102mm 。
六、矩形截面杆的自由扭转
1. 矩形截面杆的剪应力及扭转角计算
最大剪应力发生在长边中点处:
max

Mn
hb2


4

9
单位长度的扭转角为:


Mn
G hb3
4 10
剪应力分布图 图4-10
材料力学
第四章 扭转
一、扭转时的内力及扭矩图
扭转时横截面上的内力以 Mn 表示,称为扭矩。杆件 上各截面上的扭矩如果以图来表示,该图就是扭矩图。
下面结合实例来加以说明。
例1 传动轴受力如图示,试求各段内力并绘扭矩图。 例1图

7材料力学课件(刘鸿文)

7材料力学课件(刘鸿文)

二、约束扭转:杆件扭转时,横截面的翘曲受到限制,相邻 约束扭转: 截面翘曲程度不同。 若杆的两端受到约束而不能自由翘曲,则相邻两横截 若杆的两端受到约束而不能自由翘曲, 面的翘曲程度不同,这将在横截面上引起附加的正应力。 面的翘曲程度不同,这将在横截面上引起附加的正应力。 这一情况称为 约束扭转. 约束扭转.
三、矩形杆横截面上的剪应力: 矩形杆横截面上的剪应力: 1. 剪应力分布如图: (角点、形心、长短边中点) b
τ max
h
τ1
注意! h ≥ b
T
2. 最大剪应力及单位扭转角
T max τ max = Wt
b
其中: W =
t
β b3
max
τ 1 = ντ
τ max τ1
注意! h≥ b
h
T θ= , GI t
, m2 = 955 N•m , m3 = 637 N • m。截面 A与截面 B、C之间的 m。 距离分别为 lAB = 300 mm 和 lAC = 500 mm。轴的直径d = 70 mm, mm。轴的直径d 钢的剪切弹性模量为 G = 80 GPa。试求截面 C 对截面 B 的相对 GPa。 扭转角。 扭转角。
T =
W1 t
(b)
l
T =
W2 t
l
d 2 D2
T
W1 t
T =
W2 t
Q Wt1 =Wt2
π 1 d3 W1 = t 16 3 π 2 ( −α4 ) D 1 W2 = t 16
因此
3 πd1
(a)
d1
l
(b)
d 2 D2
16
=
π1−α4 ) 2
16
l

材料力学第四章 扭转

材料力学第四章 扭转
则上式改写为
max
T GI p
180
(/m)
×
例5 图示圆轴,已知mA =1kN.m, mB =3kN.m, mC
=2kN.m;l1 =0.7m,l2 =0.3m;[]=60MPa,[ ]=0.3°/m,
G=80GPa;试选择该轴的直径。
mA
mB mC 解: ⑴按强度条件
A
l1
B l2 C
max
9.55
200 300
6.37
(kN m)
×
n D
m2 1 m3 2 m1 3 m4
n A 1 B 2 C 3D
②求扭矩(扭矩按正方向假设)
m 0 , T1 m2 0, T1 m2 4.78kN m m 0; T2 m1 m2 0
T2 m2 m3 (4.78 4.78) 9.56kN m
T
2 r02
t
T 2 A0
t
T
A0为平均半径所作圆的面积。
×
三、切应力互等定理:
´
a
b
dy
´
c
z
dx
d t
mz 0; t dxdy t dxdy
'
这就是切应力互等定理:在单元体相互垂直的两个截面
上,切应力必然成对出现,且数值相等,两者都垂直于两平
面的交线,其方向或共同指向交线,或共同背离交线。
垂直,则杆件发生的变形为扭转变形。
A
B O
A
BO
m
m
——扭转角(两端面相对转过的角度)
——剪切角,剪切角也称切应变。
×
§4–2 扭转的内力—扭矩与扭矩图
一、扭矩 圆杆扭转横截面的内力合成
结果为一合力偶,合力偶的力偶 矩称为截面的扭矩,用T 表示之。 m

材料力学 第4章_扭转

材料力学     第4章_扭转
z


d x d z d y d y d z d x 0

返回
4. 切应力互等定理

切应力互等定理: 也称切应力双生定理, 指在单元体相互垂直的两 个面上,切应力必成对存 在,且数值相等;两者都 垂直于两个平面的交线, 方向共同指向或背离这一 交线。


纯剪切
BC B
TCD mB mC 700N m
(b)
TDA mA 1146N m
可见:主动轮与从动轮位置不 同,轴内最大扭矩也不同,显 然(a)方案比(b)方案合理。
返回
§4.3 圆轴扭转时的应力与强度条件
返回总目录
一、薄壁圆筒扭转时的切应力 1. 变形现象 圆周线大小、形状、间距 不变,纵向线相同倾斜。 2. 横截面上应力分析 因纵向纤维无正应变, 有角应变,因此横截面上 无,有, 与圆周相切。 又因壁很薄,可近似认 为沿壁厚应力相等。
第4章 扭转
第4章 扭转
§4.1 扭转的概念 §4.2 外力偶矩、扭矩和扭矩图
§4.3 圆轴扭转时的应力与强度条件
§4.4 圆杆扭转时的变形及刚度条件
§4.5 非圆截面杆的扭转概念
§4.1 扭转的概念
返回总目录
工程中的受扭转杆件
拧紧螺母的工具杆产生扭转变形
返回
工程中的受扭转杆件
返回
工程中的受扭转杆件
r
d dx
横截面上任一点的 ⊥半 径,并与该点到轴线的距离 成正比。
返回
4. 应力公式 静力关系
T

dA
横截面上分布内力系对 圆心的矩等于扭矩T。

T d A A d d 2 G d A G d A A dx dx A

材料力学课件——扭转的强度与刚度计算

材料力学课件——扭转的强度与刚度计算

MMnMnⅢⅢMnMⅢMnDMⅢD DMD
351N· m
468N·
(+)m (-)
702N· m
解 (1)计算外力偶矩:
MA
9550 NA n
9550 36.75 300
1170N m
MB
MC
9550 NB n
9550 11 300
351N m
MD
9550 ND n
9550 14.7 300
P B mB
B
mB (a)
P
mB
B
(b)
本章主要内容
▪ 第一节 概述 ▪ 第二节 扭转时的内力 ▪ 第三节 纯剪切、剪应力互等定理、剪切胡
克定律 ▪ 第四节 圆轴扭转时的应力与变形 ▪ 第五节 圆轴扭转时的强度和刚度计算 ▪ 第六节 密圈螺旋弹簧应力及变形的计算 ▪ 第七节 非圆截面等直杆的纯扭转
扭矩
N(kW ) Me 9550 n(r / min ) (Nm)
•当N为马力 扭矩
N(Ps)
Me 7024 n(r / min )(N m)
二、扭矩 扭矩图
扭矩mn符号规定如下:按右手螺旋法则把mn 表示为矢量,当矢量方向与截面的外法线方向一
致时, mn为正;反之为负。
内力—扭矩
mn
j mn
t dy
nm
x 定理。(rocal
theorem of shear stresses )
dx
z
▪ 剪应力互等定理(Reciprocal theorem of shear stresses )
▪ 单元体上两个互垂面上剪应力的大小相等、方
向相反(共同指向交线或背离交线)
▪ 类似可证明 —— 每两个邻近边剪应力值相 等

材料力学第4章扭转变形

材料力学第4章扭转变形

1 1
T
1 1
T
1
Me
+
B
x
T Me
Me
B
T图 x
例 一传动轴如图,转速n = 300r/min; 主动轮输 入的功率P1= 500kW,三个从动轮输出的功率分 别为: P2= 150kW, P3= 150kW, P4= 200kW。 试作轴的扭矩图。
解: 首先必须计算作用在各轮上的外力偶矩
M2 1
2 T
1
1 T
1
材料不同),可见在两
杆交界处的切应力是不
同的。
d
D
§4. 7 非圆截面杆扭转的概念
对非圆截面杆的扭转问题,主要介绍矩形截面 杆的扭转。
试验现象
横向线变 成曲线
横截面发生 翘曲不再保 持为平面
平面假设不再 成立,可能产 生附加正应力
自由扭转 翘曲不受限制。 纵向纤维无伸长 横截面上无正应力
T
max
O
max
D
d
T
Ip
max
T Wp
圆截面的极惯性矩Ip和扭转截面系数Wp —几何性质 实心圆截面:
d
O
d
O
d D d
Ip
2 d A πd 4
A
32
Wp
Ip d /2
πd 3 16
Ip
2 d A πD4
A
32
1 4
Wp
Ip D /2
πD 3 16
1 4
4-4 圆轴扭转强度条件与合理设计
B 0
按叠加原理:
B BB BM 0
BB、BM分别为MB、Me 引起的在杆端B的扭转角。
线弹性时,物理关系(胡克定理)为

材料力学-第4章 扭转 ppt课件

材料力学-第4章 扭转  ppt课件

dA
T

O
dA
23
材料力学-第4章 扭转
圆轴扭转横截面上的应力
A dA T
代入:

G



G
d dx
得到:
G d 2dA T dx A
记: IP -2dA称为圆截面的极惯性矩
A
则:圆轴扭转角的变化率 d T
dx GIP
圆截面切应力
采用右手螺旋法则,如果用四指表示扭矩的转向, 拇指的指向与截面的外法线n的方向相同时,该扭矩为 正;反之,规定扭矩为负
正扭矩
负扭矩
——保证了无论从哪一段计算,扭矩的大小和符号 都相同
12
材料力学-第4章 扭转
扭力偶矩计算与扭矩
讨论:如图受扭圆轴,m-m截面上扭矩为多少?
Me
m
2M e
m m
T Me
17
材料力学-第4章 扭转
圆轴扭转横截面上的应力
几何变形:
1. 横截面绕圆轴的轴线转动

主要
2. 圆轴中段的横截面缩小 几何变形特征
有剪切应变 rz 次要
3. 圆轴的长度略有增长
有轴向应变 z 次要
– 变形后,横截面仍保持为平面,其形状和大小均不
改变,半径仍为直线
– 变形后,相邻横截面的间距保持不变,相邻横截面 绕圆轴轴线转动一定的角度
外力偶矩的计算
• 工程中的传动轴,通常给出传动轴所传递的功率和转 速,而不直接给出外力偶矩的数值
• 设外力偶矩为Me,传动轴的功率为P,角速度为w,则
有(理论力学)
Me

P
w
外力偶矩Me 单位:N·m (牛顿·米) 功率为P 单位:J (焦耳)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理与静力学三方面
扭转变形基本公式: d T
dx GIp
扭转切应力公式:
T
Ip
最大扭转切应力:
max
T Wp
公式的适用范围: 圆截面轴; max p
25
第四章 扭转
图示实心圆轴承受外加扭转力偶,试求: 轴横截面上半径 r=15 mm以内部分承受的扭 矩所占全部横截面上扭矩的百分比。
3
第四章 扭转
材料力学分析的基本思路
外力
结构
内力 应力
材料性能 强度准则
变形 应变
4
第四章 扭转
A
M
B
M M
归纳与比较: 1、受扭圆轴的外力与变形特征如何? 2、与拉压杆比较的异同?
5
➢ 基本概念
第四章 扭转
外载荷:外力矩的矢量沿轴线
变形:各横截面绕轴线作相对旋转 轴线保持直线
横截面间绕轴线的相对角位移
扭力矩 扭转 扭转角
外力矩的矢量沿轴线,以扭转变形为主要变 形形式的杆件—— 轴
6
第四章 扭转
轴的动力传递
已知传动构件的转速与所传递的 功率,计算轴所承受的扭力矩。
电机
联轴器
A
B
P M
角速度 2 n 60
n : 转速 (r min)
功率:KW 力偶矩:N.m
P 103 M 2 n
60
P
M 9549 kW
第四章 扭转
上一讲回顾
★静不定问题求解思路
平衡方程 fi FN1, FN2 ,… 0
协调方程 gj l1, l2,… 0
g
* j
FN1, FN2 ,…
0
求解
物理方程 l j FNj
➢静不定度,变形(位移)图(桁架节点、刚体、零力杆)
➢先画变形图,根据变形图画受力图
★无装配应力与热应力
有装配应力与热应力
例:画扭矩图。
在AB和BC段分别切开, 分别考察左与右段平衡
AB段: T1 2M BC段: T2 M
画扭矩图。 注意:扭矩图与受扭轴对 齐,标注正负号。
B
2M
A
3M
2M
A
T
T2 M
T1 2M
2M
M
C
M
C
M
x
9
第四章 扭转
例:画扭矩图( m:单位长度的扭力偶矩)。
M 3ml
m
A
B
C
l
l/2 l/2
dx GIP 19
G
d
dx
d T
dx GIP
圆轴扭转切应力一般公式
T
IP
第四章 扭转
分布:与 成正比
方向:垂直于半径
20
总结
外部变形
平面假设
第四章 扭转
切应变
d
dx
物理方程(应力应变关系) 静力学条件(平衡方程)
横截面上切应力
T
IP
21
第四章 扭转
➢ 圆轴横截面上最大扭转切应力
T
IP
max
a
b
dx
b’
d a
A
d
B B’
d’ d
c
b
b’ d
d
C
D
d’
D’
16
第四章 扭转
变形几何方程
小变形
O1
tan
bb' ab
d
dx
a
c
d
dx
同一横截面内任一
径线偏转同一个角度
dx
O2
d
b b’
d
d’
d const.
dx
17
第四章 扭转
d
dx
几何协调关系
O1
O2
2. 物理方程
G
G d
T1 ( x)
x
T ml
2ml
在AB、BC和CD段分别由三截面 x 切开,考察左(或右)段平衡
D
AB段: T1 x mx
BC段: T2 ml
CD段: T3 2ml
画扭矩图
x
与轴力图比较考察对应关系
10
第四章 扭转
2. 对应的轴力图与扭矩图
M 3ml
m
A
B
C
D
对应拉压问题 与轴力图
q
F 3ql
23
第四章 扭转
4. 极惯性矩与抗扭截面系数
Ip
2dA
A
•空心圆截面
Dd
dA 2d
d
IP
D/ 2 2 2d D4 (1 4 )
d/2
32
WP
D3
16
(1 4 ),
d
D
•实心圆截面
设 0
IP
D4
32
,
D3
WP 16
24
第四章 扭转
圆轴扭转应力小结
研究方法:从实验、假设入手,综合考虑几何、
协调方程 gj l1, l2,… 0
gj 1, 2 ,… 0
其中k l(k 变形伸长) t(k 热应力伸长) k(制造误差)
1
第四章 扭转
第四章 扭转
§4-1 引言 §4-2 圆轴扭转应力 §4-3 圆轴扭转强度与动力传递
2
第四章 扭转
§4-1 引言
工程中的扭转问题
F F
满足强度与刚度条件才 能保证构件正常工作
合理假设
连续体的变形协调条件(数学表达)
12
1. 试验与假设
观察外部变形
第四章 扭转
圆周线: 形状与大小不变
径向无变形
间距不变 纵向线 : 偏转同一个角度
轴向无变形 周向无变形
结论:相邻圆周线只绕轴线作相对刚性转动
13
第四章 扭转 内部变形规律(假设): 相邻横截面只绕轴线作相对
刚性转动
平面假设
保持平面,形状与大小不变
横截面
半径仍为直线 间距不变
14
轴内某点的变形规律 (不同位置变形的协调关系)
截取微段
第四章 扭转 dx
用相距dx的一对横截面 截取微楔
取夹角为d的一
对径向纵截面
R
a Ac
dx
O1
O2
d
b d
B
C
D
15
微楔的变形情况
O1
第四章 扭转
半径仍为直线 dx
O2
R
d
研究对象:微元体
dx
A
B
C
D
使用剪切胡克定律,线弹性范围
分布:与 成正比
公式中还有哪些量未被确定?
方向:垂直于半径
18
第四章 扭转
3.静力学方面
微剪力 dQ dA
微力矩 dT dQ
则有:
G
d
dx
dA
T
T
dT
A
A dA
G d 2dA T dx A
定义 A 2dA IP
极惯性矩
圆轴扭转角变化率 d T
Nm
n
r / min
7
第四章 扭转
§4-2 扭矩
1. 扭矩与扭矩图
m
M
A
M
m
B
A
mT
x
M
m
扭矩:矢量方向垂直于横截面 A
m
Tx
的内力偶矩,并用T 表示。 M
m
符号规定:矢量方向(按右手定则)与横截面外法线方
向一致的扭矩为正,反之为负。
扭矩与扭力矩的差异?
8
第四章 扭转
扭矩图:扭矩随杆轴线变化的图线。
l
l/2 l/2
T ml
x
2ml
l
l/2 l/2
FN ql
2ql
x
11
第四章 扭转
§4-3 圆轴扭转应力
问题分析与研究思路
M
1
T M
2
M
问题:横截面应力大小、方向、分布均未知,仅知合成扭矩T。
连续体的静不定问题 。
分析方法:静力学、几何、物理三方面。 关键是几何方面:建立单变量的变形协调条件
几何方面:实验观测
圆轴扭转最大切应力:
max
TR IP
T IP / R
抗扭截面系数
定义
WP
IP R
max
T WP
22
第四章 扭转
公式 材料在比例极限范围内。 (在切应力公式推导时使用了剪切虎克定律)
● 只能用于圆截面轴(包括空心圆截面轴)。 (在非圆截面扭转时,平面假设不成立)
拉压杆应力推导问题也使用变形协调,由应变相等得到应 力相等,但没有使用虎克定律。该结论在应力超过弹性极 限下仍然成立。
相关文档
最新文档