材料力学课件-习题第四章应力与应变分析.
工程力学中的应力与应变分析方法探讨

工程力学中的应力与应变分析方法探讨在工程力学中,应力与应变是研究材料和结构力学性能的重要概念。
应力是指单位面积内的力的大小,而应变则是指材料的形变程度。
应力与应变的分析方法是工程力学中的核心内容之一,本文将对工程力学中的应力与应变分析方法进行探讨。
一、应力分析方法在工程力学中,常用的应力分析方法有静力学方法、接触力学方法和弹性力学方法。
静力学方法是通过平衡方程分析物体所受到的力,并计算得出应力分布情况;接触力学方法则是研究物体间的接触行为,通过接触区域的应力分布来分析力的传递情况;弹性力学方法则是应用弹性力学原理,通过杨氏模量和泊松比等参数计算得出应力分布情况。
静力学方法是应力分析中最基本的方法之一,它基于物体所受到的力的平衡条件进行分析。
静力学方法分为静力学平衡和弹性力学平衡两种情况。
静力学平衡是指物体在外力作用下不发生形变,通过将物体分解为若干个力的平衡条件方程来求解各个部位的应力;而弹性力学平衡则是物体在外力作用下发生形变,通过应力-应变关系来求解应力分布情况。
静力学方法在工程力学中应用广泛,可以分析各种载荷下的应力情况。
接触力学方法是研究物体与物体之间接触行为的力学方法,通过分析接触面的应力分布来推导出力的传递情况。
在实际工程应用中,接触力学方法广泛用于轴承、齿轮、摩擦等接触问题的分析与设计。
接触力学方法主要利用弹性力学和接触力学理论,通过建立接触面的几何模型和接触条件,求解接触区域的应力分布。
弹性力学方法是应力分析中最常用的方法之一,它基于弹性力学理论,通过材料的弹性参数计算得出应力分布。
弹性力学方法广泛应用于材料和结构强度分析中。
弹性力学方法主要使用线弹性理论,通过杨氏模量和泊松比等参数来描述材料的弹性性能,根据应力-应变关系计算得出应力分布情况。
二、应变分析方法在工程力学中,常用的应变分析方法有光栅衍射法、电测法和应变计法。
光栅衍射法是利用光学原理来测量物体表面的应变分布情况,通过测量光栅的位移来计算应变大小;电测法则是利用电阻应变片等设备来测量物体表面的应变分布情况;应变计法则是通过安装应变计来测量物体表面的应变分布情况。
《材料力学》课件7-4应力与应变间的关系

胡克定律
胡克定律是一个简单而重要的材料力学公式,它描述了应力与应变之间的线性关系。
弹性模量与切变模量
弹性模量是一个常用的材料力学参数,它用于衡量材料在受力时的弹性性质。 切变模量是另一个衡量材料性能的参数,它描述了材料抵抗剪切形变的能力。
《材料力学》课件7-4应 力与应变间的关系
本节课将讨论应力与应变之间的关系,以及胡克定律、弹性模量、切变模量、 杨氏模量和泊松比等概念。
应力与应变的定义
应力是单位面积上的力,用于描述物体内部的分子之间的相互作用力。 应变是物体单位长度的发生变化,用于描述物体在受力时的形变程度。
应力与应变之间的关系
杨氏模量
杨氏模量是一个衡量材料刚度的参数,它描于描述材料性质的参数,它衡量了材料在拉伸时的侧向收缩 程度。
剪切模量
剪切模量是一个衡量材料剪切属性的参数,它描述了材料抵抗剪切形变的能力。
材料力学 ppt课件

③应力分析:画危险面应力分布图,叠加;
④强度计算:建立危险点的强度条件,进行强度
计算。
PPT课件
20
2、两相互垂直平面内的弯曲
有棱角的截面
max
Mz Wz
My Wy
[ ]
圆截面
max
M
2 z
M
2 y
[ ]
W
3、拉伸(压缩)与弯曲
有棱角的截面
max
FN ,max A
(4)确定最大剪力和最大弯矩
3、弯曲应力与强度条件
(1)弯曲正应力
My
I PPT课件 z
12
M max Wz
yt,max yc,max
Oz y
PPT课件
t,max
Myt,max Iz
c,max
Myc,max Iz
13
(2)梁的正应力强度条件
M max
Wz
M
2 z
M
2 y
T
2
Mr4
M
2 z
M
2 y
0.75T
2
PPT课件
22
5、连接件的强度条件
剪切的强度条件
FS [ ]
AS
挤压强度条件
bs
Fbs Abs
[ bs ]
PPT课件
M z,max Wz
M y,max Wy
[ ]
圆截面
max
FN ,max A PPT课件
M max W
[ ]
21
4、弯曲与扭转
材料力学应力与应变分析

在复杂应力状态下,物体内部某一点处的主应力表示该点处最主要 的应力,次应力则表示其他较小的应力。
应力表示方法
应力矢量
应力矢量表示应力的方向和大小,通常用箭头表示。
应力张量
在三维空间中,应力可以用一个二阶对称张量表示,包括三个主应力和三个剪切 应力分量。
主应力和剪切应力
主应力
在任意一点处,三个主应力通常是不相等的,其中最大和最小的主应力决定了材料在该点的安全程度 。
采用有限元分析方法,建立高 层建筑的三维模型,模拟不同 工况下的应力与应变分布。
结果
通过分析发现高层建筑的关键 部位存在较高的应力集中,需
要进行优化设计。
结论
优化后的高层建筑结构能够更 好地承受各种载荷,提高了安
全性和稳定性。
THANKS FOR WATCHING
感谢您的观看
不同受力状态下的变形行为。
06 实际应用与案例分析
实际应用场景
航空航天
飞机和航天器的结构需要承受高速、高海拔和极端温度下 的应力与应变,材料力学分析是确保安全的关键。
汽车工业
汽车的结构和零部件在行驶过程中会受到各种应力和应变 ,材料力学分析有助于优化设计,提高安全性和耐久性。
土木工程
桥梁、大坝、高层建筑等大型基础设施的建设需要精确的 应力与应变分析,以确保结构的稳定性和安全性。
剪切应力
剪切应力是使物体产生剪切变形的力,其大小和方向与剪切面的法线方向有关。剪切应力的作用可以 导致材料产生剪切破坏。
04 应变分析
应变定义
定义
应变是描述材料形状和尺寸变化的物理量, 表示材料在外力作用下发生的形变程度。
单位
应变的单位是1,没有量纲,常用的单位还有微应变 (με)和工程应变(%)。
材料力学性能_第四章

4.2 裂纹体的应力分析
线弹性断裂力学研究对象是带有裂纹的线弹性体。严格 讲,只有玻璃和陶瓷这样的脆性材料才算理想的弹性体。 为使线弹性断裂力学能够用于金属,必须符合金属材料 裂纹尖端的塑性区尺寸与裂纹长度相比是一很小的数值条 件。 在此条件下,裂纹尖端塑性区尺寸很小,可近似看成理 想弹性体。 在线弹性断裂力学中有以Griffith-Orowan为基础的能量 理论和Irwin为应力强度因子理论。
小,消耗的变形 功也最小,所以
平面应力
裂纹就容易沿x方
向扩展。
4.5 裂纹尖端的塑性区
为了说明塑性区对裂纹在x方向扩展的影响。
当 =0(在裂纹面上),其塑性区宽度为:
r0 (r ) 0
1 KI 2 ( ) 2 s
K1 y r ,0 2r
4.5 裂纹尖端的塑性区
由各应力分量公式也可直接求出在裂纹线上的
切应力平行于裂纹 面,而且与裂纹线 垂直,裂纹沿裂纹 面平行滑开扩展。
III型(撕开型)断裂
切应力平行作用于 裂纹面,而且与裂 纹线平行,裂纹沿 裂纹面撕开扩展。
4.2 裂纹体的应力分析
4.2.2 I型裂纹尖端的应力场
裂纹扩展是从其尖端开始向前进行的,所以应该分析裂纹 尖端的应力、应变状态,建立裂纹扩展的力学条件。
4.2 裂纹体的应力分析
4.2.1 裂纹体的基本断裂类型
在断裂力学分析中,为了研究上的方便,通常 把复杂的断裂形式看成是三种基本裂纹体断裂的组 合。 I 型(张开型)断裂 (最常见 )
拉应力垂直于裂纹面扩展面,裂纹沿作用力方向 张开,沿裂纹面扩展。
4.2 裂纹体的应力分析
II 型(滑开型)断裂
根据应力强度因子和断裂韧性的相对大小,可以建 立裂纹失稳扩展脆断的断裂K判据,平面应变断裂最 危险,通常以KIC为标准建立,即: 应用:用以估算裂纹体的最大承载能力、允许的裂 纹尺寸,以及材料的选择、工艺优化等。
材料力学习题及答案

资料力学-学习指导及习题谜底之迟辟智美创作第一章绪论1-1 图示圆截面杆,两端接受一对方向相反、力偶矩矢量沿轴线且年夜小均为M的力偶作用.试问在杆件的任一横截面m-m上存在何种内力分量,并确定其年夜小.解:从横截面m-m将杆切开,横截面上存在沿轴线的内力偶矩分量M x,即扭矩,其年夜小即是M.1-2 如图所示,在杆件的斜截面m-m上,任一点A处的应力p=120 MPa,其方位角θ=20°,试求该点处的正应力σ与切应力τ.解:应力p与斜截面m-m的法线的夹角α=10°,故σ=p cosα=120×cos10°=118.2MPaτ=p sinα=120×sin10°=20.8MPa1-3 图示矩形截面杆,横截面上的正应力沿截面高度线性分布,截面顶边各点处的正应力均为σmax=100 MPa,底边各点处的正应力均为零.试问杆件横截面上存在何种内力分量,并确定其年夜小.图中之C点为截面形心.解:将横截面上的正应力向截面形心C简化,得一合力和一合力偶,其力即为轴力F N=100×106×××103 N =200 kN其力偶即为弯矩M z=200×(50-33.33)×10-3 =3.33 kN·m1-4 板件的变形如图中虚线所示.试求棱边AB与AD的平均正应变及A 点处直角BAD的切应变.解:第二章轴向拉压应力2-1试计算图示各杆的轴力,并指出其最年夜值.解:(a) F N AB=F,F N BC=0,F N,max=F=F(b) F N AB=F,F N BC=-F,F N,max(c) F N AB=-2 kN, F N2BC=1 kN,F N CD=3 kN,F N=3 kN,max(d) F N AB=1 kN,F N BC=-1 kN,F N=1 kN,max2-2 图示阶梯形截面杆AC,接受轴向载荷F1=200 kN与F2=100 kN,AB段的直径d1=40 mm.如欲使BC与AB段的正应力相同,试求BC段的直径.解:因BC与AB段的正应力相同,故2-3 图示轴向受拉等截面杆,横截面面积A=500 mm2,载荷F=50 kN.试求图示斜截面m-m上的正应力与切应力,以及杆内的最年夜正应力与最年夜切应力.解:2-4(2-11)图示桁架,由圆截面杆1与杆2组成,并在节点A接受载荷F=80kN作用.杆1、杆2的直径分别为d1=30mm和d2=20mm,两杆的资料相同,屈服极限σ=320MPa,平安因数n s.试校核桁架的强度.s解:由A点的平衡方程可求得1、2两杆的轴力分别为由此可见,桁架满足强度条件.2-5(2-14)图示桁架,接受载荷F作用.试计算该载荷的许用值[F].设各杆的横截面面积均为A,许用应力均为[σ].解:由C点的平衡条件由B点的平衡条件1杆轴力为最年夜,由其强度条件2-6(2-17)图示圆截面杆件,接受轴向拉力F作用.设拉杆的直径为d,端部墩头的直径为D,高度为h,试从强度方面考虑,建立三者间的合理比值.已知许用应力[σ]=120MPa,许用切应力[τ]=90MPa,许用挤压应力[σbs]=240MPa.解:由正应力强度条件由切应力强度条件由挤压强度条件式(1):式(3)得式(1):式(2)得故D:h:d::12-7(2-18)图示摇臂,接受载荷F1与F2作用.试确定轴销B的直径d.已知载荷F1=50kN,F2,许用切应力[τ]=100MPa,许用挤压应力[σ]=240MPa.bs解:摇臂ABC受F1、F2及B点支座反力F B三力作用,根据三力平衡汇交定理知F B的方向如图(b)所示.由平衡条件由切应力强度条件由挤压强度条件故轴销B的直径第三章轴向拉压变形3-1 图示硬铝试样,厚度δ=2mm,试验段板宽b=20mm,标距l=70mm.在轴向拉F=6kN的作用下,测得试验段伸长Δl,板宽缩短Δb.试计算硬铝的弹性模量E与泊松比μ.解:由胡克定律3-2(3-5) 图示桁架,在节点A处接受载荷F作用.从试验中测得杆1与杆2的纵向正应变分别为ε1×10-4与ε2×10-4.试确定载荷F及其方位角θ之值.已知杆1与杆2的横截面面积A1=A2=200mm2,弹性模量E1=E2=200GPa.解:杆1与杆2的轴力(拉力)分别为由A点的平衡条件(1)2+(2)2并开根,便得式(1):式(2)得3-3(3-6) 图示变宽度平板,接受轴向载荷F作用.试计算板的轴向变形.已知板的厚度为δ,长为l,左、右真个宽度分别为b1与b2,弹性模量为E.解:3-4(3-11) 图示刚性横梁AB,由钢丝绳并经无摩擦滑轮所支持.设钢丝绳的轴向刚度(即发生单位轴向变形所需之力)为k,试求当载荷F作用时端点B的铅垂位移.解:设钢丝绳的拉力为T,则由横梁AB的平衡条件钢丝绳伸长量由图(b)可以看出,C点铅垂位移为Δl/3,D点铅垂位移为2Δl/3,则B点铅垂位移为Δl,即 3-5(3-12) 试计算图示桁架节点A的水平与铅垂位移.设各杆各截面的拉压刚度均为EA.解:(a) 各杆轴力及伸长(缩短量)分别为因为3杆不变形,故A点水平位移为零,铅垂位移即是B点铅垂位移加2杆的伸长量,即(b)点的水平与铅垂位移分别为(注意AC杆轴力虽然为零,但对A位移有约束)3-6(3-14) 图a所示桁架,资料的应力-应变关系可用方程σn=Bε暗示(图b),其中n和B为由实验测定的已知常数.试求节点C的铅垂位移.设各杆的横截面面积均为A.(a) (b)解:2根杆的轴力都为2根杆的伸长量都为则节点C的铅垂位移3-7(3-16) 图示结构,梁BD为刚体,杆1、杆2与杆3的横截面面积与资料均相同.在梁的中点C接受集中载荷F作用.试计算该点的水平与铅垂位移.已知载荷F=20kN,各杆的横截面面积均为A=100mm2,弹性模量E=200GPa,梁长l=1000mm.解:各杆轴力及变形分别为梁BD作刚体平动,其上B、C、D三点位移相等3-8(3-17) 图示桁架,在节点B和C作用一对年夜小相等、方向相反的载荷F.设各杆各截面的拉压刚度均为EA,试计算节点B和C间的相对位移ΔB/C.解:根据能量守恒定律,有3-9(3-21) 由铝镁合金杆与钢质套管组成一复合杆,杆、管各载面的刚度分别为E1A1与E2A2.复合杆接受轴向载荷F作用,试计算铝镁合金杆与钢管横载面上的正应力以及杆的轴向变形.解:设杆、管接受的压力分别为F N1、F N2,则F N1+F N2=F (1)变形协调条件为杆、管伸长量相同,即联立求解方程(1)、(2),得杆、管横截面上的正应力分别为杆的轴向变形3-10(3-23) 图示结构,杆1与杆2的弹性模量均为E,横截面面积均为A,梁BC为刚体,载荷F=20kN,许用拉应力[σt]=160MPa,许用压应力[σc]=110MPa.试确定各杆的横截面面积.解:设杆1所受压力为F N1,杆2所受拉力为F N2,则由梁BC的平衡条件得变形协调条件为杆1缩短量即是杆2伸长量,即联立求解方程(1)、(2)得因为杆1、杆2的轴力相等,而许用压应力小于许用拉应力,故由杆1的压应力强度条件得3-11(3-25) 图示桁架,杆1、杆2与杆3分别用铸铁、铜和钢制成,许用应力分别为[σ1]=40MPa,[σ2]=60MPa,[σ3]=120MPa,弹性模量分别为E1=160GPa,E2=100GPa,E3=200GPa.若载荷F=160kN,A1=A2=2A3,试确定各杆的横截面面积.解:设杆1、杆2、杆3的轴力分别为F N1(压)、F N2(拉)、F N3(拉),则由C点的平衡条件杆1、杆2的变形图如图(b)所示,变形协调条件为C点的垂直位移即是杆3的伸长,即联立求解式(1)、(2)、(3)得由三杆的强度条件注意到条件 A1=A2=2A3,取A1=A2=2A3=2448mm2.3-12(3-30) 图示组合杆,由直径为30mm的钢杆套以外径为50mm、内径为30mm的铜管组成,二者由两个直径为10mm的铆钉连接在一起.铆接后,温度升高40°,试计算铆钉剪切面上的切应力.钢与铜的弹性模量分别为E s=200GPa与E c=100GPa,线膨胀系数分别为αl s×10-6℃-1与αl c=16×10-6℃-1.解:钢杆受拉、铜管受压,其轴力相等,设为F N,变形协调条件为钢杆和铜管的伸长量相等,即铆钉剪切面上的切应力3-13(3-32) 图示桁架,三杆的横截面面积、弹性模量与许用应力均相同,并分别为A、E与[σ],试确定该桁架的许用载荷[F].为了提高许用载荷之值,现将杆3的设计长度l酿成l+Δ.试问当Δ为何值时许用载荷最年夜,其值[F max]为何.解:静力平衡条件为变形协调条件为联立求解式(1)、(2)、(3)得杆3的轴力比杆1、杆2年夜,由杆3的强度条件若将杆3的设计长度l酿成l+Δ,要使许用载荷最年夜,只有三杆的应力都到达[σ],此时变形协调条件为第四章扭转4-1(4-3) 图示空心圆截面轴,外径D=40mm,内径d=20mm,扭矩T=1kN•m.试计算横截面上的最年夜、最小扭转切应力,以及A点处(ρA=15mm)的扭转切应力.解:因为τ与ρ成正比,所以4-2(4-10) 实心圆轴与空心圆轴通过牙嵌离合器连接.已知轴的转速n=100 r/min,传递功率P=10 kW,许用切应力[τ]=80MPa,d1/d2.试确定实心轴的直径d,空心轴的内、外径d1和d2.解:扭矩由实心轴的切应力强度条件由空心轴的切应力强度条件4-3(4-12) 某传动轴,转速n=300 r/min,轮1为主动轮,输入功率P1=50kW,轮2、轮3与轮4为从动轮,输出功率分别为P2=10kW,P3=P4=20kW.(1) 试求轴内的最年夜扭矩;(2) 若将轮1与轮3的位置对换,试分析对轴的受力是否有利.解:(1) 轮1、2、3、4作用在轴上扭力矩分别为轴内的最年夜扭矩若将轮1与轮3的位置对换,则最年夜扭矩酿成最年夜扭矩变小,固然对轴的受力有利.4-4(4-21) 图示两端固定的圆截面轴,接受扭力矩作用.试求支反力偶矩.设扭转刚度为已知常数.解:(a) 由对称性可看出,M A=M B,再由平衡可看出M A=M B=M(b)显然M A=M B,变形协调条件为解得(c)(d)由静力平衡方程得变形协调条件为联立求解式(1)、(2)得4-5(4-25) 图示组合轴,由套管与芯轴并借两端刚性平板牢固地连接在一起.设作用在刚性平板上的扭力矩为M=2kN·m,套管与芯轴的切变模量分别为G1=40GPa与G2=80GPa.试求套管与芯轴的扭矩及最年夜扭转切应力.解:设套管与芯轴的扭矩分别为T1、T2,则T1+T2 =M=2kN·m (1)变形协调条件为套管与芯轴的扭转角相等,即联立求解式(1)、(2),得套管与芯轴的最年夜扭转切应力分别为4-6(4-28) 将截面尺寸分别为φ100mm×90mm 与φ90mm×80mm的两钢管相套合,并在内管两端施加扭力矩M0=2kN·m后,将其两端与外管相焊接.试问在去失落扭力矩M0后,内、外管横截面上的最年夜扭转切应力.解:去失落扭力矩M0后,两钢管相互扭,其扭矩相等,设为T,设施加M0后内管扭转角为φ0.去失落M0后,内管带动外管回退扭转角φ1(此即外管扭转角),剩下的扭转角(φ0-φ1)即为内管扭转角,变形协调条件为内、外管横截面上的最年夜扭转切应力分别为4-7(4-29) 图示二轴,用突缘与螺栓相连接,各螺栓的资料、直径相同,并均匀地排列在直径为D=100mm的圆周上,突缘的厚度为δ=10mm,轴所接受的扭力矩为M=5.0 kN·m,螺栓的许用切应力[τ]=100MPa,许用挤压应力 [σbs]=300MPa.试确定螺栓的直径d.解:设每个螺栓接受的剪力为F S,则由切应力强度条件由挤压强度条件故螺栓的直径第五章弯曲应力1(5-1)、平衡微分方程中的正负号由哪些因素所确定?简支梁受力及Ox坐标取向如图所示.试分析下列平衡微分方程中哪一个是正确的.解:B正确.平衡微分方程中的正负号由该梁Ox坐标取向及分布载荷q(x)的方向决定.截面弯矩和剪力的方向是不随坐标变动的,我们在处置这类问题时都按正方向画出.可是剪力和弯矩的增量面和坐标轴的取向有关,这样在对梁的微段列平衡方程式时就有所分歧,参考下图.当Ox坐标取向相反,向右时,相应(b),A是正确的.但无论A、B弯矩的二阶导数在q向上时,均为正,反之,为负.2(5-2)、对接受均布载荷q的简支梁,其弯矩图凸凹性与哪些因素相关?试判断下列四种谜底中哪一种是毛病的.解:A是毛病的.梁截面上的弯矩的正负号,与梁的坐标系无关,该梁上的弯矩为正,因此A是毛病的.弯矩曲线和一般曲线的凸凹相同,和y轴的方向有关,弯矩二阶导数为正时,曲线开口向着y轴的正向.q(x)向下时,无论x轴的方向如何,弯矩二阶导数均为负,曲线开口向着y轴的负向,因此B、C、D都是正确的.3(5-3)、应用平衡微分方程画出下列各梁的剪力图和弯矩图,并确定|F Q|max和|M|max.(本题和下题内力图中,内力年夜小只标注相应的系数.)解:4(5-4)、试作下列刚架的弯矩图,并确定|M|max.解:5(5-5)、静定梁接受平面载荷,但无集中力偶作用,其剪力图如图所示.若已知A端弯矩M(0)=0,试确定梁上的载荷(包括支座反力)及梁的弯矩图.解:6(5-6)、已知静定梁的剪力图和弯矩图,试确定梁上的载荷(包括支座反力).解:7(5-7)、静定梁接受平面载荷,但无集中力偶作用,其剪力图如图所示.若已知E端弯矩为零.请:(1)在Ox坐标中写出弯矩的表达式;(2)试确定梁上的载荷及梁的弯矩图.解:8(5-10) 在图示梁上,作用有集度为m=m(x)的分布力偶.试建立力偶矩集度、剪力及弯矩间的微分关系.解:用坐标分别为x与x+d x的横截面,从梁中切取一微段,如图(b).平衡方程为9(5-11) 对图示杆件,试建立载荷集度(轴向载荷集度q或扭力矩集度m)与相应内力(轴力或扭矩)间的微分关系.解:(a) 用坐标分别为x与x+d x的横截面,从杆中切取一微段,如图(c).平衡方程为(b) 用坐标分别为x与x+d x的横截面,从杆中切取一微段,如图(d).平衡方程为10(5-18) 直径为d的金属丝,环绕在直径为D的轮缘上.试求金属丝内的最年夜正应变与最年夜正应力.已知资料的弹性模量为E.解:11(5-23) 图示直径为d的圆木,现需从中切取一矩形截面梁.试问:(1) 如欲使所切矩形梁的弯曲强度最高,h和b应分别为何值;(2) 如欲使所切矩形梁的弯曲刚度最高,h和b应分别为何值;解:(1) 欲使梁的弯曲强度最高,只要抗弯截面系数取极年夜值,为此令(2) 欲使梁的弯曲刚度最高,只要惯性矩取极年夜值,为此令12(5-24) 图示简支梁,由№18工字钢制成,在外载荷作用下,测得横截面A底边的纵向正应变ε×10-4,试计算梁内的最年夜弯曲正应力.已知钢的弹性模量E=200GPa,a=1m.解:梁的剪力图及弯矩图如图所示,从弯矩图可见:13(5-32) 图示槽形截面铸铁梁,F=10kN,M e=70kN·m,许用拉应力[σt]=35MPa,许用压应力[σc]=120MPa.试校核梁的强度. 解:先求形心坐标,将图示截面看成一年夜矩形减去一小矩形惯性矩弯矩图如图所示,C 截面的左、右截面为危险截面. 在 C 左截面,其最年夜拉、压应力分别为夜拉、压应力分别为在 C 右截面,其最年 故14(5-35) 图示简支梁,由四块尺寸相同的木板胶接而成,试校核其强度. 已 知 载 荷 F=4kN , 梁 跨 度 l=400mm , 截 面 宽 度 b=50mm , 高 度 h=80mm,木板的许用应力[σ]=7MPa,胶缝的许用切应力[τ]=5MPa.解:从内力图可见木板的最年夜正应力由剪应力互等定理知:胶缝的最年夜切应力即是横截面上的最年夜切 应力 可见,该梁满足强度条件.15(5-41) 图示简支梁,接受偏斜的集中载荷 F 作用,试计算梁内的最年 夜弯曲正应力.已知 F=10kN,l=1m,b=90mm,h=180mm.解: 16(5-42) 图示悬臂梁,接受载荷 F1 与 F2 作用,已知 F1=800N,F2,l=1m,许用应力[σ]=160MPa.试分别按下列要求确定截面尺寸: (1) 截面为矩形,h=2b; (2) 截面为圆形.解:(1) 危险截面位于固定端(2)17(5-45) 一铸铁梁,其截面如图所示,已知许用压应力为许用拉应力 的 4 倍,即[σc]=4 [σt].试从强度方面考虑,宽度 b 为何值最佳. 解: 又因 y1+y2=400 mm,故 y1=80 mm,y2=320 mm.将截面对形心轴 z 取静 矩,得18(5-54) 图示直径为 d 的圆截面铸铁杆,接受偏心距为 e 的载荷 F 作用. 试证明:当 e≤d/8 时,横截面上不存在拉应力,即截面核心为 R=d/8 的圆形区域. 解: 19(5-55) 图示杆件,同时接受横向力与偏心压力作用,试确定 F 的许用 值.已知许用拉应力[σt]=30MPa,许用压应力[σc]=90MPa. 解:故 F 的许用值为.第 七 章 应力、应变状态分析7-1(7-1b) 已知应力状态如图所示(应力单位为 ),试用解析法计算 图中指定截面的正应力与切应力.解: 与 截面的应力分别为:;;;MPa7-2(7-2b)已知应力状态如图所示(应力单位为 ),试用解析法计算 图中指定截面的正应力与切应力.解: 与 截面的应力分别为:;;;7-3(7-2d)已知应力状态如图所示(应力单位为 ),试用图解法计算 图中指定截面的正应力与切应力.解:如图,得: 指定截面的正应力 切应力7-4(7-7) 已知某点 A 处截面 AB 与 AC 的应力如图所示(应力单位为 ),试用图解法求主应力的年夜小及所在截面的方位.解:由图,根据比例尺,可以获得:,,最年夜切应力.7-5(7态如图 向应力 力、最10c)已知应力状 所示,试画三 圆,并求主应 年夜正应力与解:对图示应力状态, 是主应力状态,其它两个主应力由 、 、 确定.在 平面内,由坐标( , )与( , )分别确定 和 点,以 为直径画 圆与 轴相交于 和 .再以 及 为直径作圆,即得三向应力圆.由上面的作图可知,主应力为,,,7-6(7-12)已知应力状态如图所示(应力单位为 ),试求主应力的年 夜小.解: 与 截面的应力分别为:;;;在 截面上没有切应力,所以是主应力之一.;;;7-7(7-13)已知构件概况某点处的正应变,,切应变,试求该概况处 方位的正应变 与最年夜应变 及其所在方位.解:得:7-8(7-20)图示矩形截面杆,接受轴向载荷 F 作用,试计算线段 AB 的正 应变.设截面尺寸 b 和 h 与资料的弹性常数 E 和μ均为已知.解:,,,AB 的正应酿成7-9(7-21)在构件概况某点 O 处,沿 , 与 方位,粘贴三个应变片,测得该三方位的正应变分别为,与,该概况处于平面应力状态,试求该点处的应力 , 与 .已知资料的弹性模量,泊松比解:显然,,并令,于是得切应变:7-10(7-6)图示受力板件,试证明 A 点处各截面的正应力与切应力均为零.证明:若在尖点 A 处沿自由鸿沟取三角形单位体如图所示,设单位体 、 面上的应力分量为 、 和 、 ,自由鸿沟上的应力分量为 ,则有由于、,因此,必有 、 、.这时,代表 A 点应力状态的应力圆缩为 坐标的原点,所以 A 点为零应力状态.7-11(7-15)构件概况某点 处,沿 , , 与 方位粘贴四个应变片,并测得相应正应变依次为,,与,试判断上述测试结果是否可靠.解:很明显,,得:又得:根据实验数据计算获得的两个 结果纷歧致,所以,上述丈量结果不 成靠.第 八 章应力状态与强度理论 1、 (8-4)试比力图示正方形棱柱体在下列两中情况下的相当应力 , 弹性常数 E 和μ均为已知. (a) 棱柱体轴向受压; (b) 棱柱体在刚性方模中轴向受压.解:对图(a)中的情况,应力状态如图(c) 对图(b)中的情况,应力状态如图(d)所以,,2、 (8-6)图示钢质拐轴,接受集中载荷 F 作用.试根据第三强度理论确 定轴 AB 的直径.已知载荷 F=1kN,许用应力[σ]=160Mpa. 解:扭矩弯矩 由 得:所以,3、 (8-10)图示齿轮传动轴,用钢制成.在齿轮Ⅰ上,作用有径向力、切向力;在齿轮Ⅱ上,作用有切向力、径向力.若许用应力[σ]=100Mpa,试根据第四强度理论确定轴径.解:计算简图如图所示,作 、 、 图.从图中可以看出,危险截面为 B 截面.其内力分量为: 由第四强度理论 得:4、8-4 圆截面轴的危险面上受有弯矩My、扭矩Mx 和轴力FNx 作 用,关于危险点的应力状态有下列四种.试判断哪一种是正确的. 请选择正确谜底. (图中微元上平行于纸平面的面对应着轴的横截面) 答:B5、 (8-13)图示圆截面钢杆,接受载荷 , 与扭力矩 作用.试根据第三强度理论校核杆的强度.已知载荷N,,扭力矩,许用应力[σ]=160Mpa.解:弯矩满足强度条件.6、 (8-25)图示铸铁构件,中段为一内径 D=200mm、壁厚δ=10mm 的圆筒,圆筒内的压力p=1Mpa,两真个轴向压力F=300kN,资料的泊松比μ,许用拉应力[σt]=30Mpa.试校核圆筒部份的强度.解:,,由第二强度理论:满足强度条件.7、(8-27)图薄壁圆筒,同时接受内压p与扭力矩M作用,由实验测得筒壁沿轴向及与轴线成方位的正应变分别为和.试求内压p与扭力矩M之值.筒的内径为D、壁厚δ、资料的弹性模量E与泊松比μ均为已知.解:,,,很显然,8、(8-22)图示油管,内径D=11mm,壁厚δ,内压p,许用应力[σ]=100Mpa.试校核油管的强度.解:,,由第三强度理论,满足强度条件.9、(8-11)图示圆截面杆,直径为d,接受轴向力F与扭矩M作用,杆用塑性资料制成,许用应力为[σ].试画出危险点处微体的应力状态图,并根据第四强度理论建立杆的强度条件.解:危险点的应力状态如图所示.,由第四强度理论,,可以获得杆的强度条件:10、(8-17)图示圆截面圆环,缺口处接受一对相距极近的载荷作用.已知圆环轴线的半径为,截面的直径为,资料的许用应力为,试根据第三强度理论确定的许用值.解:危险截面在A或B截面A:,,截面B:,由第三强度理论可见,危险截面为A截面.,得:即的许用值为:11、(8-16)图示等截面刚架,接受载荷与作用,且.试根据第三强度理论确定的许用值.已知许用应力为,截面为正方形,边长为,且.解:危险截面在A截面或C、D截面,C截面与D截面的应力状态一样. C截面:由第三强度理论,得:A截面:由第三强度理论,得:比力两个结果,可得:的许用值:12、(8-25)球形薄壁容器,其内径为,壁厚为,接受压强为p之内压.试证明壁内任一点处的主应力为,.证明:取球坐标,对球闭各点,以球心为原点.,,由于结构和受力均对称于球心,故球壁各点的应力状态相同.且由于球壁很薄.,对球壁上的任一点,取通过该点的直径平面(如图),由平衡条件对球壁内的任一点,因此,球壁内的任一点的应力状态为:,证毕.。
应力与应变分析材料力学

(
20)sin
60
o
单位:sM" Pa
t
a
30
2
40
sin
60
o
(
20
)cos60o
20.3MPa
2)ss'''
30 2
40
30 40 2
2
202
35.3MPa 45.3MPa
s1 s' 35.3MPa ,s 2 0,s 3 s'' 45.3MPa
tg2a
0
20 30 40
a0 14.9o,主单元体如上
第一节 应力状态的概念
应力与应变分析
一、一点的应力状态
1.一点的应力状态:通过受力构件一点处各个不同截面
上的应力情况。
2.研究应力状态的目的:找出该点的最大正应力和剪应力
数值及所在截面的方位,以便研究构件破坏原因并进行失效分 析。
二、研究应力状态的方法—单元体法
1.单元体:围绕构件内一所截取的微小正六面体。
t—使微元产生顺时针转动趋势者为正,反之为负
3.主应力及其方位:
①由主平面定义,令t
=0,得:
tan 2a0
2t xy sx sy
可求出两个相差90o的a0值,对应两个互相垂直主平面。
②令
ds a da
0
得: tan 2a0
2t xy sx s
y
即主平面上的正应力取得所有方向上的极值。
③主应力大小:
sy z
Z sz
应力与应变分析
tzy tzx
txy
tyx
tyz
txz
O
txy
sx
工程力学-材料力学之应力应变状态分析

求:(1)A点处的主应变 1, 2 , 3
(2)A点处的线应变 x , y , z
F1 b A F2 z b=50mm h=100mm
Hale Waihona Puke 19F2al
解:梁为拉伸与弯曲的组合变形. A点有拉伸引起的正应力
和弯曲引起的切应力.
铜块横截面上的压应力mpa3010300analysiessst155mpa铜块的主应力为mpampa30最大切应力mpa2510951010034analysiessst例题11一直径d20mm的实心圆轴在轴的的两端加力矩m126n45方向的应变analysiessstanalysiessst外径d60mm的薄壁圆筒在表面上k点与其轴线成45y两方向分别贴上应变片然后在圆筒两端作用矩为的扭转力偶如图所示已知圆筒材料的弹性常数为若该圆筒的变形在弹性范围内且analysiessst从圆筒表面k点处取出单元体其各面上的应力分量如图所示可求得mpa80maxmpa80maxanalysiessstmaxmaxmax10拉应变圆筒表面上k点处沿径向z轴的应变和圆筒中任一点该点到圆筒横截面中心的距离为maxmax因此该圆筒变形后的厚度并无变化仍然为t10mmanalysiessstb50mmh100mm例题13已知矩形外伸梁受力f作用
在任意形式的应力状态下, 各向同性材料内一点处的体
积应变与通过该点的任意三个相互垂直的平面上的正应力之
和成正比, 而与切应力无关.
11
例题10 边长 a = 0.1m 的铜立方块,无间隙地放入体积较大, 变形可略去
不计的钢凹槽中, 如图所示. 已知铜的弹性模量 E=100GPa,泊松比 =0.34, 当受到F=300kN 的均布压力作用时,求该铜块的主应力、体积应变以及最
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
max
1
1 3 87.7 (40) 63.85MPa 2 2
由广义虎克定律求得主应变
1 1 3 [1 ( 2 3 )] [ 87 . 7 0 . 3 ( 2 . 3 40 )] 0 . 495 10 E 200103 1 1 3 2 [ 2 (3 1 )] [ 2 . 3 0 . 3 ( 40 87 . 7 )] 0 . 06 10 E 200103 1 1 3 3 [3 (1 2 )] [ 40 0 . 3 ( 87 . 7 2 . 3 )] 0 . 335 10 E 200103
典型题精解(4-1)
4-1 图4-1(a)所示一单元处于平面应力状态。试求:1)主应力及主 平面;2)最大切应力及其作用平面。 解(一)解析法 ; y 30MPa; x 20MPa. 由单元体可知 x 20MPa
30MPa
1
20MPa 20MPa
K E
D1
a
1)极值正应力
所以,主应力 1 主平面
37MPa; 3 27MPa(2 0).
所以,
2 x 2 ( 20) tg 20 0.8 x y 20 30 0 19.33o ,主应力单元体如图4-1(a)所示
典型题精解(4-1)
2)最大切应力
2
0 28.2o
x y 2 x y 2
x y 2
cos 2 x sin 2
sin 2 x cos 2
27.6 52.3 27.6 52.3 20 cos[2 (90o )] 18.6 sin[2 (90o )] 2 2 27.6 52.3 10 sin[2 (90o )] 18.6 cos[2(90o )] 2
2
) (
2 2
x y
2
典型题精解(4-2)
代入已知数据得
2 解方程得x平面上的正应力 x 27.6MPa
主应力
1 2
(20
x 52.3
2
) 10 (
2 2
x 5Байду номын сангаас.3
2
) 2 18.62
x y 2
x y 2 x 2
2
27.6 52.3 27.6 52.3 2 62.3 18.6 17.6 MP a 2 2
主平面方位
2x 2 18.6 tg2 0 1.506 x y 27.6 52.3
典型题精解(4-2)
所以, 2)由平面应力状态任意截面的应力公式
3
图4-1
B1
D
O
A1
b
典型题精解(4-1)
max min
x y 2
x y 2 x 2
2
2
20 30 20 30 2 37 ( 20 ) 27 MP a 2 2
解得
代入平面2及x平面和y平面上的应力,得
48.5o
典型题精解(4-3)
4-3 一单元体应力状态如图4-3所示。已知材料的E=20Mpa,u=0.3 试求:1)单元体的主应力及最大切应力;2)单元体的主应变和体积应变; z 3)单元体的弹性比能、体积改变比能和形状改变比能。 解:1)由单元体图可以看出z截面的切应力为零, 60MPa 因而z截面的正应力 z 40MPa ,即是一个 40MPa 主应力。 两个主应力分别为 30MPa
所以 1 25.67o (115 .67o ) ,由 1 的作用平面也可判定最大切应力 o 作用平面是 115 。 . 67 0 (二)图解法 按照作应力圆的方法在 , 坐标系内,按选定的比例尺,由 x 20MPa; x 20MPa. 得到D点,D点对应于x截面。由
x 18.6MPa.
1
10MPa 20MPa
x
平面2上的应力在x平面和y平面所确定 的应力圆上,平面2的法线和x方向的夹 角 90o ,则
20MPa, 10MPa
52.3MPa
y
2 )2 x
18.6MPa
图4-2
由应力圆的方程知
(
x y
东南大学远程教育
材 料 力 学
第八讲 主讲教师:马军
典型题精解(4-2)
y 30MPa; y 20MPa.
D1点对应于y截面。再由D 点和D1 两点绘出相应的应力圆, 得到D1 点, 如图4-1(b)所示。 应力圆和 轴相交于A1 , B1 两点,即为两个主应力值,由图中量得
1 52.3MPa, 3 27MPa 应力圆的最高点E 相应于最大切应力,由图中量得 max 32MPa, 1 115.67o
x y
2
x y 2 x 2
2
2
40MPa
图4-3
x
30 60 30 60 2 y ( 40 ) 2 2
.7 87 2.3 MPa
典型题精解(4-3)
所以三个主应力为
1 87.7MPa; 2 2.3MPa; 3 40MPa.
x y 20 30 2 2 max ( 20 ) 32MPa x 2 2
2
最大切应力作用平面
x y 20 30 tg 21 1.25 2 x 2 ( 20)
典型题精解(4-2)
4-2 已知如图4-2所示过一点两个平面上的应力。试求:1)该点 的主应力及主平面;2)两平面的夹角。 解:1)设平面1的法线方向为y方向,平面1就是y平面,其上的应力 为
y 52.3MPa; y 18.6MPa.
2
与y平面正交的x平面上的切应力为 X平面上的正应力 x未知。