长春市2020届高三质量监测数学理科
长春市2020年度高三质量监测数学理科

长春市 2020 届高三质量监测(一) 理科数学一、选择题:本题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符 合题目要求的. 1. 已知集合{|||2}A x x =≥,2{|30}B x x x =-> ,则A B =IA. ∅B. {|3,x x >或x ≤2}-C. {|3,x x >或0}x <D. {|3,x x >或2}x ≤ 2. 复数252i +i z =的共轭复数z 在复平面上对应的点在A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 已知31()3a =,133b =,13log 3c =,则A. a b c <<B. c b a <<C. c a b <<D. b c a << 4. 已知直线0x y +=与圆22(1)()2x y b -+-=相切,则b = A. 3- B. 1 C. 3-或1 D.525. 2019年是新中国成立七十周年,新中国成立以来,我国文化事业得到了充分发展,尤其是党的十八大以来,文化事业发展更加迅速,下图是从2013 年到 2018 年六年间我国公共图书馆业机构数(个)与对应年份编号的散点图(为便于计算,将 2013 年编号为 1,2014 年编号为 2,…,2018年编号为 6,把每年的公共图书馆业机构个数作为因变量,把年份编号从 1 到 6 作为自变量进行回归分析),得到回归直线ˆ13.7433095.7yx =+,其相关指数2R 0.9817=,给出下列结论,其中正确的个数是①公共图书馆业机构数与年份的正相关性较强 ②公共图书馆业机构数平均每年增加 13.743 个③可预测 2019 年公共图书馆业机构数约为 3192 个A. 0B. 1C. 2D. 36. 中国传统扇文化有着极其深厚的底蕴. 一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为1S ,圆面中剩余部分的面积为2S ,当1S 与2S 的比值为512-时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为A. (35)π-B. 51)πC. 51)πD. 52)π7. 已知,,a b c 为直线,,,αβγ平面,则下列说法正确的是 ① ,a b αα⊥⊥,则//a b ② ,αγβγ⊥⊥,则αβ⊥ ③ //,//a b αα,则//a b ④//,//αγβγ,则//αβA. ① ② ③B. ② ③ ④C. ① ③D. ① ④8. 已知数列{}n a 为等比数列,n S 为等差数列{}n b 的前n 项和,且21a =,1016a =,66a b = ,则11S = A. 44 B. 44- C. 88 D. 88-9. 把函数()y f x =图象上所有点的横坐标伸长到原来的2倍,得到2sin()y x ωϕ=+(0,||)2πωϕ><的图象(部分图象如图所示) ,则()y f x =的解析式为A. ()2sin(2)6f x x π=+ B. ()2sin()6f x x π=+C. ()2sin(4)6f x x π=+D. ()2sin()6f x x π=- 10. 已知函数()y f x =是定义在R 上的奇函数,且满足(2)()0f x f x ++=,当[2,0]x ∈-时,2()2f x x x =--,则当[4,6]x ∈时,()y f x =的最小值为A. 8-B. 1-C. 0D. 111. 已知椭圆22143x y +=的右焦点F 是抛物线22(0)y px p =>的焦点,则过F 作倾斜角为60︒的直线分别交抛物线于,A B (A 在x 轴上方)两点,则||||AF BF 的值为 A.3 B. 2 C. 3 D. 412. 已知函数21()(2)e x f x x x -=-,若当1x > 时,()10f x mx m -++≤有解,则m 的取值范围为A. m ≤1B. m <-1C. m >-1D. m ≥1 二、填空题:本题共4小题,每小题5分. 13. 381(2)x x-展开式中常数项为___________.14.边长为2正三角形ABC 中,点P 满足1()3AP AB AC =+u u u r u u u r u u u r,则BP BC ⋅=u u r u u u r _________.15.平行四边形ABCD 中,△ABD 是腰长为2的等腰直角三角形,90ABD ∠=︒,现将△ABD 沿BD 折起,使二面角A BD C --大小为23π,若,,,A B C D 四点在同一球面上,则该球的表面积为________. 16.已知数列{}n a 的前项n 和为n S ,满足112a =-,且1222n n a a n n++=+,则2n S = __________,n a =__________.三、解答题:共 70 分,解答应写出文字说明、证明过程或演算步骤. 第 17~21 题为必考 题,每个试题考生都必须作答. 第 22~23 题为选考题,考生根据要求作答. (一)必考题:共 60 分. 17.(本小题满分 12 分)△ABC 的内角,,A B C 的对边分别为,,a b c ,tan ()a b A a b => . (Ⅰ)求证:△ABC 是直角三角形;(Ⅱ)若10c =,求△ABC 的周长的取值范围. 18. (本小题满分 12 分)如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,//AB CD ,AD DC ⊥,22AB AD DC ===,E 为PB 中点.(Ⅰ)求证://CE 平面PAD ;(Ⅱ)若4PA =,求平面CDE 与平面ABCD 所成锐二面角的大小. 19.(本小题满分 12 分)某次数学测验共有 10 道选择题,每道题共有四个选项,且其中只有一个选项是正确 的,评分标准规定:每选对 1 道题得 5 分;不选或选错得 0 分. 某考生每道题都选并能确定其中有 6 道题能选对,其余 4 道题无法确定正确选项,但这 4 道题中有 2 道题能排除两个错误选项,另 2 道只能排除一个错误选项,于是该生做这 4 道题时每道题都从不能排除的选项中随机选一个选项作答,且各题作答互不影响.(Ⅰ)求该考生本次测验选择题得 50 分的概率;(Ⅱ)求该考生本次测验选择题所得分数的分布列和数学期望. 20.(本小题满分 12 分)已知点(1,0),(1,0)M N -若点(,)P x y 满足||||4PM PN +=. (Ⅰ)求点P 的轨迹方程;(Ⅱ)过点(3,0)Q 的直线l 与(Ⅰ)中曲线相交于,A B 两点,O 为坐标原点, 求△AOB 面积的最大值及此时直线l 的方程. 21.(本小题满分 12 分)已知函数()(1)ln f x x x =-,3()ln eg x x x =--. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)令()()()(0)h x mf x g x m =+>两个零点1212,()x x x x < ,证明:121ex e x +>+. (二)选考题:共 10 分,请考生在 22、23 题中任选一题作答,如果多做则按所做的第一题计分. 22.(本小题满分 10 分)选修 4-4 坐标系与参数方程在平面直角坐标系xOy 中,直线l 的参数方程为212222x ty t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为24cos 3ρρθ-=.(Ⅰ)求直线l 的普通方程和圆C 的直角坐标方程;(Ⅱ)直线l 与圆C 交于,A B 两点,点(1,2)P ,求||||PA PB ⋅的值. 23. (本小题满分 10 分)选修 4-5 不等式选讲已知函数()|3||1|f x x x =+-- . (Ⅰ)解关于x 的不等式()1f x x +≥ ;(Ⅱ)若函数()f x 的最大值为M ,设0,0a b >>,且(1)(1)a b M ++=,求a b + 的最小值.长春市2020届高三质量监测(一) 数学(理科)试题参考答案及评分参考一、选择题(本大题共12小题,每小题5分,共60分) 1. B 【解析】{|||2}{|2,2}A x x x x x =≥=-或≤≥,2{|30}{|0,3}B x x x x x x =->=<>或,∴A B =I {|3,x x >或x ≤2}-2. C 【解析】252i +i 2i z ==-+,则z 2i =--,其对应点为(2,1)--,在第三象限3. C 【解析】01,1,0a b c <<><,∴c a b <<4. C 【解析】 由圆心到切线的距离等于半径,得22211=+∴|1|2b +=∴13b b ==-或5. D 【解析】由图知点散布在从左下角到右上角的区域内,所以为正相关,又2R 0.9817=趋近于1,所以相关性较强,故①正确;由回归方程知②正确;由回归方程,当7x =时,得估计值为3191.9≈3192,故③正确.6. A 【解析】1S 与2S 所在扇形圆心角的比即为它们的面积比,设1S 与2S 所在扇形圆心角分别为,αβ,则512αβ-=,又2αβπ+=,解得(35)απ=- 7. D 【解析】①正确; ② 错误;③错误;④正确8. A 【解析】 2210661164a a a a =⨯==∴,∴664b a ==,1161144S b ==9. C 【解析】由2sin(0)1ωϕϕ⋅+=π∴=6,由112sin()0212ωπϕω⋅+==∴即2sin(2)6y x π=+,横坐标缩短到原来的12倍,得2sin(4)6y x π=+,即为()f x 解析式.10. B 【解析】由(2)()0f x f x ++=得函数的周期为4,又当[2,0]x ∈-时,2()2f x x x =--,且()f x 是定义在R 上的奇函数∴[0,2]x ∈时,2()2f x x x =-,∴当[4,6]x ∈时,22()(4)(4)2(4)1024f x f x x x x x =-=---=-+此时()f x 的最小值为(5)1f =-.[法2:由周期为4,()f x 在[0,2]上的最小值即为()f x 在[4,6]上的最小值]11. C 【解析】椭圆的右焦点为(1,0),∴12p =∴2p =,||1cos60p AF =-︒,||1cos60pBF =+︒,∴||10.53||10.5AF BF +==-. 12. C 【解析】21()(2)ex f x x -'=-∴()f x 在(1,2)上递减,在(2,)+∞上递增,当2x >时,()0f x >,又(1)1f =-,(2)1f <-,(2)0f =∵(1)1f '=-∴m >-1二、填空题(本大题共4小题,每小题5分,16题第一空2分,第二空3分,共20分) 13. 112【解析】由3883(8)1881(2)()2(1)rrr r r r r r r T C x C x x----+=-=-有3(8)0r r --=得6r =∴6866782(1)112T C -=-=14. 2【解析】112(())()()()333BP BC AB AC AB AC AB AC AB AC AB ⋅=+-⋅-=-⋅-u u r u u u r u u u r u u u r u u u r u u u r u u u r u u ur u u u r u u u r u u u r221248122233332AC AB AC AB =+-⋅=+-⨯⨯=u u u r u u u r u u u r u u u r15. 20π【解析】取AD,BC 的中点分别为12,O O ,过1O 作面ABD 的垂线与过2O 作面BCD 的垂线,两垂线交点O 即为所求外接球的球心,取BD 中点E ,连结12,O E O E ,则12O EO ∠即为二面角A BD C --的平面角,121O E O E ==,连OE ,在Rt △1O OE 中,13OO =,在Rt △1O OA 中,12O A =得5OA =,即球半径为5,所以球面积为20π.16.221n n +,1(1)(1)n n n -++【解析】由1222n n a a n n ++=+得21222(21)2(21)n n a a n n -+=-+-211(21)(21)2121n n n n ==--+-+∴2nS =1113-+1135-+…+112121n n --+1121n =-+. 由111212a =-=-⨯递推得277623a ==⨯,311111234a =-=-⨯,421212045a ==⨯,归纳可得1(1)(1)n n n -++.【法2:】122111111=()()22112n n a a n n n n n n n n ++=-=-+-+++++∴11111()[()]112n n a a n n n n +--=---+++∴11{()}1n a n n --+为首项为1-,公比为1-的等比数列,11111()=(1)=(1)+()=(1)+11(1)n n n n n a a n n n n n n ------+++∴三、解答题17. (本小题满分12分)【命题意图】本题考查三角函数的相关知识,特别是三角函数中的取值范围问题. 【试题解析】解:(Ⅰ)由题可知sin sin sin cos AA B A=⋅,即sin cos B A =, 由a b >,可得2A B π+=,即ABC △是直角三角形.(6分)(Ⅱ)ABC ∆的周长1010sin 10cos L A A =++,10102)4L A π=++,由a b >可知,42A ππ<<2sin()14A π<+<,即2010102L <<+(12分) 18. (本小题满分12分)【命题意图】本题考查立体几何相关知识. 【试题解析】解:(Ⅰ)取PA 中点M ,连结EM 、DM ,//////EM CD CE DM CE PAD EM CD DM PAD ⎫⎫⇒⎬⎪⇒=⎬⎭⎪ ⊂⎭平面平面.(6分) (Ⅱ)以A 为原点,以AD 方面为x 轴,以AB 方向为y 轴,以AP 方向为z 轴, 建立坐标系.可得(2,0,0)D ,(2,1,0)C ,(0,0,4)P ,(0,2,0)B ,(0,1,2)E ,(0,1,0)CD =-u u u r ,(2,0,2)CE =-u u u r,平面CDE 的法向量为1(1,0,1)n =u r;平面ABCD 的法向量为2(0,0,1)n =u u r;因此1212||2cos ||||2n n n n θ⋅==⋅u r u u r. 即平面CDE 与平面ABCD 所成的锐二面角为4π.(12分)19. (本小题满分12分)【命题意图】本题考查概率的相关知识.【试题解析】解:(Ⅰ)该考生本次测验选择题得50分即为将其余4道题无法确定 正确选项的题目全部答对,其概率为11111(50)223336P X ==⋅⋅⋅=. (4分)(Ⅱ)设该考生本次测验选择题所得分数为X , 则X 的可能取值为30,35,40,45,50.11224(30)223336P X ==⋅⋅⋅=112211221112112112(35)223322332233223336P X ==⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅=11221112112111121121111113(40)22332233223322332233223336P X ==⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅=11111111112111126(45)223322332233223336P X ==⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅=11111(50)223336P X ==⋅⋅⋅=选择题所得分数为X 的数学期望为3EX =. (12分)20. (本小题满分12分)【命题意图】本小题考查圆锥曲线中的最值问题等知识. 【试题解析】解:(Ⅰ)由定义法可得,P 点的轨迹为椭圆且24a =,1c =.因此椭圆的方程为22143x y +=. (4分)(Ⅱ)设直线l 的方程为x ty =与椭圆22143x y +=交于点11(,)A x y ,22(,)B x y ,联立直线与椭圆的方程消去x 可得22(34)30t y +--=,即12y y+=,122334y y t -=+.AOB ∆面积可表示为1211||||2AOB S OQ y y =⋅-=△216234t==+u =,则1u ≥,上式可化为26633u u u u=++, 当且仅当u =3t =±时等号成立, 因此AOB ∆l 的方程为3x y =±. (12分) 21. (本小题满分12分)【命题意图】本小题考查函数与导数的相关知识.【试题解析】解:(Ⅰ)由题可知1()ln 1f x x x'=+-, ()f x '单调递增,且(1)0f '=,当01x <<时,()0f x '<,当1x ≥时,()0f x '≥;因此()f x 在(0,1)上单调递减,在[1,)+∞上单调递增. (4分)(Ⅱ)由3()(1)ln ln h x m x x x x e=-+--有两个零点可知由11()(1ln )1h x m x x x'=+-+-且0m >可知,当01x <<时,()0h x '<,当1x ≥时,()0h x '≥;即()h x 的最小值为3(1)10h e=-<,因此当1x e =时,1113(1)2()(1)(1)(1)0m e e h m e e e e e -+-=--+---=>, 可知()h x 在1(,1)e上存在一个零点;当x e =时,3()(1)10h e m e e e=-+-->,可知()h x 在(1,)e 上也存在一个零点;因此211x x e e -<-,即121x e x e+>+. (12分)22. (本小题满分10分)【命题意图】本小题主要考查极坐标与参数方程的相关知识. 【试题解析】解:(Ⅰ)直线l 的普通方程为30x y +-=, 圆C 的直角坐标方程为22430x y x +--=.(5分) (Ⅱ)联立直线l 的参数方程与圆C 的直角坐标方程可得22(1)(2)4(1)30222-++---=,化简可得220t +-=.则12||||||2PA PB t t ⋅==. (10分) 23. (本小题满分10分)【命题意图】本小题主要考查不等式的相关知识. 【试题解析】(Ⅰ)由题意 (3)(1),34,3()(3)(1),3122,31(3)(1),14,1x x x x f x x x x x x x x x x ---- <-- <-⎧⎧⎪⎪=+-- - =+ -⎨⎨⎪⎪+-- > >⎩⎩≤≤≤≤当3x <-时,41x -+≥,可得5x -≤,即5x -≤.当31x -≤≤时,221x x ++≥,可得1x -≥,即11x -≤≤. 当1x >时,41x +≥,可得3x ≤,即13x <≤.综上,不等式()1f x x +≥的解集为(,5][1,3]-∞--U .(5分)(Ⅱ)由(Ⅰ)可得函数)(x f 的最大值4M =,且14ab a b +++=,即23()()2a b a b ab +-+=≤,当且仅当a b =时“=”成立,可得2(2)16a b ++≥,即2a b +≥,因此b a +的最小值为2.(10分)。
吉林省长春市2020届高三质量监测(四模)数学(理科)试题(详解)

吉林省长春市2020届高三质量监测(四)理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合2{|1},{|0}A x xB x x ==<,则()RA B =A.{|1}x xB.{|1}x x >C.{|1x x <-或01}x <≤ D .{|101}x x x -<或 2.在等比数列{}n a 中,363,6a a ==,则9a = A.19B.112C. 9D. 123.设复数()i ,z x y x y =+∈R ,下列说法正确的是 A.z 的虚部是i y ; B.22||z z =;C.若0x =,则复数z 为纯虚数;D.若z 满足|i |1z -=,则z 在复平面内对应点(),x y 的轨迹是圆.4.树立劳动观念对人的健康成长至关重要,某实践小组共有4名男生,2名女生,现从中选出4人参加校园植树活动,其中至少有一名女生的选法共有A. 8种B. 9种C. 12种D. 14种 5.若sin 831πθ⎛⎫+= ⎪⎝⎭,则sin 24πθ⎛⎫-= ⎪⎝⎭A. 29-B. 29C. 79-D. 796.田径比赛跳高项目中,在横杆高度设定后,运动员有三次试跳机会,只要有一次试跳成功即完成本轮比赛.在某学校运动会跳高决赛中,某跳高运动员成功越过现有高度即可成为本次比赛的冠军,结合平时训练数据,每次试跳他能成功越过这个高度的概率为0.8(每次试跳之间互不影响),则本次比赛他获得冠军的概率是A. 0.832B. 0.920C. 0.960D. 0.992 7.已知()50.5log 2,log 0.2,ln ln 2a b c ===,则,,a b c 的大小关系是 A. a b c << B. a c b << C. b a c << D. c a b <<8.已知直线a 和平面α、β有如下关系:①,αβ⊥②α//,β③,a β⊥④//a α,则下列命题为真的是 A. ①③∣④ B. ①④∣③ C. ③④∣① D. ②③∣④9.如图,为测量某公园内湖岸边,A B 两处的距离,一无人机在空中P 点处测得,A B 的俯角分别为,αβ,此时无人机的高度为h ,则AB 的距离为A. ()222cos 11sin si s n s n in i h βααβαβ-+-B. ()222cos 11sin si s n s n in i h βααβαβ-++C. ()222cos 11cos co c s c s os o hβααβαβ-+- D. ()222cos 11cos co c s c s os o h βααβαβ-++ 10.过抛物线()2:20C x py p =>的焦点F 作直线与该抛物线交于,A B 两点,若3||||AF BF =,O 为坐标原点,则||||AF OF = A.43 B. 34 C. 4 D. 5411.函数()()sin f x x ϕω=+的部分图象如图中实线所示,图中的圆C 与()f x 的图象交于,M N 两点,且M 在y 轴上,则下列说法中正确的是①函数()f x 的图象关于点4,03⎛⎫⎪⎝⎭成中心对称; ②函数()f x 在11,26⎛⎫-- ⎪⎝⎭上单调递增; ③圆C 的面积为3136π. A.①② B.①③ C.②③ D.①②③ 12.函数()()2R mxmx f x ee x mx m -=++∈-的图象在点()()()()1111,,,A xf x B x f x --处两条切线的交点0(P x ,0)y 一定满足 A. 00x =B. 0x m =C. 00y =D. 0y m =二、填空题:本题共4小题,每小题5分,共20分.13.已知双曲线()222210,0x y a b a b-=>>的离心率为2,则双曲线的渐近线方程为 .14.执行如图所示的程序框图,若输入[]1,3t ∈-,则输出s 的取值范围是 .15.已知向量()0,1,||7,1,AB AC AB BC ==⋅=则ABC ∆面积为 .16.已知正方体1111ABCD A B C D -的棱长为2,点,M N 分别是棱1,BC CC 的中点,则二面角C A N M --的余弦值为 ;若动点P 在正方形11BCC B (包括边界)内运动,且1PA //平面AMN ,则线段1PA 的长度范围是 .(本小题第一空2分,第二空3分)三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22~23题为选考题,考生根据要求作答. (一)必考题:共60分17.(12分)已知数列{}n a 是等比数列,且公比q 不等于1,数列{}n b 满足2n bn a =. (1)求证:数列{}n b 是等差数列; (Ⅱ)若13242,32a a a a ==+,求数列21}1{o l g n n b a +的前n 项和n S .18.(12分)如图,四棱锥P ABCD -中,底面ABCD 为梯形,//,90A B B D AD C ︒=∠,点E 为PB 的中点,且224CD AD AB ===,点F 在CD 上,且13DF FC =. (I)求证:EF //平面PAD ;(Ⅱ)若平面PAD ⊥平面ABCD ,PA PD =且PA PD ⊥,求直线PA 与平面PBF 所成角的正弦值.19.(12分)已知椭圆22:12x C y +=与x 轴正半轴交于点A ,与y 轴交于B 、D 两点.(I)求过,,A B D 三点的圆E 的方程;(Ⅱ)若O 为坐标原点,直线l 与椭圆C 和(I)中的圆E 分别相切于点P 和点Q (,P Q 不重合),求直线OP 与直线EQ 的斜率之积.20.(12分)武汉市掀起了轰轰烈烈的“十日大会战”,要在10天之内,对武汉市民做一次全员检测,彻底摸清武汉市的详细情况.某医院为筛查冠状病毒,需要检验血液是否为阳性,现有()*1000N n ∈份血液样本,有以下两种检验方式:方案①:将每个人的血分别化验,这时需要验1000次.方案②:按k 个人一组进行随机分组,把从每组k 个人抽来的血混合在一起进行检验,如果每个人的血均为阴性,则验出的结果呈阴性,这k 个人的血就只需检验一次(这时认为每个人的血化验1k次);否则,若呈阳性,则需对这k 个人的血样再分别进行一次化验这样,该组k 个人的血总共需要化验1k +次. 假设此次检验中每个人的血样化验呈阳性的概率为p ,且这些人之间的试验反应相互独立.(1)设方案②中,某组k 个人中每个人的血化验次数为X ,求X 的分布列;(Ⅱ)设0.1p =. 试比较方案②中,k 分别取2,3,4时,各需化验的平均总次数;并指出在这三种分组情况下,相比方案①,化验次数最多可以减少多少次?(最后结果四舍五入保留整数) 21.(12分)已知函数()2eln 2e ,.xf x a x a =∈-R (1)若函数()f x 在e2x =处有最大值,求a 的值; (Ⅱ)当e a ≤时,判断()f x 的零点个数,并说明理由.(二)选考题:共10分,请考生在22、23题中任选一题作答,如果多做则按所做的第一题计分. 22.[选修4-4坐标系与参数方程](10分)在平面直角坐标系xOy 中,曲线1C 的参数方程为1cos sin x y αα=+⎧⎨=⎩(α为参数),以坐标原点O 为极点,x 轴非负半轴为极轴建立极坐标系,点A 为曲线1C 上的动点,点B 在线段OA 的延长线上,且满足||||8,OA OB ⋅=点B 的轨迹为2C .(1)求曲线12,C C 的极坐标方程; (Ⅱ)设点M 的极坐标为32,2π⎛⎫⎪⎝⎭,求ABM ∆面积的最小值. 23.[选修4-5不等式选讲](10分) 已知函数()|23||23|.f x x x =-++ (1)解不等式()8f x ;(Ⅱ)设x ∈R 时(),f x 的最小值为M . 若实数,,a b c 满足2a b c M ++=,求222a b c ++的最小值.2020长春四模理科参考答案 1. B 【解析】2{|1}={|11}A x x x x =-≤≤∴={|1}A B x x ≤所以(){|1}RA B x x =>.2.D 【解析】369,,a a a 成等比数列,所以392636312a a a =÷=÷=.3.D 【解析】z 的实部为x ,虚部为y 所以A 错;2222222i,||z x y xy z x y =+=++所以B 错;当00x y ==,时,z 为实数,所以C 错;由|i |1z -=得22|i i |1|(1)i |1(1)1x y x y x y +-=⇒+-=⇒+-=,所以D 对.4.D 【解析】任意选有4615C =种,都是男生有1种,则至少有一名女生有14种.5.C 【解析】227sin 2sin 2cos 22sin 12()144483912πππππθθθθ⎛⎫⎛⎫⎛⎫⎛⎫-=+-=-+=+-=-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭.6.D 【解析】三次试跳都没成功的概率为30.2=0.008所以他获得冠军的概率是10.0080.992-=. 7.D 【解析】()50.50.5log 2(0,1),log 0.2log 0.51,ln ln 20a b c =∈=>==<. 8.C 【解析】①③∣④或a α⊂所以A 错;①④∣a 与β位置关系不确定,B 错; ③④∣①对,选C ;②③∣a α⊥所以D 错.9.A 【解析】点P 在AB 上的投影为O ,则在Rt △POB 中,sin h PB β=由正弦定理得sin()sin AB PBαβα=-所以sin()sin()=sin sin sin PB h AB αβαβαβα⋅--=======故选A 10.A 【解析】设直线AB 的倾斜角为α,则由53||||31sin 1sin 6p p AF BF πααα=⇒⋅=⇒=-+2||3p AF ⇒=所以2||43||32pAF p OF ==.11.B 【解析】由圆的对称性,三角函数的对称性得1,03⎛⎫ ⎪⎝⎭所以周期11=2()1236T ωπ+=⇒=又图象过点106⎛⎫- ⎪⎝⎭,所以=3πϕ即()i 2s n 3x f x ππ⎛⎫=+ ⎪⎝⎭ .验证084sin =333f ππ⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭成立,所以①对;由322222k x k ππππππ++-+≤≤(k ∈Z )即511212k x k -++≤≤所以②错;当0x =时,得点M 的坐标为所以圆的半径为||MC ==所以③对. 故选B. 12.A 【解析】()2mxmx f x me me x m -'=-+-在点()()()()1111,,,A x f x B x f x --处的切线分别为()()()()()()111111,y f x f x x x y f x f x x x ''-=---=-+消去y 得0x =.13.y x =±得ca b a=⇒=所以双曲线的渐近线方程为y x =±. 14.[0,1]【解析】当[1,1)t ∈-函数12e[e ,1)t s --=∈,当[1,3]t ∈时,3log [0,1]s t =∈值域的并集为[0,1].15.2【解析】||1,||7,||||cos()||cos 1AB AC AB BC AB BC B BC B π==⋅=⋅-=-=又由余弦定理 得222||||||2||||cos||2AC AB BC AB BC B BC =+-⋅⋅⇒=所以120B =︒ 16.2,[32【解析】延长AM 交DC 于点Q,过C 作AM 垂线AE ,垂足为E ,连接NE ,则∠NEC 为二面角C A N M --的平面角,计算得CE =,NE ==所以2cos 3NEC ∠==;由面面平行的性质得点P 在1BB 与11B C 中点的连线EF 上,设EF 中点为H,则1A H 最短,1A E 或1A F 同时最大,所以所求范围是[2. 17. 【解析】(I)已知数列{}n b 满足2n bn a =, 则2n n b log a =,1121222log log log log n n n n n na b b a a q a +++-=-==即数列{}n b 为等差数列.(6分)(Ⅱ)由41322,32a a a a ==+可得2332222q q q ⋅=⋅+,解得2q =或1q =(舍),即2n n a =设()211111log 11n n n c b a n n n n +===-++即数列21}1{log n n b a +的前n 项和为1111n nS n n =-=++ .(12分)18.【解析】( I)取PA 的中点M,连结DM 、EM. //EF DM ,DM ⊂平面PAD 所以EF ∥平面PAD.(6分) (Ⅱ)取AD 中点N,BC 中点H,连结PN 、NH.平面PAD ⊥平面ABCD,又PN AD ⊥所以PN ⊥平面ABCD,又AD NH ⊥. 以N 为原点,NA 方向为x 轴,NH 方向为y 轴,NP 方向为z 轴,建立空间坐标系.()()()()0,0,1,1,0,0,1,2,0,1,1,0P A B F -在平面PBF 中()(),1,2,1,2,1,0,BP BF =--=--则法向量()1,2,3n =--; 又()1,0,1PA =-;|||cos ,|||||2PA n PA n PA n ⋅<>===⋅即直线PA 与平面PBF (12分) 19.【解析】(I)点)()(),0,1,1,0,AB D 设点(),0,E m因此可得)221m m +=,4m =即圆E 的方程为22948x y ⎛-+= ⎝⎭(4分) (Ⅱ)由题意:可设l 的方程为y kx m =+ (k 存在且0)k ≠与椭圆C 联立消去y 可得()222124220,k xkmx m +++-=由直线l 与椭圆C 相切可设切点为()00,x y ,由判别式0=可得2212m k=+解得0021k x y m m=-=,.由圆E 与直线l 相切,即圆心到直线的距离等于半径,可得22889.k m =-+因此由222212889m k k m ⎧=+⎪⎨=-+⎪⎩可得2221241k m =-=直线OP 的斜率为12OP k k =-,直线EQ 的斜率1EQ k k=-, 综上2.1242OP EQ k kk ==⋅(12分) 20.【解析】(I)设每个人的血呈阴性反应的概率为q ,则1q p =-.所以k 个人的血混合后呈阴性反应的概率为kq ,呈阳性反应的概率为1kq -依题意可知1,1X k k=+,所以X 的分布列为: 1111k kX k k Pq q +- (6分) (Ⅱ)方案②中,结合(1)知每个人的平均化验次数为:()()111111k k k E X q q k k k q ⎛⎫=++⋅-=-+ ⎪⎝⎭⋅ 所以当2k =时, ()20.910.6912E X =-+=,此时1000人需要化验的总次数为690次, 3k =()31,0.910.60433E X =-+≈,此时1000人需要化验的总次数为604次,4k =时, ()40.910.593941E X =-+=,此时1000人需要化验的次数总为594次,即2k =时化验次数最多, 3k =时次数居中, 4k =时化验次数最少.而采用方案①则需化验1000次,故在这三种分组情况下,相比方案①,当4k =时化验次数最多可以平均减少11000-594=406次. (12分)21.【解析】(I)()()2eln 2e 0xf x a x x =->,()2e 2e e x a f x x '=-由条件可知, 2ex =时,()0f x '=,即220e e ea -⋅=,解得e a =.则()()()2e e 22eln 2,x xe f x x e f x e x e '=-=-,令()()x f x ϕ'=,则()22e 2e 4e 0exx x ϕ'=--⋅<,则()f x '为减函数,又e 02f ⎛⎫'=⎪⎝⎭,则()f x 在0,e 2⎛⎫ ⎪⎝⎭上单调递增,在,2e ⎛⎫+∞ ⎪⎝⎭上单调递减, 即函数()f x 在2ex =处取得最大值. 综 e.a = (4分) (Ⅱ)令2x t e=,()()ln 0tg t a t t e t =+->则()g t 与()f x 的零点个数相等, ①当0a =时(),0,tg t e =-<即()20x ef x e =-<所以函数()f x 的零点个数为0;②当0a <时, ()0ta g t e t'=-<,所以函数()g t 在()0,+∞上为减函数, 即函数()g t 至多有一个零点,即()f x 至多有一个零点. 当e 1<e0at -<时,()ln e ln e 0,ta a a t a g t t >+⇒+>>⇒所以当1e 0at e-<<时(),0.g t →又(),10g a e =-<所以函数()g t 有且只有一个零点,即函数()f x 有且只有一个零点; ③当0e a <≤时,令()0,g t '=即,ta te =令()()0,t h t te t =>易知()t h t te =在()0,+∞为增函数,且()1,h e = 故存在(]00,1,t ∈使得()00,g t '=即00t ae t =. 由以上可知,当00t t <<时()(),0,g t g t '>为增函数;当0t t >时()(),0,g t g t '<为减函数; 所以()()(]00000max 00,1tag t g t a alnt e a alnt t t ==+-=+-∈, 令()(]ln ,0,1aF t a a t t t=+-∈ 则()20a aF t t t'=+>,所以()F t 在(]0,1上为增函数, 则()()0,\1F F t =≤即()()0,maxg t 当且仅当t=1,d=e 时等号成立由以上可知,当d=e 时,g(t)有且只有一个零点,即()f x 有且只有一个零点; 当0<a<e 时,无零点;综上所述:当0e a <≤时,函数()f x 无零点; 当a<0或a=e 时,函数()f x 只有一个零点.(12分) 22.【解析】(I)曲线1C 的参数方程为1cos sin x y αα=+⎧⎨=⎩ (α为参数),普通方程为()2211,x y -+=化简可得2220,x y x +-=即曲线1C 的极坐标方程为12cos ,ρθ=又128,ρρ=可知24cos ρθ=,即为曲线2C 的极坐标方程.(5分) (Ⅱ)由()21114||||2cos 2cos cos 22cos A BAP B S OM x x ρρθθθθ∆⎛⎫=⋅-=⋅⋅-=- ⎪⎝⎭得242cos ,DBP S θ∆=-因此ABN S ∆的最小值为2.(10分)23. 【解析】(I)322x x ⎧-⎪⎨⎪⎩≤≥或332268x ⎧-<<⎪⎨⎪-⎩≤或322xx ⎧⎪⎨⎪⎩≤∴{|22}x x -≤(5分)(Ⅱ)∵()()()|2323|66x x x f M --+=∴=()()()2222222112236,ab c a b c ++++++=当且仅当22b c α==时“=”成立,所以2226,a b c ++所以最小值为6.(10分)。
【2020年数学高考】吉林省长春市普通高中2020届高三质量监测(二)数学理.doc

长春市普通高中2020届高三质量监测(二) 数学理科一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项....是符合题目要求的) 1. 已知{|12}A x x =-<<,2{|20}B x x x =+<,则A B =A. (1,0)-B. (0,2)C. (2,0)-D. (2,2)- 2. 已知复数23()z m m mi m =-+∈R 为纯虚数,则m =A. 0B. 3C. 0或3D.43.设命题:(0,),ln 1p x x x ∀∈+∞-≤,则p ⌝是A. :(0,),ln 1p x x x ⌝∀∈+∞>-B. :(,0],ln 1p x x x ⌝∀∈-∞>-C. 000:(0,),ln 1p x x x ⌝∃∈+∞>-D. 000:(0,),ln 1p x x x ⌝∃∈+∞-≤ 4. 已知平面向量(1,3),(2,0)=-=-a b ,则|2|+=a bA. B. 3C. D. 55. 已知等比数列{}n a 的各项均为正数,前n 项和为n S ,若26442,S 6a S a =-=,则5a =A. 4B. 10C. 16D. 326. 已知动点(,)M x y 满足线性条件200580x y x y x y -+⎧⎪+⎨⎪+-⎩……≤,定点(3,1)N ,则直线MN 斜率的最大值为A. 1B. 2C. 3D. 47. 已知椭圆22143x y +=的左右焦点分别为12,F F ,过2F 且垂直于长轴的直线交椭圆于,A B 两点,则△1ABF 内切圆的半径为A. 43B. 1C. 45D. 348. 已知函数()2sin(2)(0)f x x ϕϕπ=+<<,若将函数()f x 的图象向右平移6π个单位后关于y轴对称,则下列结论中不正确...的是 A. 56πϕ=B. (,0)12π是()f x 图象的一个对称中心 C. ()2f ϕ=- D. 6x π=-是()f x 图象的一条对称轴9. 若向区域{}(,)|01,01x y x y Ω=≤≤≤≤内投点,则该点落在由直线y x =与曲线y =成区域内的概率为A.18 B. 16C.13 D. 1210. 如图,格纸上小正方形的边长为1,粗线条画出的是一个三棱锥的三视图,则该三棱锥中最长棱的长度为A. 2D. 311. 已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则双曲线离心率的取值范围是A. 5(,2]3B. 5(1,]3C. (1,2]D. 5[,)3+∞12. 若关于x 的方程2(ln )ln x ax x x -=存在三个不等实根,则实数a 的取值范围是A. 1(,)e e -∞-B. 211(,0)e e -C. 211(,)e e -∞-D. 1(,0)e e-二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上). 13. 52)x x-(的展开式中含x 项的系数为___________.14. 更相减损术是出自《九章算术》的一种算法.如图所示的程序框图是根据更相减损术写出的,若输入91,39a b ==,则输出的值为_____.15. 底面是正多边形,顶点在底面的射影是底面中心的棱锥叫正棱锥.已知同底的两个正四棱锥内接于同一个球,它们的底面边长为a ,球的半径为R ,设两个正四棱锥的侧面与底面所成的角分别为,αβ,则tan()αβ+= ___________.16.在数列{}n a 中,10a =,且对任意k *∈N ,21221,,k k k a a a -+成等差数列,其公差为2k ,则n a =________.三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(本小题满分12分)在△ABC 中,内角,,A B C 的对边分别为,,a b c ,其面积2sin S b A =.(1)求cb的值; =-ab(2) 设内角A 的平分线AD 交BC 于D ,AD =a = b .18. (本小题满分12分)某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在[100,150),[150,200),[200,250),[250,300),[300,350),[350,400)(单位:克)中,经统计得频率分布直方图如图所示.(1) 现按分层抽样从质量为[250,300),[300,350)的芒果中随机抽取9个,再从这9个中随机抽取3个,记随机变量X 表示质量在[300,350)内的芒果个数,求X 的分布列及数学期望.(2)以各组数据的中间数代表这组数据的平均值,将频率视为概率,某经销商来收购芒果,该种植园中还未摘下的芒果大约还有10000个,经销商提出如下两种收购方案: A :所以芒果以10元/千克收购;B :对质量低于250克的芒果以2元/个收购,高于或等于250克的以3元/个收购. 通过计算确定种植园选择哪种方案获利更多? 19. (本小题满分12分)如图,在直四棱柱1111ABCD A B C D -中,底面ABCD 为等腰梯形,1224,23A DBC CD ===.(1)证明:11AD B D ⊥;(2)设E 是线段11A B 上的动点,是否存在这样的点E ,使得二面角1E BD A --的余弦值为7,如果存在,求出1B E 的长;如果不存在,请说明理由.20. (本小题满分12分)已知直线l 过抛物线C :22(0)x py p =>的焦点,且垂直于抛物线的对称轴,l 与抛物线两交点间的距离为2. (1)求抛物线C 的方程;(2)若点(2,2)P ,过点(2,4)-的直线与抛物线C 相交于A ,B 两点,设直线PA 与PB 的斜率分别为1k 和2k .求证:12k k 为定值,并求出此定值.21. (本小题满分12分)已知函数ln ()x xf x xe x=+. (1)求证:函数()f x 有唯一零点;(2)若对任意(0,)x ∈+∞,ln 1xxe x kx -+…恒成立,求实数k 的取值范围. (二)选考题:共10分.请考生在22、23题中任选一题作答.如果多做,则按所做的第一题记分.22. (本小题满分10分)选修4—4:坐标系与参数方程选讲.已知曲线1C 的参数方程为sin x y θθ⎧=⎪⎨=⎪⎩(θ为参数),以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程为2sin 4cos ρθθ=. (1)求1C 的普通方程和2C 的直角坐标方程;(2)若过点(1,0)F 的直线l 与1C 交于A ,B 两点,与2C 交于,M N 两点,求||||||||FA FB FM FN 的取值范围.23.(本小题满分10分)选修4—5:不等式选讲.已知函数()|23||36|f x x x =-+-. (1)求()2f x <的解集;(2) 若()f x 的最小值为T ,正数,a b 满足12a b +=T .长春市普通高中2020届高三质量监测(二) 数学(理科)试题参考答案及评分标准一、选择题(本大题共12小题,每小题5分,共60分) 1. A 【命题意图】本题考查集合的运算. 【试题解析】A {|12},{|20},(A x xB x x A B =-<<=-<<=-.故选A. 2. B 【命题意图】本题考查复数的分类.【试题解析】B 3m =.故选B.3. C 【命题意图】本题考查含有一个量词的命题的否定.【试题解析】C 由含有一个量词的命题的否定. 故选C. 4. A 【命题意图】本题考查平面向量的坐标运算.【试题解析】A 由题意知,2(3,3)+=--a b ,所以|2|+=a b .故选A.5.C 【命题意图】本题主要考查等比数列知识.【试题解析】C 由6546a a a +=得260q q +-=,解得2q =,从而3522=16a a =⋅.故选C.6. C 【命题意图】本题主要考查线性规划的相关知识.【试题解析】C 根据可行域,当M 取(2,2)-时,直线MN 的斜率最大为3.故选 C. 7. D 【命题意图】本题考查椭圆的定义的应用.【试题解析】D 由题意知1ABF ∆的周长为8,面积为3,由内切圆的性质可知,其半径为34.故选D.8. C 【命题意图】本题考查三角函数的图象及性质.【试题解析】C 由题意可知5=6πϕ,故5()2sin(2)6f x x π=+,555()=2sin()2sin 2362f πππϕ+==.故选C. 9. B 【命题意图】本题主要考查定积分及几何概型的综合应用.【试题解析】B由直线y x =与曲线y =13122211)()326x dx x x=-=⎰,从而所求概率为16.故选B.10. D【命题意图】本题主要考查三视图问题.【试题解析】D 可在正方体中画出该三棱锥的直观图,进而算出其最长棱长为3.故选D. 11. B【命题意图】本题考查双曲线定义的相关知识.【试题解析】B由双曲线定义可知22||3aPF=,从而23ac a≥-,双曲线的离心率取值范围为5(1,]3.故选B.12. A【命题意图】本题是考查函数的性质及零点的相关知识.【试题解析】A由题意知2ln ln()10x a xx x--=,令ln xtx=,210t at--=的两根一正一负,由ln xtx=的图象可知,1e<<,解得1(,)a ee∈-∞-. 故选A.二、填空题(本大题共4小题,每小题5分,共20分)13. 40【命题意图】本题考查二项展开式系数的算法.【试题解析】由52()xx-可知含x的项为33252()40C x xx-=,因此x的系数为40.14. 13【命题意图】本题考查程序框图的相关知识.【试题解析】由输入91,39a b==,代入程序框图计算可得输出的a的值为13.15.4Ra-【命题意图】本题考查球的相关知识.【试题解析】设OP t=,则tan2R taα+=,tan2R taβ-=,代入24tan tantan()()()1tan tan14RaR t R taαβαβαβ++==+--⋅-,又2222)22aR t-==,即4tan()Raαβ+=-.16.22()21()2nnnann⎧⎪⎪=⎨-⎪⎪⎩为偶为奇【命题意图】本题考查数列通项公式的算法.【试题解析】由题意可知22()21()2nnnann⎧⎪⎪=⎨-⎪⎪⎩为偶为奇三、解答题17.(本小题满分12分)【命题意图】本题考查解三角形的基本方法.【试题解析】(1)21sin sin 2S bc A b A ==,可知2c b =,即2cb=. (6分)(2)由角平分线定理可知,3BD =,3CD =,在ABC △中,22cos B =,在ABD △中,2444cos b B +-=222444b +-1b =. (12分)18.(本小题满分12分)【命题意图】本小题主要考查学生对抽样的理解,以及分布列的相关知识,同时利用统计学中的决策方案考查学生的数据处理能力.【试题解析】解:(1)9个芒果中,质量在[250,300)和[300,350)内的分别有6个和3个.则X 的可能取值为0,1,2,3.363920(0)84C P X C ===,21633945(1)84C C P X C ===, 12633918(2)84C C P X C ===,33391(3)84C P X C ===X 的数学期望1810123184848484EX =⨯+⨯+⨯+⨯=.(6分)(2)方案A :(1250.0021750.0022250.0032750.0083250.0043750.001)5010000100.00125750⨯+⨯+⨯+⨯+⨯+⨯⨯⨯⨯⨯=元方案B :低于250克:(0.0020.0020.003)501000027000++⨯⨯⨯=元高于或等于250克(0.0080.0040.001)5010000319500++⨯⨯⨯=元总计70001950026500+=元由2575026500<,故B 方案获利更多,应选B 方案. (12分)19.(本小题满分12分)【命题意图】本小题以四棱柱为载体,考查立体几何的基础知识. 本题考查学生的空间想象能力、推理论证能力和运算求解能力.【试题解析】解:(1)连结BD ,11B D ,则由余弦定理可知11BD B D ⊥,由直棱柱1111ABCD A B C D -可知,11111111BB ABCD BB AB AB BDD B AB ABCD AB B D BD AB B D BDD B ⎫⎫⊥⎫⇒⊥⎪⎬⎪⇒⊥⊂⎬⎪⎭⇒⊥⎬⎪⊥⎭⎪⎪ ⊂⎭ 平面平面平面由余弦定理可知平面11BD B D ⎫⎪⎪⎪⎬⎪⎪⎪ ⊥⎭111111B D ABD AD B D AD ABD ⇒⊥⎫⇒⊥⎬ ⊂⎭平面平面(6分) (2)以B 为原点,以DB 方向为x 轴,以AB 方向为y 轴,以1BB 方向为z 轴,建立坐标系.(0,E m (0m <),(,0)B ,1(3,0,23)D -,(0,2,0)A -(0,BEm =,1(BD =-,1(,)n m m =-(0,2,0)BA =-,1(BD =-,2(1,0,1)n =cos 7θ==,又0m <,则1m =-,故1B E 长为1.(12分) 20.(本小题满分12分)【命题意图】本小题考查抛物线的标准方程及直线与抛物线的位置关系,考查学生的逻辑思维能力和运算求解能力.【试题解析】(1)由题意可知,22p =,抛物线的方程为22x y =.(4分)(2)已知点(2,2)P ,设直线l 的方程为:4(2)y k x -=+11(,)A x y ,22(,)B x y ,则111112(2)222y k x k x x -++==--,222222(2)222y k x k x x -++==--,21212121212121212[(2)2][(2)2][2()4]2(4)4(2)(2)2()4k x k x k x x x x k x x k k x x x x x x +++++++++++==---++ 联立抛物线22x y =与直线4(2)y k x -=+的方程消去y 得22480x kx k ---= 可得122x x k +=,1248x x k =--,代入12k k 可得121k k =-. 因此12k k 可以为定值,且该定值为1-.(12分)21. (本小题满分12分)【命题意图】本小题主要考查函数与导数的相关知识,以导数为工具研究函数的方法,考查学生解决问题的综合能力.【试题解析】(1)21ln '()(1)xxf x x e x-=++, 易知'()f x 在(0,)e 上为正,因此()f x 在区间(0,1)上为增函数,又121()0ee ef e e-=<,(1)0f e =>因此1()(1)0f f e<,即()f x 在区间(0,1)上恰有一个零点,由题可知()0f x >在(1,)+∞上恒成立,即在(1,)+∞上无零点,则()f x 在(0,)+∞上存在唯一零点.(4分)(2)设()f x 的零点为0x ,即000ln 0xx x e x +=. 原不等式可化为ln 1x xe x k x--≥,令ln 1()x xe x g x x --=,则ln '()x xxe x g x x+=,由(1)可知()g x 在0(0,)x 上单调递减,在0()x +∞,上单调递增,故只求0()g x , 下面分析0000ln 0x x x e x +=,设00x x e t =,则0ln x t x =-, 可得0000ln ln ln x tx x x t=-⎧⎨+=⎩,即0(1)ln x t t -=若1t >,等式左负右正不相等,若1t <,等式左正右负不相等,只能1t =.因此0000000ln 1ln ()1x x e x x g x x x --==-=,即1k …求所求. (12分)22. (本小题满分10分)【命题意图】本小题主要考查极坐标系与参数方程的相关知识,具体涉及到参数方程与普通方程的互化、极坐标方程与直角坐标方程的转化、直线的参数方程的几何意义等内容. 本小题考查考生的方程思想与数形结合思想,对运算求解能力有一定要求.【试题解析】 (1)曲线1C 的普通方程为2212x y +=,曲线2C 的直角坐标方程为24y x =;(5分)(2)设直线l 的参数方程为1cos sin x t y t αα=+⎧⎨=⎩(t 为参数)又直线l 与曲线2C :24y x =存在两个交点,因此sin 0α≠.联立直线l 与曲线1C :2212x y +=可得22(1sin )2cos 10t t αα++-=则1221||||||1sin FA FB t t α⋅==+ 联立直线l 与曲线2C :24y x =可得22sin 4cos 40t t αα--=,则1224||||||sin FM FN t t α⋅==即222221||||1sin 1111sin (0,]41||||41sin 481sin sin FA FB FM FN ααααα⋅+==⋅=⋅∈⋅++. (10分) 23.(本小题满分10分)【命题意图】本小题主要考查不等式的相关知识,具体涉及到绝对值不等式解法等内容. 本小题重点考查化归与转化思想.【试题解析】(1)333263()59()2233()|23||36|2363(2)3(2)222336(2)59(2)x x x x x f x x x x x x x x x x x x x ⎧⎧-+- <-+ <⎪⎪⎪⎪⎪⎪=-+-=-+- =-+ ⎨⎨⎪⎪-+- >- >⎪⎪⎪⎪⎩⎩≤≤≤≤由图像可知:()2f x <的解集为711(,)55.(5分)(2)图像可知()f x 的最小值为1,12=,当且仅当a b =时,“=1T =. (10分)。
2020届吉林省长春市高三质量监测(三)(三模)数学(理)试题(解析版)

【答案】C
【解析】根据圆心的连线与公共弦所在直线垂直,即可求得圆心;再结合弦长公式,即可容易求得半径.
【详解】
两圆圆心连线与公共弦垂直,不妨设所求圆心的坐标为 ,
又圆 的圆心为 ,半径为1,
故 ,解得 .故所求圆心为 .
直线 截得 所成弦长 ,
圆心 到直线 的距离为 ,
所以直线 截得所求圆的弦长 ,
A. B. C. D.
【答案】D
【解析】利用 之间的关系,即可容易求得 ,则 得解,再用并项求和法即可求得结果.
【详解】
由 得 ,作差可得:
,又 得 ,
则 所以 ,
…,
所以 .
故选:D.
【点睛】
本题考查利用 的关系求数列的通项公式,涉及等差数列前 项和的求解,属综合中档题.
12.设椭圆 的左右焦点为 ,焦距为 ,过点 的直线与椭圆 交于点 ,若 ,且 ,则椭圆 的离心率为()
【详解】
因为 ,又 与向量 共线
故可得 ,解得 .
故选:B.
【点睛】
本题考查向量共线的坐标公式,涉及向量的坐标运算,属基础题.
4.已知函数 的图象为C,为了得到关于原点对称的图象,只要把C上所有的点()
A.向左平移 个单位B.向左平移 个单位
C.向右平移 个单位D.向右平移 个单位
【答案】A
【解析】利用辅助角公式化简 ,再根据三角函数的奇偶性,即可求得结果.
A. B. C. D.
【答案】C
【解析】根据题意,求得 ,结合余弦定理,即可求得 的齐次式,据此即可求得结果.
【详解】
根据题意,作图如下:
由 得 , ,
由
即 ,
整理得 ,
吉林省长春市普通高中2020届高三质量监测(一)理数参考答案

长春市2020届高三质量监测(一) 数学(理科)试题参考答案及评分参考一、选择题(本大题共12小题,每小题5分,共60分)1. B2. C3. C4. C5. D6. A7. D8. A9. C 10. B 11. C 12. C二、填空题(本大题共4小题,每小题5分,16题第一空2分,第二空3分,共20分)13. 112 14. 215. 20π16.221n n +,1(1)(1)nn n -++三、解答题17. (本小题满分12分)【命题意图】本题考查三角函数的相关知识,特别是三角函数中的取值范围问题. 【试题解析】解:(Ⅰ)由题可知sin sin sin cos AA B A=⋅,即sin cos B A =, 由a b >,可得2A B π+=,即ABC △是直角三角形.(6分)(Ⅱ)ABC ∆的周长1010sin 10cos L A A =++,10)4L A π=++,由a b >可知,42A ππ<<sin()14A π<+<,即2010S <<+(12分)18. (本小题满分12分)【命题意图】本题考查立体几何相关知识. 【试题解析】解:(Ⅰ)取PA 中点M ,连结EM 、DM ,//////EM CD CE DM CE PAD EM CD DM PAD ⎫⎫⇒⎬⎪⇒=⎬⎭⎪ ⊂⎭平面平面.(6分) (Ⅱ)以A 为原点,以AD 方面为x 轴,以AB 方向为y 轴,以AP 方向为z 轴,建立坐标系.可得(2,0,0)D ,(2,1,0)C ,(0,0,4)P ,(0,2,0)B ,(0,1,2)E ,(0,1,0)CD =-,(2,0,2)CE =-,平面CDE 的法向量为1(1,0,1)n =; 平面ABCD 的法向量为2(0,0,1)n =;因此1212||cos ||||n n n n θ⋅==⋅ 即平面CDE 与平面ABCD 所成的锐二面角为4π. (12分)19. (本小题满分12分)【命题意图】本题考查概率的相关知识.【试题解析】解:(Ⅰ)该考生本次测验选择题得50分即为将其余4道题无法确定 正确选项的题目全部答对,其概率为11111(50)223336P X ==⋅⋅⋅=. (4分)(Ⅱ)设该考生本次测验选择题所得分数为X , 则X 的可能取值为30,35,40,45,50.11224(30)223336P X ==⋅⋅⋅=112211221112112112(35)223322332233223336P X ==⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅=11221112112111121121111113(40)22332233223322332233223336P X ==⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅=11111111112111126(45)223322332233223336P X ==⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅=11111(50)223336P X ==⋅⋅⋅=选择题所得分数为X 的数学期望为3EX =. (12分)20. (本小题满分12分)【命题意图】本小题考查圆锥曲线中的最值问题等知识. 【试题解析】解:(Ⅰ)由定义法可得,P 点的轨迹为椭圆且24a =,1c =.因此椭圆的方程为22143x y +=. (4分)(Ⅱ)设直线l 的方程为x ty =-与椭圆22143x y +=交于点11(,)A x y ,22(,)B x y ,联立直线与椭圆的方程消去x 可得 22(34)30t y +--=,即12y y+=,122334y y t -=+. AOB ∆面积可表示为1211||||2AOB S OQ y y =⋅-=△216234t ==+u =,则1u ≥,上式可化为26633u u u u=++当且仅当u =3t =±因此AOB ∆l 的方程为3x y =±. (12分)21. (本小题满分12分)【命题意图】本小题考查函数与导数的相关知识. 【试题解析】解:(Ⅰ)由题可知1()ln 1f x x x'=+-, ()f x '单调递增,且(1)0f '=,当01x <<时,()0f x '<,当1x ≥时,()0f x '≥;因此()f x 在(0,1)上单调递减,在[1,)+∞上单调递增. (4分)(Ⅱ)由3()(1)ln ln h x m x x x x e=-+--有两个零点可知由11()(1ln )1h x m x x x'=+-+-且0m >可知,当01x <<时,()0h x '<,当1x ≥时,()0h x '≥;即()h x 的最小值为3(1)10h e=-<,因此当1x e =时,1113(1)2()(1)(1)(1)0m e e h m e e e e e -+-=--+---=>, 可知()h x 在1(,1)e上存在一个零点;当x e =时,3()(1)10h e m e e e=-+-->,可知()h x 在(1,)e 上也存在一个零点;因此211x x e e -<-,即121x e x e+>+. (12分)22. (本小题满分10分)【命题意图】本小题主要考查极坐标与参数方程的相关知识. 【试题解析】解:(Ⅰ)直线l 的普通方程为30x y +-=, 圆C 的直角坐标方程为22430x y x +--=.(5分) (Ⅱ)联立直线l 的参数方程与圆C 的直角坐标方程可得22(1)(2)4(1)30222-++---=,化简可得220t +-=. 则12||||||2PA PB t t ⋅==. (10分)23. (本小题满分10分)【命题意图】本小题主要考查不等式的相关知识. 【试题解析】(Ⅰ)由题意 (3)(1),34,3()(3)(1),3122,31(3)(1),14,1x x x x f x x x x x x x x x x ---- <-- <-⎧⎧⎪⎪=+-- - =+ -⎨⎨⎪⎪+-- > >⎩⎩≤≤≤≤当3x <-时,41x -+≥,可得5x -≤,即5x -≤.当31x -≤≤时,221x x ++≥,可得1x -≥,即11x -≤≤. 当1x >时,41x +≥,可得3x ≤,即13x <≤.综上,不等式()1f x x +≥的解集为(,5][1,3]-∞--. (5分) (Ⅱ)由(Ⅰ)可得函数)(x f 的最大值4M =,且14ab a b +++=,即23()()2a b a b ab +-+=≤,当且仅当a b =时“=”成立,可得2(2)16a b ++≥,即2a b +≥,因此b a +的最小值为2. (10分)。
吉林省长春市普通高中2020届高三质量监测理科数学试卷(含答案)

所以 an+1
−
an
=
3n ,
an
=
(an
− an−1)
+
(an−1
− an−2 )
+ ......+ (a2
−
a1) +
a1
=
3n −1 2
.
.
(6 分)
(Ⅱ)由(Ⅰ)得: bn = n 3n − n ,
Tn = 1 31 + 2 32 + ...... + n 3n , ①
3Tn = 1 32 + 2 33 + ...... + (n −1) 3n + n 3n+1 , ②
①-②可得
−2Tn
=
31
+
32
+
...... +
3n
−
n 3n+1
=
3n+1 − 2
3
−
n
3n+1
,
则 Tn
=
−
3n+1 − 3 4
+
n 3n+1 2
=
(2n
−1) 3n+1 4
+
3
即
Sn
=
(2n
−1) 3n+1 4
+
3
−
n(n +1) 2
.
20. (本小题满分 12 分)
(12 分)
【参考答案与评分细则】解:(Ⅰ)已知点 P 在椭圆 C :
(4 分)
(Ⅱ)设直线 AP 的方程为: y = k(x + 2) ,则直线 OM 的方程为 y = kx .
吉林省长春市2020届高三质量监测(四)(四模)数学(理科)试题(含答案)

10. 过抛物线 C : x2 2 py (3 AF BF ,O 为坐标原点,则 | AF | | OF |
4
3
A.
B.
C. 4
3
4
5
D.
4
11. 函数 f (x) sin(Z x M ) 的部分图象如图中实线所示,图中的圆 C 与 f (x) 的图象交
D. 若 z 满足| z i | 1,则 z 在复平面内对应点 (x, y) 的轨迹是圆.
4. 树立劳动观念对人的健康成长至关重要,某实践小组共有 4 名男生,2 名女生,现从
中选出 4 人参加校园植树活动,其中至少有一名女生的选法共有
A.8 种
B. 9 种
C. 12 种
D. 14 种
5. 若 sin(T S ) 1 ,则 sin(2T S )
开始
输入 t
是
t 1?
否
14. 执行如图所示的程序框图,若输入 t [1,3] ,则输出 s et1
s 的取值范围是______________.
15. 已知向量 AB (0,1) ,| AC | 7 , AB BC 1 ,则 △ABC 面积为______________.
s log3 t
一、选择题:本题共 12 小题,每小题 5 分,共 60 分. 在每小题给出的四个选项中,
只有一项是符合题目要求的.
1. 设集合 A {x | x2 ≤1} , B {x | x 0} ,则 R ( A ∪ B)
A. {x | x ≥1}
B. {x | x ! 1}
C. {x | x 1或0 ≤ x 1}
处两条切线的交点 P(x0, y0 ) 一定满足
A. x0 0
长春市普通高中2020届高三质量监测(二)数学(理科)试题

长春市普通高中2020届高三质量监测(二)理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x(x-2)≤0}; B={-1,0,1,2,3}, 则A∩B=, A. {-1,3} B. {0,1,2} C. {1,2} D. {0,1,2,3}2. 若则1(1)(),||2,z a i a z =+-∈=RA.1或2B.0C.1或2D.13.下列与函数1y x=定义域和单调性都相同的函数是 2log .2xA y =21.log ()2x B y =C.21log y x=D.14y x =4;已知等差数列{}n a 中,5732,a a =则此数列中一定为0的是1.A a3.B a8.C a10.D a5.若单位向量12,e e 夹角为60°,12,a e e λ=-且||3,a =则实数λ=A.-1B.2C.0或-1D.2或-16.《普通高中数学课程标准(2017 版》提出了数学学科的六大核心素养,为了比较甲、乙两名高二学生的数学核心素养水平,现以六大素养为指标对二人进行了测验,根据测验结果绘制了雷达图(如图,每项指标值满分为5分,分值高者为优),则下面叙述正确的是A.甲的数据分析素养高于乙B.甲的数学建模素养优于数学抽象素养C.乙的六大素养中逻辑推理最差前D.乙的六大素养整体平均水平优于甲7.命题p: 存在实数0,x 对任意实数x ,使得0sin()sin x x x +=-恒成立; q:∀a>0, ()ln a xf x a x+=-为奇函数,则下列命题是真命题的是A.p ∧qB. (¬p)∨(¬q)C. p ∧(¬q)D. (¬p)∧q8. 在△ABC 中, C=30°,2cos ,2,3A AC =-=则AC 边上的高为A B.2.C.D 9.2020 年是脱贫攻坚决战决胜之年,某市为早日实现目标,现将甲、乙、丙、丁4名干部派遣到A 、B 、C 三个贫困县扶贫,要求每个贫困县至少分到一人;则甲被派遣到A 县的分法有A.6种B.12种C.24种D.36种10.在正方体1111ABCD A B C D -中,点E,F,G 分别为棱11111,,A D D D A B 的中点,给出下列命题:1AC EG ⊥①;②GC// ED;1B F ⊥③平面1BGC ④EF 和1BB 成角为.4π正确命题的个数是A.0B.1C.2D.3l1. 已知抛物线C:22(0)y px p =>的焦点为F 01,(,)2M y 为该抛物线上一点,以M 为圆心的圆与C 的准线相切于点A ,∠AMF = 120°,则抛物线方程为2.2A y x =2.4B y x =2.6C y x =2.8D y x =12.已知11(),x x f x ee x --=-+则不等式()(32)2f x f x +-≤的解集是A. [1,+∞)B. [0,+∞)C. (-∞,0]D. (-∞,1]二、填空题:本题共4小题,每小题5分,共20分13.若x,y 满足约束条件2220,22x y y x y +≥⎧⎪-≤⎨⎪-≤⎩则z=x+y 的最大值为___14.若125(),3a x dx -=⎰则a=___ 15.已知函数()sin()(6f x x πωω=+>0 )在区间[π,2π)上的值小于0恒成立,则ω的取值范围是___16.三棱锥A- BCD 的顶点都在同一个球面上,满足BD 过球心O,且BD =三棱锥A- BCD 体积的最大值为_____;三棱锥A-BCD 体积最大时,平面ABC 截球所得的截面圆的面积为___(本题第一空2分,第二空3分.)三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22~ 23题为选考题,考生根据要求作答..17. (12分)2019年入冬时节,长春市民为了迎接2022年北京冬奥会,增强身体素质,积极开展冰上体育锻炼。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长春市 2020 届高三质量监测(一) 理科数学一、选择题:本题共 12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符 合题目要求的. 1. 已知集合{|||2}A x x =≥,2{|30}B x x x =-> ,则AB =A. ∅B. {|3,x x >或x ≤2}-C. {|3,x x >或0}x <D. {|3,x x >或2}x ≤ 2. 复数252i +i z =的共轭复数z 在复平面上对应的点在A. 第一象限B. 第二象限C. 第三象限D. 第四象限3. 已知31()3a =,133b =,13log 3c =,则A. a b c <<B. c b a <<C. c a b <<D. b c a << 4. 已知直线0x y +=与圆22(1)()2x y b -+-=相切,则b = A. 3- B. 1 C. 3-或1 D.525. 2019年是新中国成立七十周年,新中国成立以来,我国文化事业得到了充分发展,尤其是党的十八大以来,文化事业发展更加迅速,下图是从2013 年到 2018 年六年间我国公共图书馆业机构数(个)与对应年份编号的散点图(为便于计算,将 2013 年编号为 1,2014 年编号为 2,…,2018年编号为 6,把每年的公共图书馆业机构个数作为因变量,把年份编号从 1 到 6 作为自变量进行回归分析),得到回归直线ˆ13.7433095.7yx =+,其相关指数2R 0.9817=,给出下列结论,其中正确的个数是①公共图书馆业机构数与年份的正相关性较强 ②公共图书馆业机构数平均每年增加 13.743 个③可预测 2019 年公共图书馆业机构数约为 3192 个A. 0B. 1C. 2D. 36. 中国传统扇文化有着极其深厚的底蕴. 一般情况下,折扇可看作是从一个圆面中剪下的扇形制作而成,设扇形的面积为1S ,圆面中剩余部分的面积为2S ,当1S 与2S 的比值为512-时,扇面看上去形状较为美观,那么此时扇形的圆心角的弧度数为A. (35)π-B. (51)π-C. (51)π+D. (52)π- 7. 已知,,a b c 为直线,,,αβγ平面,则下列说法正确的是 ① ,a b αα⊥⊥,则//a b ② ,αγβγ⊥⊥,则αβ⊥ ③ //,//a b αα,则//a b ④//,//αγβγ,则//αβA. ① ② ③B. ② ③ ④C. ① ③D. ① ④8. 已知数列{}n a 为等比数列,n S 为等差数列{}n b 的前n 项和,且21a =,1016a =,66a b = ,则11S = A. 44 B. 44- C. 88 D. 88-9. 把函数()y f x =图象上所有点的横坐标伸长到原来的2倍,得到2sin()y x ωϕ=+(0,||)2πωϕ><的图象(部分图象如图所示) ,则()y f x =的解析式为A. ()2sin(2)6f x x π=+ B. ()2sin()6f x x π=+C. ()2sin(4)6f x x π=+D. ()2sin()6f x x π=- 10. 已知函数()y f x =是定义在R 上的奇函数,且满足(2)()0f x f x ++=,当[2,0]x ∈-时,2()2f x x x =--,则当[4,6]x ∈时,()y f x =的最小值为A. 8-B. 1-C. 0D. 111. 已知椭圆22143x y +=的右焦点F 是抛物线22(0)y px p =>的焦点,则过F 作倾斜角为60︒的直线分别交抛物线于,A B (A 在x 轴上方)两点,则||||AF BF 的值为 A.3 B. 2 C. 3 D. 412. 已知函数21()(2)e x f x x x -=-,若当1x > 时,()10f x mx m -++≤有解,则m 的取值范围为A. m ≤1B. m <-1C. m >-1D. m ≥1 二、填空题:本题共4小题,每小题5分. 13. 381(2)x x-展开式中常数项为___________.14.边长为2正三角形ABC 中,点P 满足1()3AP AB AC =+,则BP BC ⋅=_________. 15.平行四边形ABCD 中,△ABD 是腰长为2的等腰直角三角形,90ABD ∠=︒,现将△ABD 沿BD 折起,使二面角A BD C --大小为23π,若,,,A B C D 四点在同一球面上,则该球的表面积为________.16.已知数列{}n a 的前项n 和为n S ,满足112a =-,且1222n n a a n n++=+,则2n S = __________,n a =__________.三、解答题:共 70 分,解答应写出文字说明、证明过程或演算步骤. 第 17~21 题为必考 题,每个试题考生都必须作答. 第 22~23 题为选考题,考生根据要求作答. (一)必考题:共 60 分. 17.(本小题满分 12 分)△ABC 的内角,,A B C 的对边分别为,,a b c ,tan ()a b A a b => .(Ⅰ)求证:△ABC 是直角三角形;(Ⅱ)若10c =,求△ABC 的周长的取值范围. 18. (本小题满分 12 分)如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,//AB CD ,AD DC ⊥,22AB AD DC ===,E 为PB 中点.(Ⅰ)求证://CE 平面PAD ;(Ⅱ)若4PA =,求平面CDE 与平面ABCD 所成锐二面角的大小. 19.(本小题满分 12 分)某次数学测验共有 10 道选择题,每道题共有四个选项,且其中只有一个选项是正确 的,评分标准规定:每选对 1 道题得 5 分;不选或选错得 0 分. 某考生每道题都选并能确定其中有 6 道题能选对,其余 4 道题无法确定正确选项,但这 4 道题中有 2 道题能排除两个错误选项,另 2 道只能排除一个错误选项,于是该生做这 4 道题时每道题都从不能排除的选项中随机选一个选项作答,且各题作答互不影响.(Ⅰ)求该考生本次测验选择题得 50 分的概率;(Ⅱ)求该考生本次测验选择题所得分数的分布列和数学期望. 20.(本小题满分 12 分)已知点(1,0),(1,0)M N -若点(,)P x y 满足||||4PM PN +=. (Ⅰ)求点P 的轨迹方程;(Ⅱ)过点(3,0)Q 的直线l 与(Ⅰ)中曲线相交于,A B 两点,O 为坐标原点, 求△AOB 面积的最大值及此时直线l 的方程. 21.(本小题满分 12 分)已知函数()(1)ln f x x x =-,3()ln eg x x x =--. (Ⅰ)求函数()f x 的单调区间;(Ⅱ)令()()()(0)h x mf x g x m =+>两个零点1212,()x x x x < ,证明:121ex e x +>+. (二)选考题:共 10 分,请考生在 22、23 题中任选一题作答,如果多做则按所做的第一题计分. 22.(本小题满分 10 分)选修 4-4 坐标系与参数方程在平面直角坐标系xOy 中,直线l 的参数方程为21222x ty t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为24cos 3ρρθ-=.(Ⅰ)求直线l 的普通方程和圆C 的直角坐标方程;(Ⅱ)直线l 与圆C 交于,A B 两点,点(1,2)P ,求||||PA PB ⋅的值. 23. (本小题满分 10 分)选修 4-5 不等式选讲已知函数()|3||1|f x x x =+-- . (Ⅰ)解关于x 的不等式()1f x x +≥ ;(Ⅱ)若函数()f x 的最大值为M ,设0,0a b >>,且(1)(1)a b M ++=,求a b + 的最小值.长春市2020届高三质量监测(一) 数学(理科)试题参考答案及评分参考一、选择题(本大题共12小题,每小题5分,共60分) 1. B 【解析】{|||2}{|2,2}A x x x x x =≥=-或≤≥,2{|30}{|0,3}B x x x x x x =->=<>或,∴A B ={|3,x x >或x ≤2}-2. C 【解析】252i +i 2i z ==-+,则z 2i =--,其对应点为(2,1)--,在第三象限3. C 【解析】01,1,0a b c <<><,∴c a b <<4. C 【解析】 由圆心到切线的距离等于半径,得22211=+∴|1|2b +=∴13b b ==-或5. D 【解析】由图知点散布在从左下角到右上角的区域内,所以为正相关,又2R 0.9817=趋近于1,所以相关性较强,故①正确;由回归方程知②正确;由回归方程,当7x =时,得估计值为3191.9≈3192,故③正确.6. A 【解析】1S 与2S 所在扇形圆心角的比即为它们的面积比,设1S 与2S 所在扇形圆心角分别为,αβ,则51αβ-=,又2αβπ+=,解得(35)απ=- 7. D 【解析】①正确; ② 错误;③错误;④正确8. A 【解析】 2210661164a a a a =⨯==∴,∴664b a ==,1161144S b ==9. C 【解析】由2sin(0)1ωϕϕ⋅+=π∴=6,由112sin()0212ωπϕω⋅+==∴即2sin(2)6y x π=+,横坐标缩短到原来的12倍,得2sin(4)6y x π=+,即为()f x 解析式.10. B 【解析】由(2)()0f x f x ++=得函数的周期为4,又当[2,0]x ∈-时,2()2f x x x =--,且()f x 是定义在R 上的奇函数∴[0,2]x ∈时,2()2f x x x =-,∴当[4,6]x ∈时,22()(4)(4)2(4)1024f x f x x x x x =-=---=-+此时()f x 的最小值为(5)1f =-.[法2:由周期为4,()f x 在[0,2]上的最小值即为()f x 在[4,6]上的最小值]11. C 【解析】椭圆的右焦点为(1,0),∴12p =∴2p =,||1cos60p AF =-︒,||1cos60pBF =+︒,∴||10.53||10.5AF BF +==-. 12. C 【解析】21()(2)ex f x x -'=-∴()f x 在(1,2)上递减,在(2,)+∞上递增,当2x >时,()0f x >,又(1)1f =-,(2)1f <-,(2)0f =∵(1)1f '=-∴m >-1二、填空题(本大题共4小题,每小题5分,16题第一空2分,第二空3分,共20分) 13. 112【解析】由3883(8)1881(2)()2(1)rrr r r r r r r T C x C x x----+=-=-有3(8)0r r --=得6r =∴6866782(1)112T C -=-=14. 2【解析】112(())()()()333BP BC AB AC AB AC AB AC AB AC AB ⋅=+-⋅-=-⋅- 221248122233332AC AB AC AB =+-⋅=+-⨯⨯= 15. 20π【解析】 取AD,BC 的中点分别为12,O O ,过1O 作面ABD 的垂线与过2O 作面BCD 的垂线,两垂线交点O 即为所求外接球的球心,取BD 中点E ,连结12,O E O E ,则12O EO ∠即为二面角A BD C --的平面角,121O E O E ==,连OE ,在Rt △1O OE 中,13OO =,在Rt △1O OA 中,12O A =得5OA =,即球半径为5,所以球面积为20π.16.221n n +,1(1)(1)n n n -++【解析】由1222n n a a n n ++=+得21222(21)2(21)n n a a n n -+=-+- 211(21)(21)2121n n n n ==--+-+∴2nS =1113-+1135-+…+112121n n --+1121n =-+. 由111212a =-=-⨯递推得277623a ==⨯,311111234a =-=-⨯,421212045a ==⨯,归纳可得1(1)(1)n n n -++.【法2:】122111111=()()22112n n a a n n n n n n n n ++=-=-+-+++++∴11111()[()]112n n a a n n n n +--=---+++∴11{()}1n a n n --+为首项为1-,公比为1-的等比数列,11111()=(1)=(1)+()=(1)+11(1)n n n n n a a n n n n n n ------+++∴三、解答题17. (本小题满分12分)【命题意图】本题考查三角函数的相关知识,特别是三角函数中的取值范围问题. 【试题解析】解:(Ⅰ)由题可知sin sin sin cos AA B A=⋅,即sin cos B A =, 由a b >,可得2A B π+=,即ABC △是直角三角形.(6分)(Ⅱ)ABC ∆的周长1010sin 10cos L A A =++,10102)4L A π=++,由a b >可知,42A ππ<<,因此2sin()124A π<+<,即2010102L <<+(12分) 18. (本小题满分12分)【命题意图】本题考查立体几何相关知识. 【试题解析】解:(Ⅰ)取PA 中点M ,连结EM 、DM ,//////EM CD CE DM CE PAD EM CD DM PAD ⎫⎫⇒⎬⎪⇒=⎬⎭⎪ ⊂⎭平面平面.(6分) (Ⅱ)以A 为原点,以AD 方面为x 轴,以AB 方向为y 轴,以AP 方向为z 轴, 建立坐标系.可得(2,0,0)D ,(2,1,0)C ,(0,0,4)P ,(0,2,0)B ,(0,1,2)E ,(0,1,0)CD =-,(2,0,2)CE=-, 平面CDE 的法向量为1(1,0,1)n =; 平面ABCD 的法向量为2(0,0,1)n =; 因此1212||cos ||||2n n n n θ⋅==⋅. 即平面CDE 与平面ABCD 所成的锐二面角为4π.(12分) 19. (本小题满分12分)【命题意图】本题考查概率的相关知识.【试题解析】解:(Ⅰ)该考生本次测验选择题得50分即为将其余4道题无法确定 正确选项的题目全部答对,其概率为11111(50)223336P X ==⋅⋅⋅=. (4分)(Ⅱ)设该考生本次测验选择题所得分数为X , 则X 的可能取值为30,35,40,45,50.11224(30)223336P X ==⋅⋅⋅=112211221112112112(35)223322332233223336P X ==⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅=11221112112111121121111113(40)22332233223322332233223336P X ==⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅=11111111112111126(45)223322332233223336P X ==⋅⋅⋅+⋅⋅⋅+⋅⋅⋅+⋅⋅⋅=11111(50)223336P X ==⋅⋅⋅=选择题所得分数为X 的数学期望为3EX =. (12分)20. (本小题满分12分)【命题意图】本小题考查圆锥曲线中的最值问题等知识. 【试题解析】解:(Ⅰ)由定义法可得,P 点的轨迹为椭圆且24a =,1c =.因此椭圆的方程为22143x y +=. (4分)(Ⅱ)设直线l 的方程为x ty =与椭圆22143x y +=交于点11(,)A x y ,22(,)B x y ,联立直线与椭圆的方程消去x 可得22(34)30t y +--=,即12y y+=,122334yy t -=+.AOB ∆面积可表示为1211||||2AOB S OQ y y =⋅-=△216234t ==+u =,则1u ≥,上式可化为26633u u u u=++,当且仅当u =3t =±时等号成立, 因此AOB ∆l的方程为3x y =±. (12分) 21. (本小题满分12分)【命题意图】本小题考查函数与导数的相关知识. 【试题解析】解:(Ⅰ)由题可知1()ln 1f x x x'=+-, ()f x '单调递增,且(1)0f '=,当01x <<时,()0f x '<,当1x ≥时,()0f x '≥;因此()f x 在(0,1)上单调递减,在[1,)+∞上单调递增. (4分)(Ⅱ)由3()(1)ln ln h x m x x x x e=-+--有两个零点可知由11()(1ln )1h x m x x x'=+-+-且0m >可知,当01x <<时,()0h x '<,当1x ≥时,()0h x '≥;即()h x 的最小值为3(1)10h e=-<,因此当1x e =时,1113(1)2()(1)(1)(1)0m e e h m e e e e e -+-=--+---=>, 可知()h x 在1(,1)e上存在一个零点;当x e =时,3()(1)10h e m e e e=-+-->,可知()h x 在(1,)e 上也存在一个零点;因此211x x e e -<-,即121x e x e+>+. (12分)22. (本小题满分10分)【命题意图】本小题主要考查极坐标与参数方程的相关知识. 【试题解析】解:(Ⅰ)直线l 的普通方程为30x y +-=, 圆C 的直角坐标方程为22430x y x +--=.(5分) (Ⅱ)联立直线l 的参数方程与圆C 的直角坐标方程可得22(1)(2)4(1)30222-++---=,化简可得220t +-=.则12||||||2PA PB t t ⋅==. (10分) 23. (本小题满分10分)【命题意图】本小题主要考查不等式的相关知识. 【试题解析】(Ⅰ)由题意 (3)(1),34,3()(3)(1),3122,31(3)(1),14,1x x x x f x x x x x x x x x x ---- <-- <-⎧⎧⎪⎪=+-- - =+ -⎨⎨⎪⎪+-- > >⎩⎩≤≤≤≤当3x <-时,41x -+≥,可得5x -≤,即5x -≤.当31x -≤≤时,221x x ++≥,可得1x -≥,即11x -≤≤. 当1x >时,41x +≥,可得3x ≤,即13x <≤.综上,不等式()1f x x +≥的解集为(,5][1,3]-∞--.(5分)(Ⅱ)由(Ⅰ)可得函数)(x f 的最大值4M =,且14ab a b +++=,即23()()2a b a b ab +-+=≤,当且仅当a b =时“=”成立,可得2(2)16a b ++≥,即2a b +≥,因此b a +的最小值为2.(10分)。